2819

Ruthenium Vinylidene and \sigma-Acetylide Complexes Containing 1,4,7-Trimethyl-1,4,7-triazacyclononane (Me₃tacn): Synthesis and Alkyne-Coupling Reactivity

San-Ming Yang,[†] Michael Chi-Wang Chan,[†] Kung-Kai Cheung,[†] Chi-Ming Che,^{*,†} and Shie-Ming Peng[‡]

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, and Department of Chemistry, National Taiwan University, Taiwan

Received January 24, 1997[®]

The ruthenium(II) complexes $[Ru(Me_3tacn)(L)_2X]PF_6$ (L = PMe₃, X = O₂CCF₃ (1a); L = PMe₃, X = Cl (**1b**); $L = \frac{1}{2}$ dmpe, $X = O_2CCF_3$ (**1c**)) are prepared. Only **1a** reacts with 1 equiv of RC=CH (R = Ph and p-tolyl) to give the vinylidene complexes [Ru(Me₃tacn)- $(PMe_3)(O_2CCF_3){C=CH(R)}PF_6$ (R = Ph (**2a**) and p-tolyl (**2b**)) in refluxing 1,2-dichloroethane. Reaction of 2a and 2b with PMe₃ in methanolic KOH solution give the corresponding σ -acetylide complexes [Ru(Me₃tacn)(PMe₃)₂(C=CR)]PF₆ (R = Ph (**3a**) and p-tolyl (**3b**)). Similarly, treatment of 2a with $P(OMe_3)_3$ affords $[Ru(Me_3tacn)(PMe_3)(P(OMe_3))(C \equiv CPh)]$ - PF_6 (3c). Oxidative cleavage of the vinylidene ligand in 2a by oxygen gives [Ru(Me₃tacn)- $(PMe_3)(O_2CCF_3)(CO)]PF_6$ (4) and benzaldehyde. Complex **1b** reacts with 2.5 equiv of RC=CH (R = Ph, p-tolyl) and 1.5 equiv of KOH in methanol to yield the η^3 -butenynyl species $[Ru(Me_3$ tacn)(PMe₃){ η^3 -RC₃=CH(R)}]PF₆ (R = Ph (**5a**) and *p*-tolyl (**5b**)). In addition, **2a** and **2b** react with $RC \equiv CH$ (R = Ph, *p*-tolyl) and KOH in methanol to give **5a** and **5b**, respectively. Treatment of **2a** with *p*-tolylC=CH and KOH in methanol gives $[(Me_3tacn)Ru(PMe_3){\eta^3 PhC_3 = CH(p-tolyl)$ PF_6 (**5c**) and $[(Me_3tacn)Ru(PMe_3)\{\eta^3 - (p-tolyl)C_3 = CH(Ph)\}]PF_6$ (**5c**) in a 1:1 ratio. Reacting **2b** with PhC \equiv CH similarly gives **5c** and **5c'** in equal amounts. Structures of **3c**, **5a**, and **5c/5c**' are established by X-ray crystallography. Mechanistic insights from the isolated complexes suggest that hydrogen shift between vinylidene and acetylide moieties is an important process in the coupling of alkynes.

Reports on the reactivity of transition metal vinylidene and acetylide complexes demonstrate a close relationship between these organometallic interactions.¹ Their interconversions are important in the dimerization of alkynes² and condensation of alkynes with allylic alcohols³ or carboxylic acids.⁴ Many d⁶ metal vinylidene complexes have been prepared by reaction of appropriate metal precursors with 1-alkynes.⁵ Theoretical studies suggest that initial side-on coordination of the 1-alkyne is followed by a 1,2-hydrogen shift to give the metal vinylidene complex.^{6,7} This usually spontaneous

rearrangement is driven by a repulsive interaction between the filled π_{\perp} orbital of the alkyne and the filled $d_{\pi}(t_{2g})$ metal orbital.⁸ However, Selegue and Bullock reported that this rearrangement can require thermal initiation.⁹ Recently, 1,2-hydrogen shift initiated by an electron transfer pathway was published.¹⁰

Ruthenium vinylidene complexes containing "soft" ligands¹¹ such as η -cyclopentadienyl,¹² η -benzene,¹³ bis-(diphenylphosphino)methane,¹⁴ and CH₃(CH₂)₂N(CH₂- $CH_2PPh_2)_2^{15}$ have been synthesized. However, since the unfavorable π -interaction between the $d_{\pi}(Ru)$ and

[†] The University of Hong Kong.

[‡] National Taiwan University.

[®] Abstract published in Advance ACS Abstracts, May 15, 1997.

^{(1) (}a) Bruce, M. I. Chem. Rev. **1991**, *91*, 197. (b) Antonova, A. B.; Ioganson, A. A. Russ. Chem. Rev. **1989**, *58*, 593. (c) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. **1983**, *22*, 59.

^{(2) (}a) Yi, C. S.; Liu, N. H. *Organometallics* **1996**, *15*, 3968. (b) Bianchini, C.; Innocenti, P.; Peruzzini, M.; Romerosa, A.; Zanobini, F.; Frediani, P. Organometallics 1996, 15, 272. (c) Matsuzaka, H.; Takagi Y.; Ishii, Y.; Nishio, M.; Hidai, M. Organometallics 1995, 14, 2153. (d) Y.; Ishii, Y.; Nishio, M.; Hidai, M. Organometallics 1995, 14, 2153. (d)
Barbaro, P.; Bianchini, C.; Peruzzini, M.; Polo, A.; Zanobini, F. Inorg. Chim. Acta 1994, 220, 5. (e) Bianchini, C.; Frediani, P.; Masi, D.;
Peruzzini, M.; Zanobini, F. Organometallics 1994, 13, 4616. (f) Duchateau, R.; van Wee, C. T.; Meetsma, A.; Teuben, J. H. J. Am. Chem. Soc. 1993, 115, 4931. (g) Jun, C.-H.; Lu, Z.; Crabtree, R. H. Tetrahedron Lett. 1992, 33, 7119. (h) Bianchini, C.; Peruzzini, M.; Zanobini, F.;
Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453.
(3) (a) Dien, S.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1994, 2551. (b) Trost, B. M.; Martinez, J. A.; Kulawiec, R. J.; Indolese, A. F. J. Am. Chem. Soc. 1993, 115, 10402. (c) Trost, B. M.; Kulawiec, R. J. Am. Chem. Soc. 1994, 14, 5579 (d) Trost, B. M.; Kulawiec, C. Kulawier, Science, Sc

Am. Chem. Soc. 1993, 113, 10402. (c) 1105t, B. M., Ruhavier, R. J.
 Am. Chem. Soc. 1992, 114, 5579. (d) Trost, B. M.; Dyker, G.; Kulawiec, R. J. Am. Chem. Soc. 1990, 112, 7809.
 (4) (a) Doucet, H.; Martin-Vaca, B.; Bruneau, C.; Dixneuf, P. H. J.

Org. Chem. **1995**, *60*, 7247. (b) Mitsudo, T. A.; Hori, Y.; Watanabe, Y. J. Organomet. Chem. **1987**, *334*, 157. (c) Ruppin, C.; Dixneuf, P. H. *Tetrahedron Lett.* **1986**, *27*, 6323.

⁽⁵⁾ For Re(I): (a) Bianchini, C.; Marchi, A.; Marvelli, L.; Peruzzini, M.; Romerosa, A.; Rossi, R. *Organometallics* **1996**, *15*, 3804. (b) Kowalczyk, J. J.; Arif, A. M.; Gladysz, J. A. *Organometallics* **1991**, *10*, 1079. (c) Senn, D. R.; Wong, A.; Patton, A. L.; Marsi, M.; Strouse, C. E.; Gladysz, J. A. *J. Am. Chem. Soc.* **1988**, *110*, 6096. For Os(II): (d) Gamasa, M. P.; Gimeno, J.; Gonzalez-Cueva, M.; Lastra, E. *J. Chem. Soc., Dalton Trans.* **1996**, 2547. (e) Bruce, M. I.; Koutsantonis, G. A.; Liddell, M. J.; Nicholson, B. K. *J. Organomet. Chem.* **1987**, *320*, 217.

⁽⁶⁾ Silvestre, J.; Hoffmann, R. Helv. Chim. Acta 1985, 68, 1461. (7) Wakatsuki, Y.; Koga, N.; Yamazaki, H.; Morokuma, K. J. Am.

Chem. Soc. 1994, 116, 8105.

^{(8) (}a) Templeton, J. L. Adv. Organomet. Chem. **1989**, 29, 1. (b) Kostic, N. M.; Fenske, R. F. Organometallics **1982**, 1, 974.

