Published on June 24, 1997 on http://pubs.acs.org | doi: 10.1021/om970084tDownloaded by CARLI CONSORTIUM on June 30, 2009
Published on June 24, 1997 on http://pubs.acs.org | doi: 10.1021/om970084 Downloaded by CARLI CONSORTIUM on June 30, 2009

Dehydrogenative Coupling Reactions between a Monosubstituted Alkyne and Monosilane in the Presence of Lithium Aluminum Hydride

Masayoshi Itoh,* Mineo Kobayashi, and Junichi Ishikawa

Central Research Laboratory, Mitsui Toatsu Chemicals, Inc., 1190 Kasama-cho, Sakae-ku, Yokohama-city 247, Japan

*Received February 4, 1997*⁸

Summary: A selective dehydrogenative coupling reaction occurs in the presence of LiAlH4 as a catalyst between 1-hexyne and SiH4 to give hexynylsilane and dihexynylsilane. A reaction mechanism involving SiH4 and the alkynylaluminate anion, formed by the interaction between LiAlH4 and the alkyne, is proposed.

Introduction

The hydrosilylation of alkenes and alkynes with $HSiCl₃$ or MeSiHCl₂, which are easily obtainable by Rochow's direct process, have been investigated extensively using transition metal complexes as catalysts.¹ However, reports concerning such reactions with H_2SiCl_2 , $Me₂SiH₂$, PhSiH₃, SiH₄, or Si₂H₆, which have several Si-H bonds in the molecule, are few in number.2 Pyrolytic reactions and photoreactions have been carried out between SiH_4 or Si_2H_6 and ethylene or acetylene at elevated temperatures in the gas phase with very low product yields.3 Recently, we and others have selectively obtained some silylated compounds $(RSiH₃, R₂SiH₂)$ by the hydrosilylation of alkenes with $SiH₄$ in the presence of transition metal complexes, 4.5 NaAlR₄ (R = alkyl 9^6 and LiAlH₄,⁷ as catalysts.

Photochem. Photobiol. A **1991**, *58*, 173. (4) Itoh, M.; Iwata, K.; Takeuchi, R.; Kobayashi, M. *J. Organomet. Chem.* **1991**, *420*, C5.

(5) Sakakura, T.; Onozawa, S.; Kobayashi, T.; Hayashi, T.; Tanaka, M. Presented at the XVIth International Conference on Organometallic Chemistry, Brighton, 1994; OC.2.

 $SiH_4 + n-BuCH=CH_2 \rightarrow$ n-BuCH₂-CH₂SiH₃ + (n -BuCH₂-CH₂)₂SiH₂ $\text{SiH}_4 + \text{CH}_2=\text{CH}_2 \rightarrow \text{CH}_3\text{CH}_2\text{SiH}_3$

There have been few reports on the dehydrogenative coupling reactions of monosubstituted alkynes with hydrosilanes that produce alkynylsilanes. H_2PtCl_6/LiI , I_2 ,⁸ and Ir H_2 (SiEt₃)(COD)(AsPh₃) formed by adding triarylarsines or triarylphosphines to [Ir(OMe)(diolefin)]₂, $[IrH(H_2O)(bp)L_2]SbF_6$, RhClL₃ (L = PPh₃, bp $=$ 7,8-benzoquinolinato), 9 have been used as catalysts. In these cases, the dehydrogenative coupling reaction was found to accompany the hydrosilylation reaction, which produced the corresponding alkenylsilanes. Calas et al. obtained alkynylsilane $(n-Bu-C\equiv C-SiEt_3)$ by reaction of 1-hexyne and Et_3SH using Na or NaH as the catalyst.10 Liu and Harrod have reported that a CuCl/amine catalyst led to a highly selective dehydrogenative coupling reaction of alkynes with hydrosilanes.¹¹ We have recently found that a solid base such as MgO catalyzes selective dehydrogenative coupling reactions.12

$$
\begin{array}{ccc}\n\text{PhSiH}_3 + \text{HC} \equiv \text{C-R} &\longrightarrow \\
&\downarrow \text{H}_2 &\downarrow \\
&\text{Ph}(R-C \equiv \text{C})\text{SiH}_2 + \text{Ph}(R-C \equiv \text{C})_2\text{SiH} + \text{Ph}(R-C \equiv \text{C})_3\text{Si} \\
&\quad (R = \text{Ph, pentyl})\n\end{array}
$$

MgO can be easily separated by filtration from the reaction solution. The catalytic activity of MgO is low,

(6) Malcolm, A. J.; Everly, C. R.; Nelson, G. E. U.S. Patent 4670574, 1987; *Chem. Abstr.* **1987**, *107*, 115772y.

