Organometallic Compounds of Ruthenium Containing an **Anionic Oxygen Tripod Ligand**

Wa-Hung Leung,^{*,†,‡} Eddie Y. Y. Chan,[†] Ian D. Williams,[†] and Wing-Tak Wong[§]

Departments of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and The University of Hong Kong, Pokfulam Road, Hong Kong

Received February 14, 1997[®]

Reaction of NaL_{OEt} ($L_{OEt} = (\eta^5 - C_5H_5)Co\{P(O)(OEt)_2\}_3$) with Ru(PPh₃)₃Cl₂, Ru(DMSO)₄Cl₂ (DMSO = dimethyl sulfoxide), and Ru(PPh₃)₂(CO)Cl(CH=CHPh) afforded L_{OEt}Ru(PPh₃)₂Cl (1), L_{OEt}Ru(DMSO)₂Cl (2), and L_{OEt}Ru(PPh₃)(CO)(CH=CHPh) (3), respectively. The structures of complexes 1 and 2 have been established by X-ray crystallography. The mean Ru-O, Ru–P, and Ru–Cl bond distances in **1** are 2.183, 2.267, and 2.393(3) Å, respectively. The mean Ru–O, Ru–S, and Ru–Cl distances in $\mathbf{2}$ are 2.118, 2.188, and 2.362(2) Å, respectively. Treatment of **3** with HBF₄ yielded the olefin complex $[L_{OEt}Ru(PPh_3)(CO)(\eta^2 - \eta^2)]$ PhCH=CH₂)]BF₄ (**4**). Reaction of complex **1** with PhC=CH in the presence of NH₄PF₆ gave the vinylidene complex $[L_{OEt}Ru(PPh_3)_2(=C=CHPh)](PF_6)$ (6). The mean Ru–O, Ru–P, and Ru-C distances in **6** are 2.127, 2.344, and 1.80(2) Å, respectively. Deprotonation of **6** with NaOH gave the acetylide complex $L_{OEt}Ru(PPh_3)_2(C \equiv CPh)$ (7). Reaction of complex 1 with 3-butyn-1-ol in the presence of NH₄PF₆ afforded the cyclic carbene complex [L_{OEt}Ru(PPh₃)₂-

 $\{=C(CH_2)_3O\}$]PF₆ (8). The mean Ru–O, Ru–P, and Ru–C distances in 8 are 2.175, 2.335, and 1.87(1) Å, respectively. Reaction of $L_{OEt}Ru(PPh_3)_2Cl$ with I_2 afforded the cation $[L_{OEt} Ru(PPh_3)_2Cl]^+$ (1⁺), isolated as the I₃ and PF₆ salts. The mean Ru–O, Ru–P, and Ru–Cl distances in 1^+ are 2.095, 2.380, and 2.300(3) Å, respectively. The cyclic voltammogram of **1** in CH₂Cl₂ exhibits a reversible Ru(III/II) couple at -0.021 V vs Cp₂Fe^{+/0}.

Introduction

Organometallic complexes of late-transition-metalcontaining O-donor coligands are of interest because they are related to the active intermediates of homogeneous catalysis in aqueous media.¹ A notable example is $[Ru(OH_2)_6](OTs)_2$ (OTs = tosylate), which catalyzes ring-opening metathesis polymerization of cyclic olefins² and isomerization of olefins³ in water. The anionic cobalt(III)-based oxygen tripod ligand LOEt (I, CpCo{PO-(OEt)₂₃) first introduced by Kläui has been employed as an oxygen analog for Cp (II, cyclopentadienyl) and Tp (III, hydriotris(pyrazol-1-yl)borate)⁴ and as a model for the facially disposited triaqua moiety.⁵

Owing to its high stability and π -donation capability and weak ligand field strength (similar to that for hydroxide and fluoride⁶), organometallic complexes of L_{OEt} were found to be quite different from the conventional Cp-based analogs.⁴ Nevertheless, in contrast to the well-known half-sandwich complexes (η^5 -C₅R₅)-

RuL₂X⁶ and TpRuL₂X⁷ organoruthenium complexes of L_{OEt} have not been well explored. Kläui first synthesized the carbonyl complexes $L_{OEt}Ru(CO)_2X$, $[L_{OEt}Ru (CO)_2]_2$, and $L_{OEt}Ru(CO)(PR_3)Cl^4$ and the sandwich compound $[L_{OEt}Ru(\eta^6-C_6H_6)]PF_6.^8$ Labinger, Bercaw, and co-workers found that the oxoruthenium complexes

^{*} To whom correspondence should be addressed.