 ^{(9) (}a) Lomprey, J. R.; Selegue, J. P. J. Am. Chem. Soc. 1992, 114,
 (518. (b) Bullock, R. M. J. Chem. Soc., Chem. Commun. 1989, 165.
 (10) Connelly, N. G.; Geiger, W. R.; Lagunas, M. C.; Metz, B.; Rieger,
 A. L.; Reiger, P.H.; Shaw, M. J. J. Am. Chem. Soc. 1995, 117, 12202.

^{A. L.; Reiger, P.H.; Shaw, M. J. J. Am. Chem. Soc. 1995, 117, 12202.} (11) Pearson, R. G. Hard and Soft Acids and Bases; Dowden, Hutchinson, and Ross: Stroudsburg, PA, 1973. (12) (a) Bruce, M. I.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1471.
(b) Bruce, M. I.; Wallis, R. C. J. Organomet. Chem. 1978, 161, C1. (13) (a) Le Bozec, H.; Ouzzine, K.; Dixneuf, P. H. Organometallics 1991, 10, 2768. (b) Dixneuf, P. H. Pure Appl. Chem. 1989, 61, 1763. (14) (a) Touchard, D.; Haquette, P.; Pirio, N.; Toupet, L.; Dixneuf, P. H. Organometallics 1993, 12, 3132. (b) Haquette, P.; Pirio, N.; Touchard, D.; Tounet, L.; Dixneuf, P. H. J. Chem. Soc., Chem. Touchard, D.; Toupet, L.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1993, 163.

 $\pi_{\perp}(C\equiv C)$ orbitals is the driving force for the alkynevinylidene rearrangement, we anticipated that synthesis of vinylidene complexes may be achieved by utilizing "hard" amine ligand systems. However, reaction between [Ru(NH₃)₅(H₂O)]²⁺ and phenylacetylene yielded the η^2 -alkyne complex [Ru(NH₃)₅(η^2 -PhC=CH)]^{2+,16}

We have been studying the chemistry of organoruthenium complexes containing the saturated tertiary amine 1,4,7-trimethyl-1,4,7-triazacyclononane.^{17,18} In this work, ruthenium vinylidene and σ -acetylide derivatives are prepared, and reactions of the former with base and oxygen are studied. Coupling reactions with 1-alkynes resulting in carbon–carbon bond formation are observed.

Experimental Section

All reactions were carried out in a nitrogen atmosphere using standard Schlenk techniques unless otherwise stated. Ru(Me₃tacn)Cl₃¹⁹ and [Ru(Me₃tacn)(OH₂)₂(O₂CCF₃)](OTf)₂²⁰ (OTf = trifluoromethanesulfonate) were prepared according to the published methods. Trimethylphosphine and 1,2-bis-(dimethylphosphino)ethane (dmpe) were purchased from Merck and used as received. PhC=CH and *p*-tolylC=CH were obtained from Aldrich and distilled before use. All solvents were reagent grade and used without further purification.

 $^{13}C{^{1}H}$ and ^{1}H NMR spectra were recorded on a JEOL 270 FT-NMR, Bruker 300 DPX FT-NMR, or Bruker 500 DRX FT-NMR spectrometer operating at 270, 300, or 500 MHz (^{1}H) and 67.5, 75, or 125 MHz (^{13}C), respectively. Peak positions were calibrated with Me₄Si as internal standard. $^{31}P{^{1}H}$ NMR spectra were recorded on the Bruker 500 DRX FT-NMR spectrometer operating at 202.4 MHz, and chemical shifts were measured relative to external 85% H₃PO₄ with downfield values taken as positive. Fast atom bombardment (FAB) mass spectra were obtained on a Finnigan MAT 95 mass spectrometer with 3-nitrobenzyl alcohol matrix. Infrared spectra were recorded as Nujol mulls on a BIO RAD FT-IR spectrometer between KBr plates. Elemental analyses were performed by the Butterworth Laboratory Ltd, U.K.

[Ru(Me₃tacn)(PMe₃)₂(O₂CCF₃)]PF₆ (1a). PMe₃ (0.16 g, 2.1 mmol) and zinc powder (0.50 g) were mixed in acetone (20 cm³). After 5 min, [Ru(Me₃tacn)(H₂O)₂(O₂CCF₃)](OTf)₂ (0.50 g, 0.69 mmol) was added to the stirred solution to give a yellow coloration instantaneously. The stirring was continued at room temperature for 1 h. After removal of zinc powder, the solvent was removed under reduced pressure and a saturated aqueous solution of NH₄PF₆ was added to give the titled compound as a yellow solid (yield = 0.22 g, 47%). Anal. Calcd for C₁₇H₃₉N₃O₂F₉P₃Ru: C, 30.02; H, 5.79; N, 6.11. Found: C, 29.86; H, 5.75; N, 6.15. ¹H NMR (300 MHz, (CD₃)₂CO): 1.43 (18H, virtual t, J_{PH} = 3.7 Hz, P(CH₃)₃), 2.76–3.53 (21H, m, Me₃tacn). IR (cm⁻¹): ν (CO) 1685. ³¹P{¹H} NMR ((CD₃)₂CO): -0.5. FAB mass spectrum: m/z 538 [M⁺ – PF₆], 462 [M⁺ – PF₆ – 2PMe₃].

[Ru(Me₃tacn)(PMe₃)₂Cl]PF₆ (1b). Ru(Me₃tacn)Cl₃ (0.10 g, 0.26 mmol) and zinc powder (0.50 g) were added to a stirred ethanolic solution (20 cm³) of PMe₃ (0.05 g, 0.66 mmol). The

mixture was refluxed for 18 h. The zinc powder was removed, and upon addition of NH₄PF₆, a yellow solid was formed. The solid was filtered, washed with ethanol, water, and diethyl ether, and air-dried (yield = 0.10 g, 63%). Anal. Calcd for C₁₅H₃₉N₃ClF₆P₃Ru: C, 29.78 ; H, 6.49; N, 6.95. Found: C, 29.95; H, 6.38; N, 6.85. ¹H NMR (500 MHz, CD₃CN): 1.49 (18H, virtual t, $J_{PH} = 3.7$ Hz, P(CH₃)₃), 2.66–3.13 (21H, m, Me₃tacn). ³¹P{¹H} NMR (CD₃CN): -1.0. FAB mass spectrum: m/z 460 [M⁺ – PF₆], 384 [M⁺ – PF₆ – PMe₃].

[Ru(Me₃tacn)(dmpe)(O₂CCF₃)]PF₆ (1c). Compared to **1a**, the titled compound was prepared using dmpe instead of PMe₃ (yield = 0.19 g, 41%). Anal. Calcd for C₁₇H₃₇N₃O₂F₉P₃-Ru: C, 30.00; H, 5.48; N, 6.18. Found: C, 30.05; H, 5.60; N, 6.15. ¹H NMR (300 MHz, (CD₃)₂CO): 1.42 (6H, d, J = 9 Hz, P-CH₃), 1.71 (6H, d, $J_{PH} = 7.62$ Hz, P-CH₃), 2.67 (3H, s, N-CH₃), 2.73–3.37 (22H, m, 2 × N-CH₃, N-CH₂, P-CH₂). IR (cm⁻¹): ν (CO) 1685. ³¹P{¹H} NMR (CD₃CN): 42.9. FAB mass spectrum: m/z 536 [M⁺ – PF₆].

 $[Ru(Me_3tacn)(PMe_3)(O_2CCF_3){C=CH(Ph)}]PF_6$ (2a). Complex 1a (0.20 g, 0.29 mmol) and PhC≡CH (0.03 g, 0.29 mmol) were mixed in 1,2-dichloroethane (20 cm³). The solution was refluxed for 2 h to give a red solution. The solvent was removed, and a methanolic solution of NH₄PF₆ was added to afford a red crystalline solid (yield = 0.18 g, 87%). Anal. Calcd for C₂₂H₃₆N₃O₂F₉P₂Ru: C, 37.29; H, 5.12; N, 5.93. Found: C, 37.38; H, 5.12; N, 5.74. IR (cm⁻¹): v(CO) 1710 (m); v(C=C) 1621 (m). ¹H NMR (270 MHz, (CD₃)₂CO): 1.59 (9H, d, J_{PH} = 9.25 Hz, P(CH₃)₃), 3.25-3.65 (21H, m, Me₃tacn), 5.47 (1H, d, $J_{\rm PH} = 4.39 \text{ Hz}, = CH(Ph)), 7.14-7.46 \text{ (m, 5H, } C_6H_5).$ ¹³C{¹H} NMR (270 MHz, CD_2Cl_2): 363.7 (d, $J_{PC} = 22.3$ Hz, Ru = C = C), 129.4, 128.3, 127.7, 126.9 (C₆H₅), 117.3, 112.9 (CF₃CO₂), 111.6 (Ru=C=C), 63.6, 63.2, 61.4, 60.3, 59.5, 58.2, 56.5, 52.0, 51.7 (Me₃tacn), 16.3 (d, $J_{PC} = 30.9$ Hz, P(CH₃)₃). ³¹P{¹H} NMR (CD₃CN): -3.0. FAB mass spectrum: m/z 564 [M⁺ – PF₆], 462 $[M^+ - PF_6 - PhC \equiv CH].$

