3080

Silylene Reactions with *N*-Methylpyrrole: Cycloadditions and Rearrangements^{1,2}

Manfred Weidenbruch* and Lars Kirmaier

Fachbereich Chemie der Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany

Heinrich Marsmann

Fachbereich Chemie der Universität (GH) Paderborn, Warburger Strasse 100, D-33095 Paderborn, Germany

Peter G. Jones

Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig, Postfach 33 29, D-38023 Braunschweig, Germany

Received January 24, 1997[®]

Summary: Di-tert-butylsilylene (2), generated by photolysis of hexa-tert-butylcyclotrisilane, reacts with Nmethylpyrrole possibly via an intermediate [2 + 1]cycloadduct to furnish 3,3-di-tert-butyl-2-methyl-2-aza-3-silabicyclo[2.2.0]hex-5-ene (7). On heating, 7 rearranges by an electrocyclic reaction to provide the correspondingly substituted 1-aza-2-silacyclohexa-3,5diene 8. Further treatment of 7 with 2 gives, presumably through a tricyclic compound, the final product 2,2,5,5tetra-tert-butyl-1-methyl-1-aza-2,5-disilacyclohepta-3,6diene (10), which was characterized by an X-ray structure analysis.

Introduction

The Diels-Alder reaction, which in its simplest form comprises the cycloaddition of an olefin to a diene, is one of the most versatile synthetic procedures in organic chemistry. Although disilenes, compounds containing an Si=Si double bond, are often more reactive than alkenes, no [2 + 4] cycloadditions of the stable tetraaryldisilenes with 1,3-dienes have as yet been described.³ However, the recently reported reaction of tetramesityldisilene with 3,4,5-trimethoxybenzoyl chloride, in which the Si=Si double bond forms a [2 + 4]cycloadduct with the oxygen atom and a ring carbon atom, provides first indications of reactions of the abovementioned type.⁴

Tetra-tert-butyldisilene (3) has proved to be somewhat more reactive than the tetraaryldisilenes. Compound **3** is prepared together with di-*tert*-butylsilylene (**2**) most simply by photolysis of the cyclotrisilane 1 (Scheme 1).⁵ Thus, the reaction of 3 with 2,3-dimethylbutadiene gives

(1) Silicon Compounds with Strong Intramolecular Steric Interac-tions. 62. Part 61: Weidenbruch, M.; Will, P.; Peters, K. Z. Anorg. Allg. Chem. 1996, 622, 1811.

rise to the Diels-Alder product, albeit in very low yield and together with other compounds.6

We have recently isolated a [2 + 4] cycloadduct from the reaction mixture after photolysis of **1** in the presence of cyclopentadiene and elucidated its structure by X-ray crystallography.⁷ The reaction of **3** with furan (Scheme 1) also commences with a [2 + 4] cycloaddition but proceeds by addition of the silylene concomitantly formed in the photolysis to the remaining double bond of the cycloadduct to furnish the tricyclic system 4. Thiophene behaves differently; the isolated disilathiirane 5 is presumably the result of a subsequent extrusion from the [4 + 2] cycloadduct.⁷ Since a simple change of the heteroatom in this type of five-membered ring system had such a pronounced effect on the product formation, we have extended our investigations to include pyrroles and now report on the photolysis reactions of **1** in the presence of *N*-methylpyrrole. This reaction does indeed follow a different course than the previously mentioned reactions.

Results and Discussion

In order to avoid a possible silylene insertion⁸ into the N-H bond, we subjected N-methylpyrrole, and not

© 1997 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, June 1, 1997.

⁽²⁾ Dedicated to Professor Gottfried Huttner on the occasion of his 60th birthday.

⁶⁰th birthday.
(3) Reviews: (a) West, R. Angew. Chem. 1987, 99, 1231; Angew. Chem. Int Ed. Engl. 1987, 26, 1202. (b) Raabe, G.; Michl, J. In The Chemistry of Organic Silicon Compounds Part 2, Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K. 1989; p 1015. (c) Tsumuraya, T.; Batcheller, S. A.; Masamune, S. Angew. Chem. 1991, 103, 916; Angew. Chem., Int. Ed. Engl. 1991, 30, 902. (d) Weidenbruch, M. Coord. Chem. Rev. 1994, 130, 275. (e) Okazaki, R.; West, R. In Multiply Bonded Main Caroun Metals and Metalloids West R. Stone F. C. A. Eds.: Academic Group Metals and Metalloids; West, R., Stone, F. G. A., Eds.; Academic Press: San Diego, CA, 1996; p 232.