The Hong Kong University of Science and Technology.

[†] The Hong Kong University of Science and Technology.
[‡]E-mail: chleung@usthk.ust.hk.
[§] The University of Hong Kong.
[®] Abstract published in Advance ACS Abstracts, June 1, 1997.
(1) For reviews, see for example: (a) Herrmann, W. A.; Kohlpainter, C. W. Angew. Chem., Int. Ed. Engl. 1993, 32, 1524. (b) Roundhill, D. M. Adv. Organomet. Chem. 1995, 155.
(2) (a) Novak, B. M.; Grubbs, R. H. J. Am. Chem. Soc. 1988, 110, 7542. (b) Hillmyer, M. A.; Lepetit, C.; McGrath, D. V.; Novak, B. M.; Grubbs, R. H. Macromolecules 1992, 25, 3345.
(3) McGrath D. V.; Grubbs, R. H. Organometallics 1994, 13, 224.

⁽³⁾ McGrath, D. V.; Grubbs, R. H. Organometallics **1994**, *13*, 224. (4) Kläui, W. Angew. Chem., Int. Ed. Engl. **1990**, 29, 627.

⁽⁵⁾ For a review, see for example: Kölle, U. Coord. Chem. Rev. 1994. 135. 623.

⁽⁶⁾ Davies, A. G.; McNally, J. P.; Smallridge, A. Adv. Organomet. Chem. 1990. 30. 1 and references cited therein.

⁽⁷⁾ See for example: (a) Bruce, M. I.; Sharrocks, D. N., Stone, F. G. A. J. Organomet. Chem. 1971, 31, 269. (b) Bruce, M. I.; Iqbal, M. Z.; Stone, F. G. A. J. Chem. Soc. A 1971, 2820. (c) McNair, A. M.; Boyd, D. C.; Mann, K. R. Organometallics 1986, 5, 303. (d) Albers, M. O.; Robinson, D. J.; Shaver, A.; Singleton, E. Organometallics 1986, 5, 2199. (e) Restivo, R. J.; Ferguson, G.; O'Sullivan, D. J.; Lalor, F. Inorg. Chem. 1975, 4, 3046. (f) Alcock, N. A.; Hill, A. F.; Melling, R. P. Organometallics 1991, 10, 3898. (g) Germel, C.; Trimmel, G.; Slugove, C.: Merejter, K. Kremel, S.: Schmid, R.; Kirchner, K. Organometallics C.; Mereiter, K.; Kremel, S.; Schmid, R.; Kirchner, K.; *Organometallics* **1996**, *15*, 3998. (h) Gemel, C.; Wiede, P.; Mertier, K.; Sapunov, V. N.; Schmid, R.; Kirchner, K. J. Chem. Soc., Dalton Trans. **1996**, 4071. (i) Hill, A. F. J. Organomet. Chem. **1990**, *395*, C35.

⁽⁸⁾ Kläui, W.; Otto, H.; Eberspach, W.; Bulcholz, E. Chem. Ber. 1982, 115 1922

Figure 1.

 $[(L_{OEt})_2 Ru(OH_2)_2(\mu-O)_2](CF_3SO_3)_2, (L_{OEt})_2 Ru_2(OH)_2(\mu-O)_2, and (L_{OEt})_2 Ru_2(O)_2(\mu-O)_2 are potent catalysts for alcohol oxidation.⁹ More recently, the cation [L_{OEt}Ru-(COD)(OH_2)]^+ (COD = 1,5-cycloctadiene) has been isolated and structurally characterized by Kölle and co-workers.¹⁰ In an effort to develop new metal catalysts with oxgyen-based ligands, we here describe the synthesis of some ruthenium(II) and -(III) complexes of L_{OEt} and the crystal structures of the vinylidene and carbene derivatives.$

Experimental Section

Solvents were purified and distilled prior to use. NMR spectra were recorded on a Bruker ALX 300 spectrometer operating at 300 and 75 MHz for ¹H and ¹³C, respectively. Chemical shifts (δ , ppm) were reported with reference to Si-(CH₃)₄ (¹H and ¹³C) and H₃PO₄ (³¹P). Hydrogen atom labeling schemes for the vinyl, vinylidene, and cyclic carbene complexes are shown in Figure 1. Infrared spectra (Nujol) were recorded on a Perkin-Elmer 16 PC FT-IR spectrophotometer. Mass spectra were obtained on a Finnigan TSQ-7000 spectrometer. Cyclic voltammetry was performed with a Princeton Applied Research (PAR) Model 273A potentiostat. The working and reference electrodes are glassy carbon and Ag/AgNO₃ (0.1 M in acetonitrile), respectively. Potentials were reported with reference to Cp₂Fe^{+/0}. Elemental analyses were performed by Medac Ltd., Brunel University, U.K.