[Ru(Me₃tacn)(PMe₃)(O₂CCF₃){C=CH(*p*-tolyl)}]PF₆ (2b). The procedure was similar to 2a except *p*-tolylC≡CH was used instead of PhC≡CH (yield = 0.10 g, 50%). Anal. Calcd for C₂₃H₃₈N₃O₂F₉P₂Ru: C, 38.17; H, 5.26; N, 5.81. Found: C, 37.96, H, 5.52; N, 5.94. IR (cm⁻¹): ν (CO) 1715 (m); ν (C=C) 1635 (m). ¹H NMR (500 MHz, (CD₃)₂CO): 1.63 (9H, d, *J*_{PH} = 9.6 Hz, P(CH₃)₃), 2.30 (3H, s, C₆H₄CH₃), 3.02–3.87 (21H, m, Me₃tacn), 5.13 (1H, d, *J*_{PH} = 4.45 Hz, =CH(*p*-tolyl)), 7.04– 7.13 (dd, 4H, C₆H₄). ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): 362.9 (d, *J*_{PC} = 23.3 Hz, Ru=*C*=C), 130.2, 130.1, 127.9, 126.7 (*C*₆H₄), 110.8 (Ru=C=*C*), 63.8, 57.7, 58.7, 60.1, 61.2, 61.3, 63.2, 52.6 (Me₃tacn), 21.1 (C₆H₄CH₃), 17.1 (d, *J*_{PC} = 32.6 Hz, P(*C*H₃)₃). ³¹P{¹H} NMR ((CD₃)₂CO): -3.8. FAB mass spectrum: m/z 578 [M⁺ − PF₆], 462 [M⁺ − PF₆ − *p*-tolylC≡CH].

[Ru(Me₃tacn)(PMe₃)₂(C=CPh)]PF₆ (3a). PMe₃ (0.10 g, 1.3 mmol) and potassium hydroxide (0.10 g, 1.8 mmol) were dissolved in anhydrous methanol (10 cm³). Complex 2a (0.10 g, 0.14 mmol) was then added, and the mixture was stirred for 2 h to give a yellow solution. The methanol was removed under reduced pressure. The residue was then dissolved in acetone, and a saturated aqueous solution of NH₄PF₆ was added. Slow evaporation of acetone gave a yellow crystalline solid (yield = 0.05 g, 53%). Anal. Calcd for $C_{23}H_{44}N_3F_6P_3Ru$: C, 41.19: H, 6.61; N, 6.27. Found: C, 40.91; H, 6.53; N, 6.10. IR (cm⁻¹): ν (C=C) 2065. ¹H NMR (500 MHz, (CD₃)₂CO): 1.64 (18H, virtual t, $J_{PH} = 3.7$ Hz, P(CH₃)₃), 2.75–3.34 (21H, m, Me3tacn), 6.95-7.00 (1H, m, para H), 7.11-7.19 (4H, m, ortho and meta H). ${}^{13}C{}^{1}H$ NMR (125 MHz, (CD₃)₂CO): 131.3, 130.9, 128.7, 124.1 (C_6H_5), 131.0 (t, $J_{PC} = 10$ Hz, Ru- $C \equiv C$), 108.9 (Ru-C=C), 62.5, 61.7, 60.1, 58.2, 55.4 (Me₃tacn), 21.9 (virtual t, $J_{PC} = 14.5$ Hz, P(CH_3)₃). ³¹P{¹H} NMR ((CD_3)₂CO): 2.4. FAB mass spectrum: m/z 526 [M⁺ – PF₆], 450 [M⁺ – $PF_6 - PMe_3$].

[**Ru(Me₃tacn)(PMe₃)**₂{**C**=*C*(*p*-tolyl)}]**PF**₆ (3b). Compared to **3a**, **2b** was used instead of **2a** as starting material (yield = 0.04 g, 42%). Anal. Calcd for C₂₄H₄₆N₃F₆P₃Ru: C, 42.10; H, 6.77; N, 6.14. Found: C, 41.95; H, 6.41; N, 5.98. IR

^{(15) (}a) Bianchini, C.; Peruzzini, M.; Romerosa, A.; Zanobini, F. *Organometallics* **1995**, *14*, 3152. (b) Bianchini, C.; Innocenti, P.; Masi, D.; Peruzzini, M.; Romerosa, A.; Zanobini, F. J. Chem. Soc., Chem. *Commun.* **1994**, 2219.

⁽¹⁶⁾ Lehmann, H.; Schenk, K. J.; Chapuis, G.; Ludi, A. J. Am. Chem. Soc. 1979, 101, 6197.

 ⁽¹⁷⁾ Yang, S. M.; Cheng, W. C.; Cheung, K. K.; Che, C. M.; Peng, S.
 M. J. Chem. Soc., Dalton Trans. 1995, 227.

⁽¹⁸⁾ Yang, S. M.; Cheng, W. C.; Peng, S. M.; Cheung, K. K.; Che, C. M. J. Chem. Soc., Dalton Trans. **1995**, 2955.

⁽¹⁹⁾ Neubold, P.; Wieghardt, K.; Nuber, B.; Weiss, J. Inorg. Chem. 1989, 28, 459.

⁽²⁰⁾ Cheng, W. C.; Yu, W. Y.; Cheung, K. K.; Che, C. M. *J. Chem. Soc., Chem. Commun.* **1994**, 1063.

(cm⁻¹): ν (C=C) 2065. ¹H NMR (270 MHz, CD₃CN): 1.51 (18H, virtual t, $J_{PH} = 3.8$ Hz, P(C H_3)₃), 2.24 (3H, s, C₆H₄C H_3), 2.66–3.19 (21H, m, Me₃tacn), 6.94–7.05 (4H, dd, C₆H₄). ¹³C{¹H} NMR (67.5 MHz, CD₃CN): 133.9, 130.9, 129.7, 128.4 (C_6 H₄), 108.5 (Ru-C=C), 62.4, 61.7, 60.0, 58.3, 55.5 (Me₃tacn), 21.9 (virtual t, $J_{PC} = 14.5$ Hz, P(CH₃)₃), 21.2 (C₆H₄CH₃), Ru-C=C not resolved. ³¹P{¹H} NMR (CD₃CN): 2.4. FAB mass spectrum: m/z 540 [M⁺ – PF₆], 464 [M⁺ – PF₆ – PMe₃].

[**Ru(Me₃tacn)(PMe₃)(P(OMe)₃)(C≡CPh)]PF₆ (3c).** Compared to **2a**, P(OMe)₃ was used instead of PMe₃ (yield = 0.06 g, 55%). Anal. Calcd for C₂₃H₄₄N₃O₃F₆P₃Ru: C, 38.43; H, 6.17; N, 5.85. Found: C, 38.31; H, 6.16; N, 5.87. IR (cm⁻¹): ν (C≡C) 2056. ¹H NMR (270 MHz, (CD₃)₂CO): 1.57 (9H, d, *J*_{PH} = 8.6 Hz, P(C*H*₃)₃), 2.80–3.32 (21H, m, Me₃tacn), 3.98 (9H, d, *J*_{PH} = 10.0 Hz, P(OC*H*₃)₃), 7.01–7.20 (5H, m, phenyl). ¹³C{¹H} NMR (270 MHz, (CD₃)₂CO): 130.9, 130.8, 128.8, 124.5 (*C*₆H₅), 110.1 (Ru-C≡*C*), 62.9, 62.2, 61.2, 60.6, 60.4, 59.5, 57.5, 55.6, 54.2 (Me₃tacn), 54.3 (d, *J*_{PC} = 10.4 Hz, P(O*C*H₃)₃), 20.8 (d, *J*_{PC} = 31.2 Hz, P(*C*H₃)₃), Ru-*C*≡C not resolved. ³¹P{¹H} NMR ((CD₃)₂CO): 137.6 (d, *J*_{PP} = 70.5 Hz, *P*(OMe)₃), 3.2 (d, *J*_{PP} = 70.5 Hz, *P*Me₃). FAB mass spectrum: *m*/*z* 574 [M⁺ − PF₆], 498 [M⁺ − PF₆ − PMe₃].