⁽⁴⁾ Fanta, A. D.; Belzner, J.; Powell, J. R.; West, R. Organometallics 1993, 12, 2177.

⁽⁵⁾ Review: Weidenbruch, M. Chem. Rev. 1995, 95, 1479.
(6) Masamune, S.; Murakami, S.; Tobita, H. Organometallics 1983,

^{2. 1464.} (7) Kroke, E.; Weidenbruch, M.; Saak, W.; Pohl, S.; Marsmann, H.

⁽¹⁾ NIORE, I., WEIGHT 45695.
Organometallics 1995, 14, 5695.
(8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (8) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (9) Reviews: Gaspar, P. P. In *Reactive Intermediates*; Jones, M., (9) Reviews: Gaspar, P. P. (9) Reviews: Gaspar, P. R Moss, R. A., Eds.; Wiley: New York, 1978; Vol. 1, p 229. *Ibid.* 1981; Vol. 2, p 335. *Ibid.* 1985; Vol. 3, p 333.

the parent compound, to photolysis with **1**. Irradiation of these two components at -20 °C initiates a smooth reaction that is complete after 5 h. From the reaction mixture, we isolated a colorless liquid in high yield. On the basis of the elemental analysis, molecular mass determination, and mass spectroscopy, this is a 1:1 adduct of the pyrrole and **2**. However, the obvious assumption, in analogy to previous reactions with, for example, cyclopentadiene,⁷ that this was the [2 + 1] cycloadduct **6** was not confirmed by the NMR data (Scheme 2). For example, the ²⁹Si NMR spectrum shows a signal with a chemical shift of about 24 ppm, which differs drastically from the values of other siliranes (usually -40 to -60 ppm).⁹

The lack of sensitivity of the product toward air and moisture, as well as its failure to undergo typical silirane reactions with the heavier chalcogens¹⁰ or aryl isocyanides,¹¹ clearly demonstrate that the putative primary cycloadduct 6 has experienced a rearrangement. Indeed, the NMR data, including 2-D spectra, and subsequent reactions can best be explained by assuming the bicyclic constitution 7 for the product. A photochemically induced valence isomerization of the pyrrole to the bicyclic system 11 could also be responsible for the unexpected formation of 7.12 Insertion of the silvlene 2 into the strained C-N bond of the threemembered ring would then provide a plausible explanation for the isolation of product 7 (Scheme 3). However, experimental evidence for this process as well as for the alternatively proposed [2 + 1] cycloaddition is still lacking.

The most important result of this reaction is that the silylene **2**, but not the disilene **3**, reacts exclusively with the cycloheterodiene. The *trans*-1,1,2,3,3,4-hexa-*tert*-butylcyclotetrasilane^{7,13} and other products that always

Figure 1. Thermal ellipsoid representation and labeling scheme for **10**. Ellipsoids are drawn at the 50% probability level. Selected bond lengths (pm) and bond angles (deg): Si(1)-N 175.4(2), N-C(1) 140.3(3), C(1)-C(2) 133.0(3), C(2)-Si(2) 185.1(3), Si(2)-C(3) 186.8(2), C(3)-C(4) 133.2(3), C(4)-Si(1) 186.4(3); C(4)-Si(1)-N 111.86(11), Si(1)-N-C(1) 124.0(2), N-C(1)-C(2) 128.9(2), C(1)-C(2)-Si(2) 131.0(2), C(2)-Si(2)-C(3) 111.49(11), Si(2)-C(3)-C(4) 129.2(2), C(3)-C(4)-Si(1) 133.2(2).

occur when $\mathbf{2}$ but not $\mathbf{3}$ undergo reaction with a suitable partner⁵ were obtained as the subsequent products of the disilene $\mathbf{3}$.