Materials. Ru(PPh₃)₃Cl₂,¹¹ Ru(DMSO)₄Cl₂¹² (DMSO = dimethyl sulfoxide), RuCl(CO)(CH=CHPh)(PPh₃)₂,¹³ and Na-L_{OEt}¹⁴ were prepared according to the literature methods. PhC=CH and 3-butyn-1-ol were obtained from Aldrich and used as received.

Synthesis of L_{0E4} **Ru(PPh₃)₂Cl (1).** A mixture of Ru(PPh₃)₃-Cl₂ (1.2 g, 1.25 mmol) and NaL_{OEt} (0.5 g, 0.896 mmol) in THF/ toluene (50 mL, 1:1) was heated at reflux overnight. The volatiles were removed in vacuo, and the residue was washed with hexane. Recrystallization from ether/hexane afforded orange crystals, which were suitable for X-ray analysis (yield 0.72 g, 68%). ¹H NMR (CDCl₃): δ 0.87 (t, 6H, *CH*₃), 1.04 (t, 6H, *CH*₃), 1.34 (t, 6H, *CH*₃), 2.87–2.98 (m, 4H, *CH*₂), 3.58– 3.62 (m, 4H, *CH*₂), 4.36–4.85 (m, 4H, *CH*₂), 4.93 (s, 5H, *C*₅*H*₅), 6.94–7.50 (m, 30H, PPh₃). ³¹P{¹H} NMR (CDCl₃): δ 53.12 (s, PPh₃), 102–111.4 (m, P(O)(OEt)₂). MS (CI): *m*/*z* 1195 (M⁺). Anal. Calcd for [RuCoC₅₃H₆₅ClO₉P₅]: C, 53.2; H, 5.6. Found: C, 55.7; H, 5.6. *E*°(CH₂Cl₂) = -0.021 V vs Cp₂Fe^{+/0}.

Reaction of 1 with *t***-BuNC.** To a solution of **1** (50 mg, 0.04 mmol) in toluene/THF (10 mL, 1:1) was added *t*-BuNC (0.1 mL), and the mixture was heated to 75 °C for 2 h. The solvent was pumped off and the residue extracted with hexane. Concentration and cooling at -10 °C afforded orange crystals

of **1** along with a minor yellow product. The yellow product was identified as $L_{OEt}Ru(PPh_3)(t-BuNC)Cl: {}^{1}H NMR (CDCl_3): \delta 0.80 (t, 3H, CH_3), 0.94 (t, 3H, CH_3), 1.24-1.38 (t, 12H, CH_3), 1.41 (s, 9H, t-Bu), 2.89-2.96 (m, 2H, CH_2), 3.44 (m, 1H, CH_2), 3.59 (m, 1H, CH_2), 4.00 (m, 2H, CH_2), 4.23-4.52 (m, 6H, CH_2), 4.93 (s, 5H, C_5H_5), 7.24-7.71 (m, 15H, PPh_3). {}^{31}P{}^{1}H{} NMR (CDCl_3): \delta 61.5 (s, PPh_3). MS (FAB): m/z 1016 (M⁺).$

Synthesis of L_{OEt} **Ru(DMSO)**₂**Cl (2).** A mixture of Ru(DMSO)₄Cl₂ (0.5 g, 1.03 mmol) and NaL_{OEt} (0.41 g, 0.73 mmol) in THF (50 mL) was heated at reflux overnight. The volatiles were removed in vacuo, and the residue was recrystallized from CH₂Cl₂/hexane to give orange crystals (yield 0.14 g, 23%). ¹H NMR (CDCl₃): δ 1.24 (t, 6H, *CH*₃), 1.29 (t, 6H, *CH*₃), 1.3 (t, 6H, *CH*₃), 3.21 (s, 6H, (*CH*₃)₂SO), 3.37 (s, 6H, (*CH*₃)₂SO), 4.01–4.26 (overlapping q, 12H, *CH*₂), 4.99 (s, 5H, C₅H₅). ³¹P{¹H} NMR (CDCl₃): δ 112 (s br, P(O)(OEt)₂). MS (CI): *m*/*z* 828 (M⁺). Anal. Calcd for [RuCoC₂₁H₄₇ClS₂O₁₁P₃]: C, 30.5; H, 5.9. Found: C, 30.1; H, 5.8. *E*°(CH₂Cl₂) = 0.386 V vs Cp₂Fe^{+/0}.