[**Ru(Me₃tacn)(PMe₃)(O₂CCF₃)(CO)]PF₆ (4).** Oxygen gas was introduced into a 1,2-dichloroethane solution of **2a** (0.08 g, 0.11 mmol) for 8 h. The color of the solution changed from red-orange to yellow. The solution was then concentrated to *ca*. 5 cm³ under reduced pressure. The titled compound was isolated as a yellow solid upon addition of diethyl ether and recrystallized from dichloromethane/diethyl ether (yield = 0.03 g, 52%). Anal. Calcd for C₁₅H₃₀N₃O₃F₉P₂Ru: C, 28.39; H, 4.77; N, 6.62. Found: C, 28.15; H, 4.62; N, 6.51. IR (cm⁻¹): *v*(C≡O) 1964. ¹H NMR (500 MHz, (CD₃)₂CO): 1.60 (9H, d, *J*_{PH} = 9.2 Hz, P(CH₃)₃), 3.1−3.6 (21H, m, Me₃tacn). ¹³C{¹H} NMR (125 MHz, (CD₃)₂CO): 204.8 (d, *J* = 18.4 Hz, *C*O), 63.8, 62.9, 61.4, 61.1, 59.9, 58.7, 58.1, 53.1, 52.7 (Me₃tacn), 16.4 (d, *J* = 10.9 Hz, P(CH₃)₃). ³¹P{¹H} NMR ((CD₃)₂CO): −3.6. FAB mass spectrum: *m*/*z* 490 [M⁺ − PF₆].

[Ru(Me₃tacn)(PMe₃){\eta^{3}-PhC₃=CH(Ph)}]PF₆ (5a). Method A. Complex **1b** (0.15 g, 0.24 mmol), PhC=CH (0.06 g, 0.6 mmol), and KOH (0.02 g, 0.36 mmol) were refluxed in methanol (15 cm³) for 18 h to give a clear red solution. After cooling, the solution was concentrated to *ca*. 5 cm³ under reduced pressure. Upon addition of NH₄PF₆, a red microcrystalline solid was formed. The solid was filtered, washed with ice-cool ethanol and diethyl ether, and air-dried (yield = 0.11 g, 67%).

Method B. Complex **2a** (0.75 g, 1.0 mmol) was added slowly to a hot methanolic KOH (0.06 g, 1.1 mmol) solution (10 cm³) over 15 min to give a clear yellow solution which was refluxed for a further 5 min. PhC=CH (0.11 g, 1.1 mmol) in methanol (5 cm³) was then added dropwise to the yellow solution to give a clear red solution which was refluxed for 5 h. The solution was then concentrated to *ca*. 5 cm³, and upon addition of NH₄PF₆ a red microcrystalline solid formed. The solid was filtered, washed with ice-cool ethanol and diethyl ether, and then air-dried (yield = 0.10 g, 62%). Anal. Calcd for C₂₈H₄₁N₃F₆P₂Ru: C, 48.27; H, 5.93; N, 6.03. Found: C, 48.23; H, 5.96; N, 6.05. ¹H NMR (500 MHz, CD₂Cl₂) (the numbering scheme for the hydrogen and carbon resonances is given in ref 21): 0.94 (9H, d, $J_{PH} = 7.9$ Hz, P(CH₃)₃), 1.63 (3H, s, N-CH₃), 2.40–3.61 (15H, m, Me₃tacn), 3.81 (3H, s, N-CH₃), 6.94 (1H, s, H4), 7.21 (1H, t, J = 7.3 Hz, H8), 7.33 (1H, t, J = 7.4 Hz, H8), 7.39 (2H, t, J = 7.6 Hz, H7), 7.44 (2H, t, J = 7.5 Hz, H7), 7.77 (2H, d, J = 7.4 Hz, H6'), 7.82 (2H, d, J = 7.4 Hz, H6). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂): 159.1 (d, J = 7.6 Hz, C3), 138.2, 132.4, 130.8, 129.6, 129.3, 127.8, 126.2, 125.3 (2 × C₆H₅), 124.6 (d, J = 6.1 Hz, C1), 123.2 (C4), 62.4, 61.6, 61.4, 59.8, 59.4, 58.9, 58.7, 58.4 (Me₃tacn), 57.2 (d, J = 1.5 Hz, C2), 47.8 (N-CH₃), 16.7 (d, J = 28.6 Hz, P(CH₃)₃). ³¹P{¹H} NMR (CD₂Cl₂): 4.8. FAB mass spectrum: m/z 553 [M⁺ – PF₆], 477 [M⁺ – PF₆ – PMe₃].

 $[Ru(Me_3tacn)(PMe_3)\{\eta^3 - (p-tolyl)C_3 = CH(p-tolyl)\}]PF_6$ (5b). Compared to 5a, this complex was synthesized by method A using *p*-tolylC=CH instead of PhC=CH or by method B using complex **2b** and *p*-tolylC=CH as the starting materials (yield = 0.09 g, 52%). Anal. Calcd for $C_{30}H_{45}N_3F_6P_2$ -Ru: C, 49.72; H, 6.22; N, 5.80. Found: C, 49.52; H, 6.46; N, 5.65. ¹H NMR (500 MHz, CD₂Cl₂): 0.93 (9H, d, $J_{PH} = 7.9$ Hz, P(CH₃)₃), 1.61 (3H, s, N-CH₃), 2.33 (3H, s, H9), 2.39 (3H, s, H9), 2.41-3.61 (15H, m, Me3tacn), 3.87 (3H, s, N-CH3), 6.88 (1H, s, H4), 7.20 (2H, d, J = 7.9 Hz, H7), 7.26 (2H, d, J = 7.9 Hz, H7), 7.66 (2H, d, J = 8.1 Hz, H6), 7.72 (2H, d, J = 8.1Hz, H6). ${}^{13}C{}^{1}H$ NMR (125 MHz, CD₂Cl₂): 157.5 (d, J = 7.6Hz, C3), 138.1 (C8), 136.1 (C8), 135.7 (C5), 130.7 (C6), 130.3 (*C7*), 129.9 (*C7*), 129.5 (*C5*), 125.2 (*C6*), 123.8 (d, *J* = 5.4 Hz, C1), 122.7 (C4), 62.4, 61.6, 61.4, 59.8, 59.4, 58.9, 58.7, 58.4 (Me₃tacn), 55.8 (d, J = 1.6 Hz, C2), 47.7(N-CH₃), 21.5(C9), 21.3(C9), 16.7 (d, J = 28.5 Hz, $P(CH_3)_3$). ³¹P{¹H} NMR (CD₂Cl₂): 5.2. FAB mass spectrum: m/z 580 [M⁺ – PF₆], 504 $[M^+ - PF_6 - PMe_3].$

[**Ru**(**Me**₃**tacn**)(**PMe**₃){ η^3 -**PhC**₃=**CH**(*p*-**tolyl**)}]**PF**₆ (5c) and [**Ru**(**Me**₃**tacn**)(**PMe**₃){ η^3 -(*p*-**tolyl**)**C**₃=**CH**(**Ph**)}]**PF**₆ (5c'). *p*-TolylC=CH was used in method B for **5a** (yield = 0.08 g, 48%). Anal. Calcd for C₂₉H₄₃N₃F₆P₂Ru·CH₃OH: C, 48.51; H, 6.38; N, 5.66. Found: C, 48.22; H, 6.24; N, 5.57. ¹H NMR (500 MHz, CD₂Cl₂): 0.94 (18H, d, J_{PH} = 7.8 Hz, P(CH₃)₃), 1.62 (6H, s, N-CH₃), 2.39 (3H, s, CH₃ of *p*-tolyl), 2.45 (3H, s, CH₃ of *p*-tolyl), 2.50−3.59 (30H, m, Me₃tacn), 3.87 (6H, s, N-CH₃), 6.91 (1H, s, =CH), 6.93 (1H, s, =CH), 7.20−7.85 (18H, m, C₆H₅). ³¹P{¹H} NMR (CD₂Cl₂): 5.0. FAB mass spectrum: *m*/*z* 566 [M⁺ − PF₆], 490 [M⁺ − PF₆ − PMe₃].

Structural Determination. X-ray quality crystals were obtained by slow diffusion of diethyl ether into an acetone solution for 3c and a dichloromethane solution for 5a, respectively. Intensities and lattice parameters were measured on a Rigaku AFC7R or Enraf-Nonius CAD-4 diffractometer using the $\omega - 2\theta$ scan mode. Crystal parameters and details of data collection and refinement are given in Table 1. Intensity data were corrected for Lorentz and polarization effects. Empirical absorptions were based on the ψ -scan of five strong reflections. The structures were solved by the heavy-atom Patterson method and refined by full-matrix least squares and Fourierdifference syntheses using the MSC-Crystal Structure Package TEXSAN on a Silicon Graphic Indy computer.²² All non-H atoms were refined anisotropically. The H atoms at calculated positions with thermal parameters equal to 1.3 times that of the attached C atoms were not refined. Selected bond distances and angles of 3c and 5a are tabulated in Tables 2 and 3, respectively.