(7) Kobayashi, M.; Itoh, M. *Chem. Lett.* **1996**, 1013. (8) (a) Voronkov, M. G.; Druzhdzh, P. V.; Pukhnarevich, V. B. *Zh. Obshch. Khim.* **1980**, *50*, 1662. (b) Voronkov, M. G.; Ushakova, N. L.; Tsykhanskaya, I. I.; Pukhnarevich, V. B. *J. Organomet. Chem.* **1984**, *264*, 39. (c) Voronkov, M. G.; Pukhnarevich, V. B.; Ushakova, N. L.; Tsykhanskaya, I. I.; Albnov, A. L.; Vikovskii, V. Yu. *J. Gen. Chem. USSR (Engl. Trans.)* **1985**, *55*, 80. (9) (a) Fernandes, M. J.; Oro, L. A.; Manzano, B. R. *J. Mol. Catal.*

1988, *45*, 7. (b) Jun, C. H.; Crabtree, R. H. *J. Organomet. Chem.* **1993**, *447*, 177.

(10) Calas, R.; Bourgeois, P. *C. R. Acad. Sci., Paris, Ser. C* **1969**, *268*, 72.; *Chem. Abstr.* **1969**, *70*, 78070n. (11) Liu, H. Q.; Harrod, J. F. *Can. J. Chem*. **1990**, *68*, 1100.

(12) (a) Itoh, M.; Mitsuzuka, M.; Utsumi, T.; Iwata, K.; Inoue, K. *J. Organomet. Chem.* **1994**, *476*, C30. (b) Itoh, M.; Mitsuzuka, M.; Iwata, K.; Inoue, K. *Macromolecules* **1994**, *27*, 7917. (c) Itoh, M.; Inoue, K.; Iwata, K.; Mitsuzuka, M. *Macromolecules* **1997**, *30*, 694.

[®] Abstract published in *Advance ACS Abstracts*, May 15, 1997.

⁽¹⁾ Marciniec, B.; Gulinski, J.; Urbaniak, W.; Kornetka, Z. W. In *Comprehensive Handbook on Hydrosilylation*; Marciniec, B., Ed.; Pergamon Press: Tokyo, 1992.

^{(2) (}a) Sakakura, T.; Lautenschager, H. T.; Tanaka, M. *J. Chem. Soc., Chem. Commun.* **1991**, 40. (b) Onopchenko, A.; Sabourin, E. T. *J. Org. Chem.* **1987**, *52*, 4118. (c) Brown-Wensley, K. A.; *Organometallics* **1987**, *6*, 1590. (d) Harrod, J. F.; Yun, S. S. *Organometallics* **1987**, *6*, 1382. (e) Watanabe, H.; Aoki, M.; Sakurai, N.; Watanabe, K.; Nagai, Y. *J. Organomet. Chem.* **1978**, C1. (f) Koroleva, G. N.; Reikhsfel'd, V. O. *Zh. Obshch. Khim.* **1967**, *37*, 2768. (g) Speier, J. L.; Webster, J. A.; Barnes, G. H. *J. Am. Chem. Soc.* **1957**, *79*, 974. (h) Peng-Fei, Fu.; Brard, L.; Li, Y.; Marks, T. J. *J. Am. Chem.* **1995**, *117*, 7157. (i) Molander, G. A.; Retsch, W. H. *Organometallics* **1995**, *14*, 4570. (3) (a) Fritz, G. *Z. Naturforsch.* **1952**, *76*, 207. (b) Fritz, G. *Z. Anorg.*

Allg. Chem. **1953**, *273*, 275. (c) White, D. G.; Rochow, E. G. *J. Am. Chem. Soc.* **1954**, 76, 3897. (d) Rogers, D. S.; Walker, K. L.; Ring, M. A.; O'Neal, H. E. *Organometallics* **1987**, 6, 2313. (e) Hass, C. H.; Ring, M. A.: *Inorg. Chem.* **1975**, *14*, *B. Inorg. Chem.* 1962, *Soc. Jpn.*