Synthesis of LOEtRu(CO)(PPh3)(CH=CHPh) (3). A mixture of RuCl(CO)(CH=CHPh)(PPh₃)₂ (1.3 g, 1.64 mmol) and NaL_{OEt} (0.57 g, 1.03 mmol) in CH₂Cl₂ (25 mL) was stirred at room temperature for 48 h. The volatiles were removed in vacuo, and the residue was recrystallized from hexane. The yellow solid was collected and washed with cold hexane (yield 0.65 g, 62%). ¹H NMR (CDCl₃): δ 0.82 (t, 3H, CH₃), 1.01 (t, 3H, CH₃), 1.19 (t, 3H, CH₃), 1.28-1.35 (overlapping t, 6H, CH₃), 1.39 (t, 3H, CH₂), 3.08-3.12 (m, 2H, CH₂), 3.52-3.73 (m, 2H, CH₂), 4.04–4.34 (m, 8H, CH₂), 4.94 (s, 5H, C₅H₅), 8.36 (dd, ${}^{3}J_{HH} = 15.9$ Hz, ${}^{3}J_{HP} = 3.06$ Hz, -CH=CHPh), 6.12 (d, $J_{\rm HH} = 15.9$ Hz, CH=CHPh), 6.86-7.73 (m, 20H, phenyl protons). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ -16.1 to -16.9 (CH₃), 59.3-60.4 (*C*H₂), 88.9 (C_5 H₅), 124–141 (PPh₃), 122.7 (C_β), 159.61 (d, ${}^{2}J_{CP} = 15.07$ Hz, C_{α}), 206.5 (d, ${}^{2}J_{CP} = 47.7$ Hz, CO). ${}^{31}P$ -{¹H} NMR (CDCl₃): δ 59.8 (s, PPh₃), 109.7 (m, P(O)(OEt)₂). IR (cm⁻¹): 1918 ν_{CO} , 1596 and 1582 $\nu_{C=C}$. MS (CI): m/z 1028 (M⁺). Anal. Calcd for [RuCoC44H59O10P4]: C, 51.3; H, 5.6. Found: C, 50.9; H, 5.9.

Synthesis of [L_{OEt}**Ru**(**PPh₃)(CO)(\eta^2-PhCH=CH₂)]B**F₄ (4). To a solution of **3** (50 mg, 0.05 mmol) in Et₂O (10 mL) was added 1 equiv of HBF₄ (0.05 mL of a 1 M solution in Et₂O) at 0 °C. The yellow precipitate was collected and washed with Et₂O (yield 50%). ¹H NMR (CD₂Cl₂): δ 0.96 (t, 3H, CH₃), 1.26 (t, 3H, CH₃), 1.28 (t, 3H, CH₃), 1.29 (t, 3H, CH₃), 1.44 (t, 3H, CH₃), 1.45 (t, 3H, CH₃), 3.01–3.26 (m, 3H, OCH₂ and CH₂=CHPh), 3.77–3.98 (m, 7H, OCH₂ and CH₂=CHPh), 4.26–4.36 (m, 4H, OCH₂), 5.11 (s, 5H, C₅H₅), 5.92 (dd, ^{cis}J_{HH} = 13.9 Hz, ^{trans}J_{HH} = 9.1 Hz, 1H, CH₂=CHPh), 6.97–7.71 (m, 20H, phenyl protons). ³¹P{¹H} NMR (CD₂Cl₂): δ 51.2 (s, PPh₃), 112.9 (m, P(O)(OEt)₂). ¹⁹F NMR (CD₂Cl₂): δ –154.7 (BF₄). IR (cm⁻¹): 1978 ν_{CO} .

On recrystallization from CH₂Cl₂/hexane complex **4** was found to decompose to give $[L_{OEt}Ru(PPh_3)(CO)(OH_2)]BF_4$ (**5**). ¹H NMR (CDCl₃): δ 0.86 (t, 3H, *CH*₃), 1.01 (t, 3H, *CH*₃), 1.32 (t, 3H, *CH*₃), 1.34 (t, 3H, *CH*₃), 1.36 (t, 3H, *CH*₃), 1.39 (t, 3H, *CH*₃), 2.50 (s, 2H, *H*₂O), 3.20–3.43 (m, 4H, *CH*₂), 4.19 (m, 2H, *CH*₂), 4.22–4.32 (m, 6H, *CH*₂), 4.99 (s, 5H, *C*₅*H*₅), 7.41–7.50 (m, 15H, PPh₃). ³¹P{¹H} NMR (CD₂Cl₂): δ 50 (s, PPh₃), 112 (m, P(O)(OEt)₂). IR (cm⁻¹): 1954 $\nu_{C=0}$. MS (FAB): *m/z* 944 (M – BF₄)⁺, 927 (M – BF₄ - H₂O + 1)⁺. Anal. Calcd for [RuCoC₃₆H₅₂BF₄O₉P₅]: C, 41.9; H, 5.0. Found: C, 42.1; H, 5.1.