Results and Discussion

Zinc reduction of $[Ru(Me_3tacn)(OH_2)_2(O_2CCF_3)]^{2+}$ in acetone in the presence of PMe₃ and dmpe gives $[Ru(Me_3tacn)(PMe_3)_2(O_2CCF_3)]PF_6$ (**1a**) and $[Ru(Me_3-tacn)(dmpe)(O_2CCF_3)]PF_6$ (**1c**), respectively. Similar

⁽²¹⁾ Numbering scheme for hydrogen and carbon atoms in $\mathbf{5a}$ and $\mathbf{5b}$:

⁽²²⁾ PATTY & DIRDIF92: Beurskens, P. T.; Admiraal, G.; Beursken, G.; Bosman, W. P.; Garcia-Grand, S.; Gould, R. O.; Smits, J. M. M.; Smykalla C.(1992). The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

Table 1. Crystal Data for 3c and 5a

	3c	5a		
formula	$C_{23}H_{46}N_3O_3F_6P_3R_4$	$C_{28}H_{41}N_3F_6P_2Ru$		
$M_{ m r}$	718.60	696.65		
crystal dimensions/mm	$0.30 \times 0.20 \times 0.20$	0.25 imes 0.35 imes 0.50		
space group	$P\overline{1}$	$P2_1/c$		
a/Å	13.626(2)	19.366(4)		
b/Å	13.772(3)	9.330(2)		
c/Å	9.179(3)	17.240(8)		
α/deg	109.06(2)			
β/deg	104.31(2)	100.73(3)		
γ/deg	91.18(2)			
U/Å ³	1567.8(7)	3060.5(2)		
Ζ	2	4		
$D_{\rm c}/{\rm g~cm^{-3}}$	1.522	1.512		
μ/cm^{-1}	7.18	6.63		
F(000)	740	1428		
<i>T</i> /K	301	298		
$2\theta_{\rm max}$	48.0	45.0		
no. of data measured	3937	3984		
no. of data used	3435 ($I > 3\sigma(I)$)	2903 ($I > 2\sigma(I)$)		
no. of variables	352	361		
$R, R_{\rm w}^{a}$	0.053, 0.081	0.054, 0.055		
GOF	2.94	1.13		
$(\Delta \rho)_{\rm max}$	-0.54, 1.15	-0.65, 0.91		
$(\Delta/\sigma)_{\rm max}$	0.01	0.05		

 $^{a}R = \sum (|F_{0}| - |F_{c}|) / \sum |F_{0}|, R_{w} = (\sum w (|F_{0}| - |F_{c}|)^{2} / \sum w |F_{0}|^{2})^{1/2}.$

Table 2. Selected Bond Distances (Å) and Angles (deg) for [Ru(Me₃tacn)(PMe₃)(P(OMe)₃)- $(C \equiv CPh)]PF_6$ (3c)

Ru-P(1)	2.225(2)	Ru-P(2)	2.337(2)	Ru-N(1)	2.256(6)
Ru-N(2)	2.269(5)	Ru-N(3)	2.226(5)	Ru-C(1)	1.991(6)
C(1)-C(2)	1.235(8)	C(2) - C(3)	1.426(8)		
P(1)-Ru-	P(2)	85.6(1)	P(1)-Ru	-N(1)	98.1(2)
P(1)-Ru-	N(2)	174.9(1)	P(1)-Ru	-N(3)	96.0(1)
P(1)-Ru-	-C(1)	93.1(2)	P(2)-Ru	-N(1)	104.1(2)
P(2)-Ru-	·N(2)	99.6(1)	P(2)-Ru	-N(3)	177.3(1)
P(2)-Ru-	-C(1)	83.6(2)	N(1)-Ru	-N(2)	79.7(2)
N(1)-Ru-	-N(3)	77.8(2)	N(1)-Ru	-C(1)	166.8(2)
N(2)-Ru-	-N(3)	79.1(2)	N(2)-Ru	-C(1)	88.5(2)
N(3)-Ru-	-C(1)	94.1(2)	Ru-C(1)	-C(2)	173.0(5)
C(1) - C(2)	-C(3)	176.6(6)			

Table 3. Selected Bond Distances (Å) and Angles (deg) for [Ru(Me₃tacn)(PMe₃)- $\{\eta^3 \text{-PhC}_3 = \text{CH}(\text{Ph})\}]\text{PF}_6$ (5a)

Ru-P(1)	2.307(3)	Ru-N(1)	2.181(6)	Ru-N(2)	2.231(5)
Ru-N(3)	2.203(7)	Ru-C(16)	2.158(8)	Ru-C(17)	2.114(8)
Ru-C(18)	2.058(8)	C(15)-C(16)) 1.47(1)	C(16)-C(17)	1.26(1)
C(17)-C(18)	1.37(1)	C(18)-C(19)) 1.37(1)		
P(1)-Ru-N	[(1)	98.7(2)	P(1)-Ru-	-N(2)	177.9(2)
P(1)-Ru-N	(3)	98.5(2)	P(1)-Ru-	-C(16)	88.4(2)
P(1)-Ru-C	(17)	87.7(2)	P(1)-Ru-	-C(18)	88.2(2)
N(1)-Ru-N	J(2)	82.8(3)	N(1)-Ru-	-N(3)	79.5(3)
N(1)-Ru-C	C(16)	170.5(3)	N(1)-Ru-	-C(17)	139.1(3)
N(1)-Ru-C	C(18)	101.2(3)	N(2)-Ru-	-N(3)	83.2(3)
N(2)-Ru-C	C(16)	89.9(3)	N(2)-Ru-	-C(17)	90.2(3)
N(2)-Ru-C	C(18)	90.1(3)	N(3)-Ru-	-C(16)	105.8(3)
N(3)-Ru-C	C(17)	139.8(3)	N(3)-Ru-	-C(18)	173.1(3)
C(16)-Ru-	C(17)	34.3(3)	C(16)-Ru	-C(18)	72.5(3)
C(17)-Ru-	C(18)	38.3(3)	Ru-C(16)	-C(15)	152.7(6)
Ru-C(16)-	C(17)	70.9(5)	C(15)-C(16) - C(17)	136.1(8)
Ru-C(17)-	C(16)	74.8(5)	Ru-C(17)	-C(18)	68.7(5)
C(16)-C(17)-C(18)	143.4(8)	Ru-C(18)	-C(17)	73.1(5)
Ru-C(18)-	C(19)	149.7(6)	C(17)-C(18)-C(19)	137.2(8)
C(18) - C(19))-C(20)	126.3(7)			

ruthenium complexes of Me₃tacn with π -acid ligands have been reported.¹⁸ In addition, Ru(Me₃tacn)Cl₃ reacts with PMe₃ in ethanol in the presence of zinc to yield [Ru(Me₃tacn)(PMe₃)₂Cl]PF₆ (**1b**) in moderate yield. Attempts to prepare the bulkier PPh₃ analogues [Ru(Me₃tacn (PPh₃)₂X PF₆ (X = Cl or O₂CCF₃) were unsuccessful.

Preparation of Vinylidene Complexes [Ru- $(Me_3tacn)(PMe_3)(O_2CCF_3){C=CH(R)}]PF_6 (R = Ph$ (2a); $\mathbf{R} = \mathbf{p}$ -tolyl (2b)) and σ -Acetylide Complexes $[Ru(Me_3tacn)(L)(PMe_3)(C \equiv CR)]PF_6$ (R = Ph, L = PMe_3 (3a); R = p-tolyl, $L = PMe_3$ (3b); R = Ph, L = $P(OMe)_3$ (3c)). [Ru(Me_3tacn)(PMe_3)_2(O_2CCF_3)]PF_6 (1a) reacts with PhC=CH and *p*-tolylC=CH in refluxing 1,2dichloroethane to give the vinylidene complexes [Ru- $(Me_3tacn)(PMe_3)(O_2CCF_3)\{C=CH(R)\}|PF_6(R = Ph (2a))$ and *p*-tolyl (**2b**)) respectively. No desired products are obtained using alkylacetylenes such as 2-methyl-3butyn-2-ol, tert-butylacetylene, (trimethylsilyl)acetylene, or 1-hexyne. Furthermore, no reaction was found between **1c** and PhC≡CH after refluxing in 1,2-dichloroethane or ethanol for 24 h. The chelating dmpe ligand in **1c** is expected to resist dissociation and prevent subsequent reaction with the 1-alkyne. Hence dissociation of PMe₃ to generate a coordination vacancy is presumably the first step in the formation of **2a**,**b**.