When **7** is heated in a sealed tube at 100 °C, a rearrangement occurs and furnishes the six-membered ring product **8** in quantitative yield after 14 days. The structure elucidation of **8** was again based on a complete NMR analysis, including H,H- and C,H-COSY spectra, which, among other features, clearly shows that four neighboring olefinic hydrogen atoms must be present. The mechanism of formation of the dark yellow liquid **8** is not surprising since cyclobutene derivatives can be smoothly converted under thermal conditions via an electrocyclic rearrangement to 1,3-dienes, which in turn absorb light on account of their color and recreate the cyclobutene structure.¹⁴

Renewed cophotolysis of **7** or **8** with **1** finally gives the seven-membered ring product **10** as a low-melting, colorless, crystalline substance, which again was characterized by extensive NMR analysis and low-temperature X-ray crystallography (Figure 1).

The most important feature in the structure of 10 is the determination of the direct adjacency of the nitrogen atom and a silicon atom, which also provides further indirect confirmation for the ring-constitutional assignments of compounds 7 and 8. Otherwise the endo- and exocyclic bond lengths and angles are all within the expected ranges. The seven-membered ring adopts a "twist" conformation in which Si1, Si2, C1, C3, and C4 are coplanar to within 6 pm, with N 61 pm and C2 38 pm from opposite sides of the plane. The formation of compound 10 can be explained most simply by another [2 + 1] cycloaddition of the silvlene **2** to the strained double bond of 7 to furnish the intermediate 9. The strained tricyclic system of 9 then undergoes rearrangement to the isolated ring system 10 by cleavage of two σ -bonds and formation of two π -bonds.

The reactions described above again demonstrate that a change of the heteroatom can lead to a completely

⁽⁹⁾ Williams, E. A. In *The Chemistry of Organic Silicon Compounds Part 1*; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989; p 511.

⁽¹⁰⁾ For example: (a) Seyferth, D.; Duncan, D. P.; Haas, C. K. J. Organomet. Chem. **1979**, 164, 305. (b) Boudjouk, P.; Black, E.; Kumarathasan, R.; Samaraweera, U.; Castellino, S.; Oliver, J. P.; Kampf, J. W. Organometallics **1994**, 13, 3715.

⁽¹¹⁾ Kroke, E.; Willms, S.; Weidenbruch, M.; Saak, W.; Pohl, S.; Marsmann, H. Tetrahedron Lett. **1996**, *37*, 3675.

⁽¹²⁾ Reviews: (a) Padwa, A. In *Rearrangements in the Ground and Exited States*, de Mayo, P., Ed.; Academic Press: New York, 1980; Vol. 3, p 501. (b) van Tamelen, E. E. *Acc. Chem. Res.* **1972**, *5*, 186.

⁽¹³⁾ Boudjouk, P.; Samaraweera, K.; Sooriyakumaran, R.; Chrisciel, K.; Anderson, K. R. *Angew. Chem.* **1988**, *100*, 1406; *Angew. Chem., Int. Ed. Engl.* **1988**, *27*, 1355.

⁽¹⁴⁾ March, J. Advanced Organic Chemistry, 4th ed.; Wiley-Interscience: New York, 1992; p 1110.

different reaction course in the photolyses of **1** with cyclopentadienes.

Experimental Section

General Procedures. All reactions were carried out in oven-dried glassware under an atmosphere of dry argon. Photolyses were carried out by using a high-pressure mercury immersion lamp (Heraeus TQ 150).

The ¹H and ¹³C NMR spectra were obtained on a Bruker AM 300 spectrometer using C_6D_6 as solvent. The ²⁹Si and twodimensional NMR spectra were recorded on a Bruker AMX 300 spectrometer. IR spectra were taken on a Bio-Rad FTS-7 spectrometer. Mass spectra were recorded on a Varian-MAT 212 instrument. Elemental analyses were performed by Analytische Laboratorien, D-51779 Lindlar, Germany.