Synthesis of $[L_{0Et}Ru(PPh_3)_2(=C=CHPh)]PF_6$ (6). A mixture of complex 1 (70 mg, 0.06 mmol) with PhC=CH (0.1 mL, 1 mmol) and NH₄PF₆ (17 mg, 0.1 mmol) in MeOH/THF (25 mL, 1:1) was stirred at room temperature overnight. The volatiles were pumped off and the residue washed with hexane. Recrystallization from CH₂Cl₂/ether/hexane afforded yellow crystals that are suitable for X-ray analysis (yield 60 mg, 70%). ¹H NMR (CDCl₃): δ 0.98 (t, 6H, CH₃), 1.18 (t, 6H, CH₃), 1.24 (t, 6H, CH₃), 3.16–3.37 (m, 4H, CH₂), 3.76–4.05 (m, 8H, CH₂), 4.59 (t, ⁴J_{HP} = 4.6 Hz, 1H, =C=CHPh), 5.08 (s, 5H, C₅H₅), 7.06–7.34 (m, 35H, phenyl protons). ¹³C{¹H} NMR (CDCl₃):

⁽⁹⁾ Power, J. M.; Evertz, K.; Herling, L.; Marsh, R.; Schaefer, W.
P.; Labinger, J. A.; Bercaw, J. E. *Inorg. Chem.* **1990**, *29*, 5058.
(10) Kölle, U.; Flunkert, G.; Gorissen, R.; Schmidt, M. U.; Englert,

⁽¹⁰⁾ Kölle, U.; Flunkert, G.; Gorissen, R.; Schmidt, M. U.; Englert, U. Angew. Chem., Int. Ed. Engl. **1992**, *31*, 440.

⁽¹¹⁾ Hallman, R. S.; Stephenson, T. A.; Wilkinson, G. Inorg. Synth. 1970, 12, 238.

⁽¹²⁾ Evans, I. P.; Spencer, A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. **1973**, 204.

⁽¹³⁾ Torres, M. R.; Vegas, A.; Santos, A.; Ros, J. *J. Organomet. Chem.* **1986**, *309*, 169.

⁽¹⁴⁾ Kläui, W. Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1979, 34B, 1043.

Table 1. Crystallographic Data and Experimental Details for $L_{OEt}Ru(PPh_3)_2CI(1)$, $L_{OEt}Ru(DMSO)_2CI(2)$
$[L_{OEt}Ru(PPh_3)_2(=C=CHPh)]PF_6$ (6), $[L_{OEt}Ru(PPh_3)_2\{=C(CH_2)_3O\}](PF_6)$ (8), and $[L_{OEt}Ru(PPh_3)_2CI](PF_6)$
(1.DE.)

	1	2	6.¹/₄hexane	8 ⋅¹/ ₂ MeOH	$1 \cdot PF_6$
empirical formula	C53H65ClC0O9P5Ru	$C_{42}H_{94}Cl_2Co_2O_{23}P_6Ru_2S_4$	$C_{62.5}H_{73.5}C_{0}F_{6}O_{9}P_{6}$	RuC _{57.5} H ₇₃ CoF ₆ O _{10.5} P ₆ Ru	C ₅₉ H ₇₇ ClCoF ₆ O ₃ P ₆ Ru
fw	1196.3	1672.1	1428.5	1392.0	1329.54
color, habit	brown, bar	orange, plate	yellow, wedge	yellow, plate	brown, block
cryst dimens, mm	0.4 imes 0.1 imes 0.1	0.45 imes 0.35 imes 0.08	0.6 imes 0.4 imes 0.1	0.5 imes 0.4 imes 0.1	0.22 imes 0.22 imes 0.28
<i>a</i> , Å	12.875(3)	18.230(3)	44.716(12)	11.926(2)	15.637(1)
<i>b</i> , Å	21.570(4)	10.123(2)	24.910(4)	13.244(3)	18.704(1)
<i>c</i> , Å	39.070(8)	37.901(5)	46.004(5)	23.102(5)	119.990(1)
α, deg				98.83(3)	
β , deg		98.86(2)	91.66(2)	96.32(3)	106.87(2)
γ , deg				116.37(3)	
V, Å ³	10 850(4)	6911(2)	51 218(17)	3164.3(11)	5846.6(6)
Ζ	8	4	32	2	4
cryst syst	orthorhombic	monoclinic	monoclinic	triclinic	orthorhombic
space group	$Pbc2_1$	$P2_{1}/c$	I2/a	$P\overline{1}$	$P2_12_12_1$
D_{calcd} , g cm ⁻³	1.465	1.607	1.482	1.461	1.510
<i>T</i> , °C	-45	-37	-48	-45	0
λ, Å	0.710 73	0.710 73	0.710 73	0.710 73	0.710 73
scan type	ω	ω	ω	ω	ω
2θ range, deg	3.0 - 50.0	3.0-50.0	3.0 - 41.0	3.0-45.0	3.0 - 51.3
μ , cm ⁻¹	8.35	13.04	7.17	7.25	8.16
no. of rflns measd	11 725	10 074	23 921	7876	5914
no. of rflns obsd	7453	6847	13 519	5102	4148
R, ^a %	4.57	4.77	7.03	7.41	6.30
$R_{\rm w}$, ^b %	4.55	5.51	6.90	8.38	7.00
F(000)	4944	3440	23 536	1434	2748
GOF^c	1.37	1.42	1.57	1.83	3.14