Reaction between **1b** and PhC≡CH in 1,2-dichloroethane gives impure [Ru(Me₃tacn)(PMe₃)(Cl){C=CH-(Ph) PF₆ (identified by ¹H NMR) in very low yield (*ca.* 5%) after reflux for 10 h. The observation that the rate of formation for vinylidene complexes is faster for **1a** than for 1b warrants further comment. Since 1a and **1b** are coordinatively saturated 18-electron species, dissociation of PMe₃ is likely to be the most endothermic and hence the rate-determining step of vinylidene formation. In this system, ground state destabilization resulting in phosphine dissociation from [Ru(Me₃tacn)- $(PMe_3)_2X]^+$ (X = O₂CCF₃ (1a), Cl (1b)) is negligible because the steric requirement of X is small. In addition, the rate of PMe₃ dissociation in CpRu(PMe₃)₂X (X = halide, alkyl, hydride, amide, and hydroxy) have been studied by Bercaw²³ and Caulton.²⁴ They suggested that π -donation from X can stabilize the 16-electron intermediate CpRu(PMe₃)X, which results in a faster dissociation rate. In both 1a and 1b, however, the ligand X has π -electrons which can stabilize the 16electron species Ru(Me₃tacn)(PMe₃)X to a similar extent. Hence this factor cannot account for the large difference in the phosphine dissociation rate between **1a** and **1b**. We attribute this to neighboring group participation by the trifluoroacetate anion. This phenomenon has been invoked previously in the oxidative addition and reductive elimination of square-planar platinum²⁵ and iridium²⁶ complexes. Unlike in **1b**, the lone pair of the carboxylate group in 1a can interact with the metal which lowers the activation energy for the dissociation of PMe₃ to form an 18-electron intermediate I1 (Scheme 1). The η^2 -trifluoroacetate anion in **I1** isomerizes to an η^1 -mode (I2) to provide a vacant site for the coordination of RC=CH. The conversion between η^1 and η^2 bonding modes for the carboxylate ligand is often observed in the generation of coordination vacancy.²⁷ It is likely that the RC=CH is initially bound to the ruthenium center in a side-on fashion (I3), and 1,2-hydrogen shift subsequently occurs to give the vinylidene complex.

(23) Bryndza, H. E.; Domaille, P. J.; Paciello, R. A.; Bercaw, J. E. Organometallics 1989, 8, 379.

(24) Caulton, K. G. New J. Chem. 1994, 18, 25.
(25) Constable, A. G.; Langrick, C. R.; Shabanzadeh, B.; Shaw, B. L. Inorg. Chim. Acta 1982, 65, L151.
(26) Miller, E. M.; Shaw, B. L. J. Chem. Soc., Chem. Commun. 1974, 100

480

(27) (a) Braun, T.; Gevert, O.; Werner, H. J. Am. Chem. Soc. 1995, 117, 7291. (b) Scher, M.; Wolf, J.; Werner, H. J. Chem. Soc., Chem. Commun. 1991. 1341.

The vinylidene complexes **2a** and **2b** are air-stable solids. Their IR spectra each contain bands at ca. 1710 and 1620 $\rm cm^{-1}$ which are typical for the stretching frequencies of the C=O and C=C groups in η^1 -O₂CCF₃ and vinylidene ligands, respectively. The ³¹P{¹H} NMR spectra show a single resonance at -3.0 and -3.8 ppm for the coordinated PMe₃ in **2a** and **2b**, respectively. Their ¹³C{¹H} NMR spectra each reveal a low-field doublet at *ca*. 363 ppm ($^2J_{\rm PC} \approx 23$ Hz) for the metalbonded vinylidene carbon while the resonance for the β -carbon is at *ca.* 110 ppm. The spectroscopic data confirm that **2a** is a vinylidene complex rather than a metallacyclic vinyl ester compound because the latter would display a lower ¹³C resonance and ν (C=O) band for C_{α} and the CF₃CO₂ group, respectively.²⁸ In the ¹H NMR spectra, the chemical shifts of the vinylidene protons in **2a** and **2b** (5.47 and 5.13 ppm, respectively) are similar to the related complexes $[Ru(\eta-C_5H_5)(PPh_3)_2]$ $\{C=CH(Ph)\}]PF_6$ (5.43 ppm),^{11a} [Ru(η -C₆Me₆)(PMe₃)- $(Cl){C=CH(Ph)}]PF_6 (5.66 ppm),^{12a} and [Ru(P(OMe)_3)_4 (C = CPh) \{C = CH(Ph)\} PF_6 (5.98 ppm).^{29}$

Downloaded by CARLI CONSORTIUM on June 30, 2009 Published on June 24, 1997 on http://pubs.acs.org | doi: 10.1021/om970046+

Nucleophilic attack at the α -carbon of vinylidene complexes to give heteroatom-stabilized carbene species is well established and can be affected by the steric and electronic properties of the spectator ligands.³⁰ Complex **2a** and **2b** are stable in refluxing methanol, while only deprotonation of the vinylidene ligand is observed upon

reaction with primary and secondary amines. Hence upon addition of *tert*-butylamine to an acetone- d_6 solution of **2a**, the vinylidene proton signal in the ¹H NMR spectrum vanishes and the σ -acetylide complex is formed (see below). This is in contrast to the report by Bianchini that primary and secondary amines react with ruthenium vinylidene derivatives to give aminocarbene and isocyanide complexes.^{14a} We propose that complexes **2a**,**b** are resistant to nucleophilic addition as a result of electronic rather than steric factors: the auxiliary ligands in the present system do not appear to impart steric hindrance, while the high π -basicity of the [Ru(Me₃tacn)] fragment is expected to lower the electrophilicity of the α -carbon atom.

Reaction of **2a** and **2b** with methanolic KOH in the presence of phosphine L (L = PMe₃ or P(OMe)₃) affords the σ -acetylide complexes [Ru(Me₃tacn)(PMe₃)L(C=CR)]⁺ (R = Ph, L = PMe₃ (**3a**), R = *p*-tolyl, L = PMe₃ (**3b**), R = Ph, L = P(OMe)₃ (**3c**)). It is noteworthy that the expected formation of the σ -acetylide species via direct substitution of **1b** with the appropriate Grignard reagent does not give the desired products. The use of amines, e.g. triethylamine, *tert*-butylamine, as base results in lower yields. The vinylidene derivative **2a** is first deprotonated by KOH to give the σ -acetylide intermediate; substitution of the CF₃CO₂ ligand by PMe₃ then proceeds to give **3a**. Complexes **3b** and **3c** are presumably formed via similar reaction pathways.

In the ¹³C{¹H} NMR spectra for complexes **3a**–**c**, a singlet is observed at 108–110 ppm for the β -acetylide carbon (hence no phosphorus coupling). **3a** and **3b** both show five resonances in the range 55–63 ppm which correspond to the Me₃tacn ligand and suggest C_s symmetry. In complex **3c**, nine carbon resonances are assigned to Me₃tacn, and this implies the presence of C_i symmetry. Large coupling in the ³¹P{¹H} NMR spectrum (²*J*_{PP} = 70.5 Hz) between PMe₃ and P(OMe)₃ is evident. A triplet at *ca*. 131 ppm in the ¹³C{¹H} NMR spectrum of **3a** is assigned to the α -carbon, but an analogous signal for **3b** and **3c** is obscured by phenyl resonances. The IR spectra for **3a**–**c** each show an intense absorption band at *ca*. 2060 cm⁻¹ for the C≡C moiety.

Introduction of dioxygen into a 1,2-dichloroethane solution of **2a** affords [Ru(Me₃tacn)(CO)(PMe₃)- $(O_2CCF_3)^+$ (4) and benzaldehyde. Oxidative cleavage of vinylidene ligands have been previously reported.³¹ We found that the incorporation of an electron-withdrawing group (e.g. NO₂, Cl) into the para position of the phenyl ring in 2a leads to longer reaction times.³² The stability of the vinylidene complexes toward oxidation therefore increases as the electron density at the C=C bond decreases. The FAB mass spectrum of 4 reveals a cluster at m/z 490 which corresponds to the parent cationic fragment [Ru(Me₃tacn)(PMe₃)(O₂CCF₃)-(CO)]⁺. A low-field doublet at 204.8 ppm ($^{2}J_{PC}$ = 28.6Hz) in the ¹³C NMR spectrum and a strong absorption at 1964 cm⁻¹ in the IR spectrum are characteristic of a terminal carbonyl ligand.

Synthesis of η^3 -Butenynyl Complexes [Ru-(Me₃tacn)(PMe₃){ η^3 -RC₃=CH(R)}]PF₆ (R = Ph (5a),

⁽²⁸⁾ Daniel, T.; Mahr, N.; Braun, T.; Werner, H. Organometallics 1993, 12, 1475.

⁽²⁹⁾ Albertin, G.; Antoniutti, S.; Bordignon, E.; Cazzaro, F.; Ianelli, S.; Pelizzi, G. *Organometallics* **1995**, *14*, 4114.

⁽³⁰⁾ Bruce, M. I.; Swincer, A. G. Aust. J. Chem. 1980, 33, 1471.