The cyclotrisilane **1** was prepared according to the literature procedure.¹⁵

3,3-Di-tert-butyl-2-methyl-2-aza-3-silabicyclo[2.2.0]hex-5-ene (7). A solution of 1 (0.58 g, 1.35 mmol) and Nmethylpyrrole (0.91 g, 11.2 mmol) in n-hexane (80 mL) was irradiated at -20 °C for 5 h. After this time, the reaction was shown to be complete by the disappearance of 1 (TLCmonitoring). The solvent was removed by vacuum distillation, and the residue was transferred to a molecular still. Distillation at 60 °C/1.5 mbar yielded 0.28 g (93%) of colorless 7; mp -20 °C; ¹H NMR δ 0.70 (dd, 1H, ³J = 4.9 Hz, ⁿJ = 1.2 Hz), 1.02 (s, 9H), 1.23 (s, 9H), 1.86 (dd, 1H, ${}^{3}J = 4.9$ Hz, ${}^{n}J = 1.2$ Hz), 2.10 (s, 3H), 5.82 (m, 1H, ${}^{3}J = 8.1$ Hz, ${}^{n}J = 1.2$ Hz), 6.87 (m, 1H, ${}^{3}J$ = 8.1 Hz, ${}^{n}J$ = 1.2 Hz); 13 C NMR δ = 19.17 (C_q, *t*Bu), 19.80 (C_q, *t*Bu), 28.29 (C_p, *t*Bu), 30.37 (C_p, *t*Bu), 31.35 (CH), 48.44 (CH₃), 48.46 (CH), 130.87 (CH), 150.36 (CH). C_p and Cq refer to primary and quaternary carbon atoms. ²⁹Si NMR δ 23.68; IR (KBr) ν 1547 (vw), 1472 (m) (C=C) cm⁻¹; MS (CI, isobutane) m/z 224 (MH⁺, 100). Molecular mass determination (cryoscopically in benzene) calcd, 223; found, 224. Anal. Calcd for C₁₃H₂₅NSi: C, 69.88; H, 11.28; N, 6.27. Found: C, 69.69; H, 11.04; N, 6.02.

The distillation residue was dissolved in a minimum amount of *n*-hexane/ethyl acetate (1:1). Cooling at -30 °C afforded colorless crystals. Recrystallization from *n*-hexane provided 100 mg (32%) of pure 1,1,2,3,3,4-hexa-*tert*-butylcyclotetrasilane, which was identified by mp, ¹H and ¹³C NMR spectra, a mass spectrum and comparison with an authentic sample of this compound.⁷ On prolonged cooling at -30 °C for 4 days, 40 mg (12%) of hepta-*tert*-butylcyclotetrasilane was obtained. This compound was also identified by comparison with an authentic sample.¹⁷

Attempted Reactions of 6 or 7. (a) With Sulfur. A mixture of **7** (300 mg, 1.34 mmol), lithium chloride (120 mg, 2.82 mmol), and sulfur (60 mg, 0.23 mmol) in THF (6 mL) was heated at 60 °C for 1 h. The solvent was removed, the residue dissolved in *n*-hexane (5 mL), and all insoluble compounds were filtered off. After removal of *n*-hexane, **7** was recovered almost quantitatively.

(b) With Aryl Isocycanides. The attempted insertion reactions into one of the Si–C bonds of the presumed compound **6** with phenyl isocycanide, *p*-nitrophenyl isocyanide, or 2,6-diisopropylphenyl isocyanide, with or without palladium-(II) acetate as a catalyst, did not take place. In each case, the starting material was recovered in high yield.

2,2-Di-*tert***-butyl-1-methyl-1-aza-2-silacyclohexa-3,5-diene (8).** Compound **7** (200 mg) was dissolved in C₆D₆ (0.5 mL) and heated at 100 °C in a sealed NMR tube for 14 days. After this time, the rearrangement **7** → **8** was shown to be complete by NMR analysis. **8**: dark yellow oil; ¹H NMR δ 1.00 (s, 18H, *t*Bu), 2.68 (s, 3H, CH₃), 4.88 (m, 1H, H5, ³J_{H5,H6} = 7.2 Hz, ³J_{H5,H4} = 6.1 Hz, ⁴J_{H5,H3} = 1.0 Hz), 5.40 (m, 1H, H3, ³J_{H3,H4} = 14.1 Hz), 6.03 (m, 1H, H6, ⁴J_{H6,H4} = 1.05 Hz), 7.01 (m, 1H, H4). The assignment was confirmed by two-dimensional H,Hand H,C-COSY NMR spectra. ¹³C NMR δ 23.07 (C_p, *t*Bu), 29.57 (C_q, *t*Bu), 99.47 (C5), 109.09 (C3), 143.49 (C6), 153.75 (C4); ²⁹Si NMR δ 1.39; mass spectrum (CI, isobutane) *m*/*z* 223 (M⁺, 95), 166 (M⁺ - *t*Bu, 100). Anal. Calcd for C₁₃H₂₅NSi: C, 69.88; H, 11.28; N, 6.27. Found: C, 68.92; H, 11.40; N, 5.82.