 ${}^{a}\mathbf{R} = (\sum |F_{0}| - |F_{c}|)/\sum |F_{0}|. \ b \ R_{w} = [(\sum w^{2}|F_{0}| - |F_{c}|)^{2}/\sum w^{2}|F_{0}|^{2}]^{1/2}. \ c \ \mathrm{GOF} = [(\sum w|F_{0}| - |F_{c}|)^{2}/(N_{\mathrm{observn}} - N_{\mathrm{param}})]^{1/2}.$

δ 15.9–16.2 (*C*H₃), 60.3–61.4 (*CH*₂), 89.15 (*C*₅H₅), 116.2 (*C*_β), 126–134 (s, phenyl), 362.25 (t, ²*J*_{CP} = 21 Hz, *C*_α). ³¹P{¹H} NMR (CDCl₃): δ –145 (sept, PF₆), 34.7 (s, PPh₃), 110.4 (m, P(O)(OEt)₂). IR (cm⁻¹): 1622, 1596 ν_{C=C}. MS (DCI): *m*/*z*1262 (M – PF₆)⁺. Anal. Calcd for [RuCoC₆₀H₇₁F₆O₉P₆]: C, 52.0; H, 5.1. Found: C, 52.2; H, 5.1.

Synthesis of L_{OEt}**Ru(PPh₃)**₂(**C**≡**CPh)** (7). To a solution of **6** (80 mg, 0.063 mmol) in THF/MeOH (20 mL, 1:1) was added NaOH (20 mg, 0.5 mmol). The resulting mixture was stirred at room temperature for 40 min. Slow evaporation in vacuo afforded a yellow microcrystalline solid (yield 40%). ¹H NMR (C₆D₆): δ 0.97 (t, 6H, *CH*₃), 1.20 (s, 6H, *CH*₃), 1.55 (s, 6H, *CH*₃), 3.15 (m, 4H, *CH*₂), 3.95 (m, 4H, *CH*₂), 4.82 (m, 4H, *CH*₂), 5.01 (s, 5H, C₅*H*₅), 7.02 (m, 18H, PPh₃), 7.16 (m, 1H, *PhC*≡*C p*), 7.46 (t, 2H, *PhC*≡*C m*), 7.83 (d, 2H, *PhC*≡*C o*), 8.10 (m, 12H, PPh₃). ³¹P{¹H} NMR (CDCl₃): δ 60.9 (s, PPh₃), 105.5 (m, P(O)-(OEt)₂). IR (cm⁻¹): 2066 ν _{C=C}.