^{(31) (}a) Mezzetti, A.; Consiglio, G.; Morandini, F. J. Organomet. Chem. 1992, 430, C15. (b) Oro, L. A.; Ciriano, M. A.; Foces-Foces, C.; Cano, F. M. J. Organomet. Chem. 1985, 289, 117. (c) Bruce, M. I.; Swincer, A. G.; Wallis, R. C. J. Organomet. Chem. 1979, 171, C5. (32) Yang S. M.; Che, C. M. Unpublished results.

p-tolyl (5b)). Reaction of excess PhC≡CH and KOH with [Ru(Me₃tacn)(PMe₃)₂Cl]PF₆ (1b) in refluxing methanol gives a orange-red solution from which red crystals of [Ru(Me₃tacn)(PMe₃){ η^3 -PhC₃=CH(Ph)}]PF₆ (5a) are obtained (method A). Similarly, [Ru(Me₃tacn)(PMe₃)-{ η^3 -(*p*-tolyl)C₃=CH(*p*-tolyl)}]PF₆ (5b) is formed using *p*-tolylC≡CH. Treatment of the vinylidene complexes 2a and 2b with KOH followed by RC≡CH in refluxing methanol also gives 5a and 5b, respectively (method B). Formation of η^3 -butenynyl complexes from well-defined ruthenium^{2b} and tungsten³³ precursors have been reported.

Using method A, we attempted to isolate the intermediate(s) of the reaction by adding diethyl ether to the mixture after reflux for 30 min to precipitate all ionic species present. A red solid and colorless solution were afforded, and the ¹H NMR spectrum of the solid consisted of three species: starting complex **1b** (PMe₃ protons at 1.49 ppm), a small amount of **5a** (characteristic vinyl proton at 6.94 ppm), and small amounts of an unknown species with a doublet at *ca*. 5.5 ppm. Due to the similarities between these resonances and that of **2a**, we suggest that this species is a vinylidene intermediate in the formation of **5a**. This assertion is further supported by the successful synthesis of **5a** from the vinylidene complex **2a** via method B.

The ¹H and ¹³C{¹H} signals of the 1,4'-di(*p*-tolyl)butenynyl ligand in complex **5b** have been assigned by DEPT-135, HMBC, and HSQC ¹³C-¹H COSY NMR experiments. In the ${}^{13}C{}^{1}H$ NMR spectrum, three small doublets appearing at 55.8 ppm ($^{2}J_{PC} = 1.5$ Hz), 123.8 (${}^{2}J_{PC} = 5.4$ Hz), and 157.5 ppm (${}^{2}J_{PC} = 7.6$ Hz) correlate to the ruthenium-bonded C2, C1, and C3 atoms respectively. The ¹H, ¹³C{¹H}, and ¹³C-¹H COSY NMR spectra of 5a are similar to those of 5b, except the ¹H resonances in **5b** at 2.33 and 2.39 ppm are attributed to the *p*-tolyl methyl groups. The ¹H NMR spectra of **5a** and **5b** each contain a singlet at *ca*. 6.9 ppm which is assigned to the vinylic proton of the 1,4'disubstituted η^3 -butenynyl ligand. One Me₃tacn methyl group appears at a higher field in both the ¹H and ¹³C{¹H} NMR spectra (*ca.* 1.6 and 48 ppm, respectively) than other signals for the ligand (2.4–3.6 ppm for ¹H and 58-63 ppm for 13 C). It is apparent from the X-ray structure of 5a (vide infra) that this methyl substituent is located above one of the phenyl rings of the η^3 butenynyl moiety and is therefore shielded by the diamagnetic ring current.

[Ru(Me₃tacn)(PMe₃){ η^3 -PhC₃=CH(*p*-tolyl)}]PF₆ (5c) and [Ru(Me₃tacn)(PMe₃){ η^3 -(*p*-tolyl)C₃=CH-(Ph)}]PF₆ (5c'): Synthesis and Mechanism. Reaction of **2a** with *p*-tolylC≡CH in methanolic KOH gives a red solid. The FAB mass spectrum shows a cluster around m/z 566 which can be assigned to the isomeric fragments [Ru(Me₃tacn)(PMe₃){ η^3 -PhC₃=CH(*p*-tolyl)}]⁺ (5c) or [Ru(Me₃tacn)(PMe₃){ η^3 -(*p*-tolyl)C₃=CH(Ph)}]⁺ (5c'). The ³¹P{¹H} NMR spectrum shows a slightly broad signal at 5.0 ppm, while the ¹H and ¹³C{¹H} NMR spectra are uninformative due to overlapping signals. Nevertheless, the ¹H NMR spectrum shows two signals of equal intensity at 6.91 and 6.93 ppm which are attributed to the vinylic protons of the η^3 -butenynyl moieties in **5c** and **5c'**. In addition, two peaks of equal

Scheme 2. Proposed Mechanism for the Formation of 5c/5c'

intensity at 2.39 and 2.45 ppm are assigned to the methyl hydrogens of the *p*-tolyl groups.

In order to eliminate the possibility that the isolated red solid is an equimolar mixture of **5a** and **5b**, we have also recorded the ¹H and ³¹P $\{^{1}H\}$ NMR spectra and the FAB mass spectrum of such a mixture. In the ¹H NMR spectrum, two signals at 6.94 and 6.88 ppm are visible for the vinylic protons of **5a** and **5b**, respectively, while the analogous resonances for **5c/5c'** are absent. The methyl hydrogens for the *p*-tolyl substituents appear at 2.33 and 2.39 ppm. Moreover, the ³¹P{¹H} NMR spectrum shows two signals at 4.8 and 5.2 ppm which correspond to the PMe₃ ligand in 5a and 5b, respectively; again the corresponding peaks for 5c/5c' are not observed. The FAB mass spectrum does not show a cluster at m/z 566. Hence there is no signals corresponding to the red product from the reaction of 2a with *p*-tolylC=CH, which is a 1:1 mixture of $[Ru(Me_3tacn) (PMe_3){\eta^3-PhC_3=CH(p-tolyl)}]PF_6$ (5c) and $[Ru(Me_3$ tacn)(PMe₃){ η^3 -(*p*-tolyl)C₃=CH(Ph)}]PF₆ (5c'). Finally, the analogous reaction between complex 2b with phenylacetylene also gives 5c/5c' as a red solid with identical spectroscopic properties. The molecular structure of 5c/ 5c' (see the Supporting Information) shows coordination of the η^3 -butenynyl fragment to the metal center as in the structure of 5a.

Scheme 2 depicts our proposed mechanism for the formation of the η^3 -butenynylruthenium(II) complexes **5c** and **5c**'. The stepwise mechanism is related to others previously reported.³⁴ However, the location of the *p*-tolyl substituent in the final products provide interesting mechanistic information.

We have demonstrated that 1 molar equiv of KOH serves to deprotonate the vinylidene ligand in the preparation of 3a-c. We propose that the reaction of

⁽³³⁾ McMullen, A. K.; Selegue, J. P.; Wang, J. G. Organometallics 1991, 10, 3421.

 $[Ru] = Ru(Me_3tacn)(PMe_3)$

2a with *p*-tolylacetylene in the presence of KOH yields the $(\eta^2 - p - \text{tolylC} \equiv CH)(\sigma - C \equiv CPh)$ intermediate IA. Rearrangement of *p*-tolylC=CH results in formation of the (vinylidene)(σ -acetylide) intermediate **IB**, and subsequent 1,2-migratory insertion of the acetylide gives the observed complex 5c. The formation of the 5c' isomer gives greater insight into the reaction mechanism.³⁵ Complex **5c**' is derived from the $(\sigma$ -*p*-tolylacetylide)-(phenylvinylidene) intermediate IB' which is generated by the isomerization of **IB** through proton transfer. From a thermodynamic viewpoint, the strong basicity at the β -carbon of the acetylide moiety and the high acidity of the vinylidene proton will favor the proton migration, and this is further facilitated by the electrondonating nature of the [Ru(Me₃tacn)] fragment. Such proton transfer processes have not been observed by Bianchini.^{2b} We believe that the isomerization is kinetically unfavored in aprotic solvents, while in our system the proton transfer/isomerization can be assisted by the methanol solvent (Scheme 3). Moreover, we assume that the C-C coupling is slower than the rate of proton transfer partly because of the weak trans effect of the Me₃tacn ligand. Hence, the isomeric intermediates IB and IB' are generated in equilibrium, and this results in the formation of 5c and 5c' in equal proportions.

X-ray Crystal Structures of 3c and 5a. Figures 1 and 2 show perspective views of the cations in **3c** and 5a respectively. Selected bond distances and angles are presented in Tables 2 and 3, respectively.

The coordination geometry around the ruthenium center in **3c** is a distorted octahedron with the metal atom surrounded by two phosphines, three nitrogen atoms of Me₃tacn, and a σ -acetylide ligand. The three Ru-N distances are comparable. The most evident distortion from idealized geometry is the bending of the acetylide moiety toward Me₃tacn and PMe₃ (N(2)-Ru-C(1) 88.5(2)°, P(2)-Ru-C(1) 83.6(2)°). The Ru-P distances are shorter for the more electron-accepting $P(OMe)_3$ (Ru-P(1) 2.225(2) Å) than for PMe₃ (Ru-P(2) 2.337(2) Å). Since the cone angles of $P(OMe_3)_3$ and

Figure 1. Perspective view of the cation in [Ru(Me₃tacn)- $(PMe_3)(P(OMe)_3)(C \equiv CPh)]PF_6$ (3c).