^a Twenty milliliters (run no. 2-5) and 10 mL (run no. 6) of the solvent was used in the experiments. *^b* The percent ratio of the product versus the charged SiH₄. (1, *n*-BuC=CSiH₃; **2**, (*n*-BuC=C)₂SiH₂; **3**, *n*-BuCH=CHSiH₃; **4**, (*n*-BuCH=CH₂SiH₂, **5**, (n-BuC=C)Si(CH=CH n-Bu)H₂; **6**, PhC=CSi(Ph)H₂; **7**, (PhC=C)₂Si(Ph)H; **8**, PhCH=CHSi(Ph)H₂; **9**, PhCH[Si(Ph)H₂]-CH₂Si(Ph)H₂; **10**, PhC=CSi(Ph)- $(CH=CH=Ph)H$).

so a large amount of MgO is needed to obtain the product in high yield. We have been searching for a more active catalyst for the dehydrogenative coupling reaction. Milder and more selective reactions are desired.

The recent development of polysilicon and amorphous silicon provides $SiH₄$ as a new raw material in the organosilicon industry. Therefore, any reaction using SiH4 represents a new route to organosilicon hydrides ($RSiH_3$, R_2SiH_2 , R_3SiH). We report here a new catalyst for the dehydrogenative coupling reactions between monosubstituted alkynes and SiH4 that produce alkynylsilanes and discuss the reaction mechanism.

Experimental Section

Reaction Procedures. SiH4 of 99.999% purity was used. 1-Hexyne was dried over molecular sieves (3 Å) and distilled prior to use. A solution of diethyl ether containing LiAlH₄ was refluxed, and the insoluble material was separated from the solution by filtration. The solution was then evaporated under reduced pressure at 70 °C, and white crystals of LiAlH₄ were obtained. Diethyl ether and THF were dried over LiAlH4, and diglyme was dried over sodium metal. They were also distilled prior to use.

All experiments were performed in a 70 mL autoclave. The desired amount of 1-hexyne, LiAlH4, and solvent were charged into the autoclave (see Table 1). $SiH₄$ was then introduced into the autoclave under pressure, and the reaction was carried out for 20 h at 120 °C at a pressure of about $30-40$ kg/cm² abs. After completion of the reaction, all gases in the autoclave were replaced with nitrogen and passed through a solution of lithium in ethanol. Unreacted SiH4, which was converted into silicon tetraethoxide in the solution, was analyzed as $(EtO)_4$ Si by GC. The five kinds of products were obtained (**1**-**5** in Table 1). Major liquid product (**1**) was separated by distillation under reduced pressure and identified on the basis of GC-MS, infrared spectroscopy, and 1H, 13C and 29Si NMR spectroscopy, as well as comparison with the spectra of authentic compounds prepared by the LiAlH4 reduction of corresponding organochlorosilane.13 Other minor products (**2**-**5**) were assigned on the basis of GC-MS. The yields of the liquid products were determined by GC using *n*-eicosane as the internal standard. i-Bu₂AlH and $AlCl₃$ were also used as catalysts.

 $PhSiH₃$ and Et₃SiH were also reacted instead of $SiH₄$ for 20 h at 120 °C in a 100 mL glass flask under nitrogen atomosphric pressure. Five kinds of products were obtained by the reaction between PhSiH3 and ethynylbenzene (**6**-**10** in Table 1). After the reaction, the major liquid products (**6**, **7**) were separated and identified on the bases of GC-MS, infrared spectroscopy, and 1H, 13C and 29Si NMR spectroscopy. Other minor products (**8**-**10**) were assigned on the basis of GC-MS.