Synthesis of $[L_{OE4}$ **Ru(PPh₃)**₂{=C(CH₂)₃O}]**PF**₆ (8). This was prepared as for complex 7 from 1 (70 mg, 0.06 mmol), 3-butyn-1-ol (0.1 mL), and NH₄PF₆ (17 mg, 0.1 mmol). The product was recrystallized from CH₂Cl₂/hexane, isolated as yellow prisms (yield 40 mg, 50%). ¹H NMR (CDCl₃): δ 0.94 (t, 6H, *CH*₃), 1.12 (t, 6H, *CH*₃), 1.40 (t, 6H, *CH*₃), 1.75 (q, ²J_{HH} = 6.9 Hz, 2H, C⁴H₂), 3.13 (m, 2H, *CH*₂), 3.27 (m, 2H, *CH*₂), 3.46–3.78 (m, 6H, C⁵H₂ and CH₂), 4.03 (t, ²J_{HH} = 7.35 Hz, 2H, C³H₂), 4.12 (m, 4H, *CH*₂), 5.04 (s, 5H, C₅H₅), 7.06–7.35 (m, 30H, PPh₃). ¹³C{¹H} NMR: δ 15.9–16.3 (*C*H₃), 21.6 (*C*⁴), 52.4 (*C*⁵), 59–61 (*C*H₂), 80.4 (*C*⁶), 89.07 (*C*₅H₅), 127–134 (phenyl carbons), 305.2 (t, ²J_{PC} = 16.5 Hz, *C*¹). ³¹P{¹H} NMR (CDCl₃): δ 44.5 (s, PPh₃), 105.8–109.2 (m, P(O)(OEt)₂). Anal. Calcd for [RuCoC₅₇H₅₁F₆O₉P₆]: C, 41.0; H, 5.2. Found: C, 42.0; H, 5.6.

Synthesis of $[L_{0Et}$ **Ru(PPh₃)₂Cl](I₃) (1·I₃).** To a solution of complex **1** (0.50 g, 0.42 mmol) in CH₂Cl₂ (20 mL) was added 1 equiv of I₂ (0.11 g, 0.42 mmol), and the resulting mixture was stirred in air at room temperature overnight. The solvent was pumped off and the residue washed with ether. Recrystallization from CH₂Cl₂/ether afforded dark brown blocks (yield 0.53 g, 80%). MS (CI): m/z 1196 (M – I₃)⁺. Anal. Calcd for [RuCoC₅₃H₆₅ClI₃O₉P₅]: C, 40.3; H, 4.1; I, 24.2. Found: C, 41.3; H, 4.5; I, 23.7.

Synthesis of $[L_{0Et}Ru(PPh_3)_2Cl]PF_6$ (1·PF₆). To a solution of complex 1·I₃ (0.50 g, 0.32 mmol) in acetone (20 mL, 10:1) was added silver(I) *p*-toluenesulfonate (70 mg, 0.43 mmol), and the mixture was stirred at room temperature for 20 min, during which time a copious amount of silver iodide precipitated. The solvent was pumped off, and the residue was extracted with MeOH. Addition of NH₄PF₆ (70 mg) and cooling to 0 °C afforded purple crystals (yield 0.30 g, 70%). μ_{eff} (Evans method,¹⁵ CHCl₃): 1.8 $\mu_{\rm B}$. Anal. Calcd for [RuCo-C₅₃H₆₅ClF₆O₉P₆]: C, 47.4; H, 4.9. Found: C, 47.5; H, 4.9.

X-ray Diffraction Measurements. A summary of crystallographic data and experimental details are given in Table 1. Data for 1, 2, 6, and 8 were collected on a Siemens P4 diffractometer with graphite-monochromated Mo Ka radiation. Data for **1**·PF₆ were collected on a Rigaku AFC7R diffractometer with graphite-monochromated Mo K α radiation. All the structures were solved by direct methods and refined by fullmatrix least-squares analyses. The unit cell of complex 6 was unusually large, and solution revealed four independent molecular cations per asymmetric unit along with hexafluorophosphate counterions; three of these were at general positions, and two sat on special positions, contributing to half of the asymmetric unit. A single molecule of solvent, either hexane or ether, which appeared to be disordered, was also located. The large size of the structure precluded anisotropic refinement of all atoms, though atoms heavier than C were refined anisotropically. The final discrepancy index was ca. 7.0% with the largest residual peaks located in the region of the solvent. For complex 8, solution was more straightforward. The asymmetric unit contained one molecular cation and one ordered hexafluorophosphate sitting on an inversion center. The other a general site and appeared highly disordered, possibly due to site overlap with methanol solvent. Again these problems limited the quality of the structure and the final *R* value was similar to that of **6**. Selected bond lengths and angles for 1, 2, 6, 8, and $1 \cdot PF_6$ are listed in Tables 2-6, respectively. Atomic coordinates are given in the Supporting Information.

(15) Evans, D. J. Chem. Soc. 1959, 2003.

Scheme 1^a

^{*a*} Reagents and conditions: (*i*) Ru(PPh₃)₃Cl₂, THF, reflux; (*ii*) Ru(DMSO)₄Cl₂, THF, reflux; (*iii*) Ru(CO)(PPh₃)₂Cl(CH=CHPh), CH₂Cl₂; (*iv*) PhC=CH, NH₄PF₆, CH₂Cl₂/MeOH; (*v*) 3-butyn-1-ol, NH₄PF₆, CH₂Cl₂/MeOH; (*vi*) I₂, CH₂Cl₂.