2,2,5,5-Tetra-tert-butyl-1-methyl-1-aza-2,5-disilacyclohepta-3,6-diene (10). A solution of 7 (200 mg, 0.90 mmol) and 1 (0.53 g, 1.2 mmol) in n-hexane (80 mL) was irradiated at room temperature for 3.5 h. After this time, the reaction was shown to be complete by the disappearance of 1 (TLC monitoring). The solvent was distilled off, and the remaining yellow oil was transferred to a molecular still. Distillation at 80 °C/0.01 mbar furnished 170 mg of a colorless liquid. Crystallization from ethyl acetate yielded 120 mg (32%) of colorless crystals, mp 52 °C. ¹H NMR δ 1.20 (s, 18H, *t*Bu), 1.25 (s, 18H, *t*Bu), 2.69 (s, 3H, CH₃), 4.16 (dd, 1H, ${}^{3}J$ = 12 Hz, $^{n}J = 1.6$ Hz), 6.50 (d, 1H, $^{3}J = 12$ Hz), 6.96 (d, 1H, $^{3}J = 19$ Hz), 7.10 (dd, 1H, ${}^{3}J = 19$ Hz, ${}^{n}J = 1.6$ Hz); ${}^{13}C$ NMR δ 19.77 (Cq), 22.85 (Cq), 29.08 (Cp), 29.90 (Cp), 41.40 (Cp, N-CH₃), 93.65, 146.94, 148.50, 157.43; ²⁹Si NMR $\delta = -5.10$, 0.26; IR (KBr) ν 1597 (s), 1468 (s) (C=C) cm⁻¹; MS (CI, isobutane) m/z366 (M⁺, 100). Anal. Calcd for C₂₁H₄₃NSi₂: C, 68.96; H, 11.85; N, 3.83. Found: C, 68.84; H, 11.98; N, 3.73.

X-ray Structure Analysis of Compound 10. Single crystals were grown from a saturated solution in ethyl acetate at -50 °C Crystal data: C₂₁H₄₃NSi₂, fw 365.74, triclinic, space group $P\overline{1}$, a = 891.6(3) pm, b = 1161.6(3) pm, c = 1333.6(4)pm; $\alpha = 114.94(2)^\circ$, $\beta = 90.16(2)^\circ$, $\gamma = 108.38(2)^\circ$, V = 1.1737(6)nm³, Z = 2, $D_x = 1.035$ Mg m⁻³, λ (Mo K α) = 0.710 73 Å, μ = 0.15 mm⁻¹, T = -130 °C. Data collection and reduction: A colorless tablet with dimensions of 0.65 \times 0.4 \times 0.2 mm was mounted in inert oil. Data were collected to $2\theta_{max}$ 50° on a Stoe STADI-4 diffractometer (scan type ω/θ). Of the 4947 measured data, 4130 were unique (R_{int} 0.022). Structure solution and refinement: The structure was solved by direct methods and refined anisotopically on F² using all reflections.¹⁶ Hydrogen atoms were included using the riding model or rigid methyl groups. The final $wR(F^2)$ was 0.114 for 230 parameters and all reflections, conventional R(F) 0.049 for $F > 4\sigma(F)$. S =1.02; max Δ/σ 0.001; max $\Delta\rho$ + 340, -178 e pm⁻³.

Acknowledgment. Financial support of our work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Supporting Information Available: Tables of crystal data, atomic coordinates for H atoms, bond lengths, bond angles, and anisotropic displacement coefficients for **10** (5 pages). Ordering information is given on any current masthead page.

OM970043X

⁽¹⁵⁾ Weidenbruch, M.; Schäfer, A.; Lesch, A. In *Synthetic Methods of Organometallic and Inorganic Chemistry*; Herrmann, W. A., Ed.; Thieme Verlag: Stuttgart, 1996; Vol. 2, p 210.

⁽¹⁶⁾ Sheldrick, G. M. SHELXL 93. Program for crystal structure refinement; Universität Göttingen: Göttingen, Germany, 1993.
(17) Weidenbruch, M.; Kroke, E.; Pohl, S.; Saak, W.; Marsmann, H.

⁽¹⁷⁾ Weidenbruch, M.; Kroke, E.; Pohl, S.; Saak, W.; Marsmann, H. J. Organomet. Chem. **1995**, 499, 229.