Product Characterization. 1, *n*-BuC=CSiH₃: ¹H NMR (CDCl₃/TMS) δ 3.75 (s, 3H, -SiH₃), 2.17 (t, 2H, $J_{cd} = 7.0$ Hz, $H_3Si-C\equiv C-CH_2-CH_2-$, 1.44 (m, 2H, $J_{ab} = 7.3$ Hz, $J_{bc} = 7.3$ Hz, $-CH_2-CH_2-CH_2-CH_3$, 1.35 (m, 2H, $J_{bc} = 7.3$ Hz, $J_{cd} =$ 7.0 Hz, $-CH_2-CH_2-CH_3$), 0.85 (t, 3H, $J_{ab} = 7.0$ Hz, $-CH_2-$ CH₃). ¹³C NMR (CDCl₃/CDCl₃,77 ppm): δ 111.96 (s, H₃Si-C=C-), 71.44 (s, H₃Si-C=C-), 30.30 (s, -C=C-CH₂-), 21.86 $(s, -CH_2-CH_2-CH_3)$, 19.65 $(s, -CH_2-CH_3)$, 13.35 $(s, -CH_2-CH_3)$ *C*H₃). ²⁹Si NMR (CDCl₃/TMS): δ -88.16 (m, -*Si*H₃). IR (neat): *ν*(Si-H, C≡C) 2170 cm⁻¹, *ν*(C-H) 2872, 2933, 2959 cm-1, *δ*(SiH3) 925 cm-1, *δ*(SiH3) 684 cm-1. MS (*m*/*z*): (EI-mode) 70 (base peak), 55, 83, 97, 111 (M - H)⁺; (CI-mode) 113 (M + H)⁺. These spectral data coincided with those of $H_3Si-C\equiv C-\frac{1}{2}$ $CH_2CH_2CH_2CH_3$, which was prepared by the LiAlH₄ reduction of $Cl_3Si-C\equiv C-CH_2CH_2CH_2CH_3$. **2**, $(n-BuC\equiv C)_2SiH_2$: MS (*m/z*): (EI-mode) 109 (base peak), 108, 107, 121, 191 (M - H)⁺, 192 (M)⁺, 177 (M – CH₃)⁺. **3**, *n*-BuCH=CH-SiH₃: MS (*m/z*): (EI-mode) 72 (base peak), 58, 43, 85, 99 (M – CH₃)⁺, 114 (M)⁺, 113 (M – H)⁺. **4**, (*n*-BuCH=CH)₂SiH₂: MS (*m/z*) (EI-mode) 84 (base peak), 83, 85, 97, 111, 196 (M)⁺, 195 (M H ⁺, 181 (M – CH₃)⁺. **5**, (*n*-BuC=C)Si(CH=CH-*n*-Bu)H₂]: MS (*m/z*) (EI-mode) 83 (base peak), 109, 95, 179 (M – CH₃)⁺, 193 $(M - H)^+$. **6**, PhC=CSi(Ph)H₂: ¹H NMR (CDCl₃/CDCl₃, 7.26 ppm) *δ* 4.85 (s, 2H, -Si*H*2-), 7.36-7.84 (m, 10H, Ph-*H*). 13C NMR (CDCl₃/CDCl₃, 77 ppm): *δ* 84.9 (s, Si−*C*≡C−), 109.6 (s, C=C-Ph), 122.17 (s, Ph-), 128.10 (s, Ph-), 128.16 (s, Ph-), 128.95 (s, Ph-), 129.02 (s, Ph-), 130.10 (s, Ph-), 131.91 (s, Ph-), 135.07 (s, Ph-). 29Si NMR (CDCl3/TMS): *δ* -59.55 (s, $-SiH₂$ -). IR (neat): *ν*(Si-H,C≡C) 2154 cm⁻¹, *ν*(C-H) 3068 cm-1, *δ*(C-H) 743, 796, 845 cm-1. MS (*m/z*): (EI-mode) 208 $((M)^+$, base peak), 130, 207 $(M - H)^+$. **7**, $(PhC \equiv C)_2Si(Ph)H$: 1H NMR (CDCl3/CDCl3, 7.26 ppm) *δ* 5.21 (s, 1H, -Si*H*-), 7.23-7.92 (m, 15H, Ph-*H*). 13C NMR (CDCl3/CDCl3, 77 ppm): *δ* 85.7 (s, Si-*C*=C-), 108.6 (s, C=C-Ph), 122.2 (s, Ph-), 128.4 (s, Ph-), 129.4 (s, Ph-), 130.6 (s, Ph-), 132.3 (s, Ph-), 134.9. 29Si NMR (CDCl3/TMS): *δ* -63.62 (s, -*Si*H-). IR (neat): *ν*(Si-H,C≡C) 2162 cm⁻¹, *ν*(C-H) 3055 cm⁻¹, δ(C-H) 757, 811, 846 cm-1. MS (*m/z*): (EI-mode) 308 ((M)⁺, base peak), 307 (M - H)⁺, 230. **8**, PhCH=CHSi(Ph)H₂: MS (m /z) (EI-mode) 132 (base peak), 210 (M⁺), 105, 209 (M - H)⁺. **9**, PhCH[Si(Ph)H2]-CH2Si(Ph)H2]: MS (*m/z*) (EI-mode) 162 $(base peak)$, 240, 209, 318 (M^+) . **10**, PhC=CSi(Ph)- $(CH=CH-Ph)H$: MS (m/z) (EI-mode) 310 ((M⁺), base peak), 206, 231, 309 (M – H)⁺.