Figure 2. Perspective view of the cation in [Ru(Me₃tacn)- $(PMe_3){\eta^3-PhC_3=CH(Ph)}]PF_6$ (5a).

PMe₃ are similar (107° and 118°, respectively),³⁶ the strong π -basicity of the [Ru(Me₃tacn)] fragment apparently results in a stronger bond with P(OMe₃)₃. The ethynyl moiety is almost linear (Ru-C(1)-C(2) 173.0(5)°) and the Ru–C separation of 1.991(6) Å is within the range expected for ruthenium(II) σ -acetylide complexes.³⁷ The high-energy IR stretch (2065 cm⁻¹) of the C=C bond is consistent with the C(1)-C(2) bond length of 1.235(8) Å, which is comparable to that in disubstituted organic alkynes (ca. 1.20 Å)³⁸ and organometallic alkynyl complexes (1.14–1.24 Å).³⁹

The molecular structure of 5a corresponds to that elucidated spectroscopically for the *p*-tolyl derivative 5b. The ruthenium center is in a distorted octahedral environment assuming the η^3 -butenynyl ligand is occupying two sites. The salient feature of **5a** is the

^{(34) (}a) Albertin, G.; Antoniutti, S.; Bordignon, E. J. Chem. Soc., Dalton Trans. 1995, 719. (b) Werner, H. J. Organomet. Chem. 1994, 475, 45. (c) Santos, A.; Lez, J.; Matas, L.; Ros, J.; Gal, A.; Echavarren, 475, 45. (c) Santos, A.; Léz, J.; Matas, L.; Ros, J.; Gai, A.; Ecnavarren, A. M. Organometallics 1993, 12, 4215. (d) Scher, M.; Mahr, N.; Wolf, J.; Werner, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 1315. (e) Bianchini, C.; Bohanna, C.; Esteruelas, M. A.; Frediani, P.; Meli, A.; Oro, L. A.; Peruzzini, M. Organometallics 1992, 11, 3837. (f) Field, L.; George, A. V.; Purches, G. R.; Slip, I. H. M. Organometallics 1992, 11, 3019. (g) Wakatsuki, Y.; Yamazaki, H.; Kunegawa, N.; Satoh, J. Y.; Satoh, J. T. J. Am, Chem. Soc. 1991, 113, 9604. (b) Albertin, C.; Satoh, T. J. Am. Chem. Soc. 1991, 113, 9604. (h) Albertin, G.; Amendola, P.; Antoniutti, S.; Ianelli, S.; Pelizzi, G.; Bordignon, E. Organometallic 1991, 10, 2876. (i) Jia, G.; Meek, D. W. Organometallics **1991**. 10. 1411.

⁽³⁵⁾ The possibility that 5c/5c' are interconvertible by acid- or basecatalyzed isomerization was suggested by one reviewer. However, this is ruled out since no changes are observed by ¹H NMR spectroscopy for the treatment of **5b** with CF₃CO₂D or CD₃ONa in CD₃OD.

⁽³⁶⁾ Tolman, C. A. *Chem. Rev.* **1977**, *77*, 313. (37) Whittall, I. R.; Humphrey, M. G.; Hockless, D. C. R.; Skelton, B. W.; White, A. H. *Organometallics* **1995**, *14*, 3970 and reference therein.

RuL _n	<i>a</i> (Å)	b (Å)	c (Å)	d (Å)	e (Å)	$f(\text{\AA})$	α (deg)	β (deg)	γ (deg)	ref
$[Ru(Me_3tacn)(PMe_3)]^+$ (5a)	1.366	1.368	1.260	2.058	2.114	2.158	137.2	143.4	136.1	this work
$[Ru(CO)_2(PPh_3)_2]^+$	1.319	1.371	1.244	2.170	2.233	2.320	138.1	147.4	148.7	41a
[RuCl(Cyttp)] (syn-mer) ^a	1.335	1.416	1.220	2.040	2.229	2.558	129.2	154.3	156.7	41b
[RuCl(Cyttp)] (anti-mer) ^a	1.343	1.396	1.248	2.084	2.169	2.319	130.4	148.2	147.0	41b
$[Ru(C \equiv CPh)(Cyttp)]^a$	1.339	1.379	1.249	2.200	2.191	2.258	133.1	148.7	144.6	41c
$[Ru(PNP)(C \equiv CPh)] (anti-mer)^b$	1.34	1.41	1.23	2.06	2.19	2.39	130	150	154	2b
$[Ru(PMe_2Ph)_4]^+$	1.341	1.401	1.229	2.119	2.226	2.510	131.1	155.3	155.8	41d

^{*a*} Cyttp = PhP{(CH₂)₃P(C₆H₁₁)₂}₂. ^{*b*} PNP = CH₃(CH₂)₃P(CH₂CH₂PPh₂)₂.

[RuC₃] unit of the η^3 -butenynyl group. Structural parameters associated with this fragment for several related ruthenium complexes are collected in Table 4. The small bend-back angle γ for **5a** (136.1(8)°) falls in the range of metal–diphenylacetylene interactions (135– 140°)⁴⁰ and suggests strong interaction between C(16)/ C(17) and Ru. This is supported by the short corresponding bond distances *e* and *f*, while elongation of the C(16)–C(17) contact (distance *c*) to 1.260(1) Å is also observed. The greater interaction between the η^3 butenynyl unit and the ruthenium center in **5a** compared to other examples in Table 4 is believed to be a consequence of the strong π -basicity of the [Ru(Me₃tacn)] moiety.

Conclusion

The rate of PMe₃ dissociation in $[Ru(Me_3tacn)-(PMe_3)_2X]^+$ (X = O₂CCF₃ (1a), Cl (1b)) is enhanced by

(39) (a) Montoya, J.; Santos, A.; Lopez, J.; Echavarren, A. M.; Ros,
J.; Romero, A. J. J. Organomet. Chem. 1992, 426, 383. (b) Bruce, M.
I.; Humphrey, M. G.; Snow, M. R.; Tiekink, E. R. T. J. Organomet.
Chem. 1986, 314, 213. (c) Consiglio, G.; Morandini, F.; Sironi, A. J.
Organomet. Chem. 1986, 306, C45.

(40) (a) Decian, A.; Colin, A.; Schappacher, M.; Richard, L.; Weiss,
 R. J. Am. Chem. Soc. 1981, 103, 1850. (b) Sunkel, K.; Nagel, U.; Beck,
 W. J. Organomet. Chem. 1981, 222, 252.

(41) (a) Liles, D. C.; Verhoeven, P. F. M. J. Organomet. Chem. 1996, 522, 33. (b) Alcock, N. W.; Hill, A. F.; Melling, R. P.; Thompsett, A. R. Organometallics 1993, 12, 641. (c) Jia, G.; Gallucci, J. C.; Rheingold, A. L.; Haggerty, B. S.; Meek, D. W. Organometallics 1991, 10, 3459. (d) Jia, G.; Rheingold, A. L.; Meek, D. W. Organometallics 1989, 8, 1378.

 η^{1}/η^{2} isomerization of the CF₃CO₂ ligand in **1a**. The vinylidene complexes [Ru(Me₃tacn)(PMe₃)(O₂CCF₃)- $\{C=CH(R)\}|PF_6 (R = Ph (2a) \text{ and } p\text{-tolyl} (2b)) \text{ are }$ prepared by the reaction of **1a** with the appropriate 1-alkyne. Due to the high π -basicity of the [Ru(Me₃tacn)] moiety which lowers the electrophilicity of the vinylidene α -carbon, no nucleophilic addition across the C=C bond is observed. Alkyne coupling reactions to give η^3 -butenynyl complexes **5a**, **5b**, and **5c/5c'** are studied. It is significant that, partly due to the weak trans effect of the saturated triamine, coupling of the σ -acetylide and vinylidene groups is slower than proton migration between these two ligands for IB and IB' (Scheme 2) in methanol. An equilibrium between these isomeric intermediates is thus established and yields an unprecedented mixture of 5c and 5c'.

Acknowledgment. We thank The University of Hong Kong and the Hong Kong Research Grants Council for support and S.-M.Y. is grateful for a Croucher Scholarship administrated by the Croucher Foundation of Hong Kong.

Supporting Information Available: Tables of final positional parameters, anisotropic displacement parameters and bond lengths and angles for **3c**, **5a**, and **5c/5c'** (27 pages). Ordering information and Internet access instructions are given on any current masthead page.

OM970046+

^{(38) (}a) Ittel, S. D.; Ibers, J. A. Adv. Organomet. Chem. **1976**, *14*, 33. (b) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992.