Results and Discussion

The results are shown in Table 1. The reaction proceeded at 120 °C. Hexynylsilane (**1**) and dihexynylsilane (**2**) were obtained when diethyl ether, THF, or diglyme was used as the solvent. A small amount of the hexenylsilanes (**3**-**5**) was also produced when no solvent was used. The yields of the products indicate (13) Zakharkin, L. I.; Gavrilenko, V. V.; Ivanov, L. L. *Zh. Obshch.*

Khim. **1965**, *35*, 1676.

Scheme 1. Mechanism of the Dehydrogenative Coupling Reaction

that the dehydrogenative coupling reactions are selectively catalyzed by LiAlH₄.

$$
SiH4 + n-BuC=CH \rightarrow n-BuC=CSiH3 +\n1\n(n-BuC=C)2SiH2 + n-BuC=CHSiH3 +\n2\n(n-BuC=CH)2SiH2 + (n-BuC=CSiH2(CH=C-n-Bu)\n4\n5
$$

It is known that the alkynyl anion is formed by the interaction between $LiAlH₄$ and an alkyne above 110 $°C¹³$ a reaction accompanied by the generation of hydrogen gas. The dehydrogenation would be caused by the coupling between the hydride of $LiAlH₄$ and the acidic hydrogen of the monosubstituted alkyne. SiH_4 will react with the alkynylaluminate anion to produce the silylated compounds, and LiAlH4 would be regenerated. The proposed mechanism of the dehydrogenative coupling reaction is shown in Scheme 1.

In the case of an alkene, only the hydrosilylation reaction occurred, as has been reported previously (see Scheme 2).⁷ The difference in the mechanisms of the two reactions will be determined by the difference in the acidity of the hydrogens of the alkene $(HC=C-)$ and the alkyne (HC \equiv C-). The solvents diethyl ether, THF, and diglyme, which would support the polarization of hydrogens of an alkyne and Li^+ of LiAlH₄, stabilize the intermediate alkynylaluminate anion.

i-Bu₂AlH and AlCl₃, which catalyze the hydrosilylation of alkenes with hydrosilanes with a trivalent

Scheme 2. Mechanism of the Hydrosilylation Reaction

aluminum compound as an intermediate,¹⁴ showed no catalytic activity. These Lewis acid catalysts would have no interaction with the acidic hydrogen of the alkyne.

PhSiH3, the concentration of which in the reaction solution would be higher than that of SiH4, also reacted and gave the alkynylated compounds in significant yields. This suggests that the dehydrogenative coupling reactions using $LiAlH₄$ as a catalyst are applicable to other silicon compounds. Et_3SH did not react. This may be caused by the steric hindrance between the anionic intermediate (four-coordinate aluminate anion) and Et_3SiH .

Alkynylsilanes are usually prepared by the reduction of the corresponding alkynylchlorosilane using an expensive metal hydride.15 This report offers a new direct route for preparing alkynylsilanes, which have a reactive silyl group $(-SiH_3)$ and could be very useful materials.

Acknowledgment. This work was performed by Mitsui Toatsu Chemicals, Inc., under the management of the Japan High Polymer Center as a part of the Industrial Science and Technology Frontier Program supported by the New Energy and Industrial Technology Development Organization.

OM970084T

^{(14) (}a) Oertle, K.; Wetter, H. *Tetrahedron Lett.* **1985**, *20*, 5511. (b) Zweifel, G.; Whitney, C. C. *J. Am. Chem. Soc.* **1967**, *89*, 2752. (15) Tannenbaum, S.; Kaye, S.; Lewenz, G. F. *J. Am. Chem. Soc.* **1953**, *75*, 3753.