Figure 2. Perspective view of L_{OEt}Ru(PPh₃)₂Cl.

Results and Discussion

Synthesis. The syntheses of the $Ru-L_{OEt}$ complexes are summarized in Scheme 1.

Reaction of $Ru(PPh_3)_2Cl_2$ with NaL_{OEt} in THF afforded $L_{OEt}Ru(PPh_3)_2Cl$ (1), isolated as air-stable orange crystals. Figure 2 shows a diagram of the molecule; selected bond lengths and angles are given in Table 2. The mean Ru-O distance in 1 of 2.183 Å is longer than that for the $Ru^{II}-COD$ complex $[L_{OEt}Ru(COD)(OH_2)]^+$ (2.10 Å),¹⁰ apparently due to the steric bulk of PPh₃.

 Table 2. Selected Bond Lengths (Å) and Angles (deg) for LOEtRu(PPh_3)2Cl (1)

Ru(1)-Cl(1)	2.393(3)	Ru(1)-O(1)	2.203(6)
Ru(1) - O(2)	2.158(6)	Ru(1)-O(3)	2.189(6)
Ru(1)-P(4)	2.265(3)	Ru(1)-P(5)	2.269(3)
Cl(1) - Ru(1) - O(1)	86.2(2)	Cl(1) - Ru(1) - O(2)	166.1(2)
O(1) - Ru(1) - O(2)	83.5(2)	Cl(1) - Ru(1) - O(3)	87.4(2)
O(1) - Ru(1) - O(3)	84.7(2)	O(2) - Ru(1) - O(3)	82.3(2)
Cl(1) - Ru(1) - P(4)	93.1(1)	O(1) - Ru(1) - P(4)	89.7(2)
O(2) - Ru(1) - P(4)	96.2(2)	O(3) - Ru(1) - P(4)	174.4(2)
Cl(1) - Ru(1) - P(5)	94.6(1)	O(1) - Ru(1) - P(5)	174.4(2)
O(2) - Ru(1) - P(5)	94.7(2)	O(3) - Ru(1) - P(5)	89.8(2)
P(4)-Ru(1)-P(5)	95.7(1)		

The mean Ru–P distance in **1** of 2.267 Å is shorter than that in CpRu(PPh₃)₂Cl (2.336 Å),¹⁶ although the cone angle of L_{OEt} is expected to be larger than that of Cp, which is indicative of strong Ru–P π -bonding in **1**.

Substitution reactions of **1** with Lewis bases were found to be slow. No phosphine exchange was observed on treatment of **1** with PMe₃. Reaction of **1** with *t*-BuNC in toluene at 60 °C gave the monosubstituted product $L_{OEt}Ru(PPh_3)(t-BuNC)Cl$ in low yield. Reaction of **1** with NaBPh₄ or NH₄PF₆ in MeOH/THF resulted in yellow solutions, presumably containing the cation [$L_{OEt}-Ru(PPh_3)_2(MeOH)$]⁺, from which hygroscopic solids were isolated. We have not been able to obtain analytically pure samples of these hygroscopic cationic complexes. However, this cation was found to react with acetylenes to give air-stable crystalline vinylidene and carbene species (see below).

The DMSO complex $L_{OEt}Ru(DMSO)_2Cl$ (2) was synthesized similarly as for 1 by the reaction of Ru-

⁽¹⁶⁾ Bruce, M. I.; Wong, F. S.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. **1981**, 1398.

Figure 3. Perspective view of L_{OEt}Ru(DMSO)₂Cl.

Table 3. Selected Bond Lengths (Å) and Angles(deg) for LOEtRu(DMSO)2Cl (2)

Ru(1)-Cl(1)	2.362(2)	Ru(1)-S(7)	2.186(2)
Ru(1) - S(8)	2.190(2)	Ru(1)-O(1)	2.134(4)
Ru(1)-O(2)	2.107(4)	Ru(1)-O(3)	2.112(5)
Cl(1) - Ru(1) - S(7)	90.4(1)	Cl(1) - Ru(1) - S(8)	92.8(1)
S(7) - Ru(1) - S(8)	95.4(1)	Cl(1) - Ru(1) - O(1)	90.8(1)
S(7) - Ru(1) - O(1)	87.7(1)	S(8) - Ru(1) - O(1)	175.2(1)
Cl(1) - Ru(1) - O(2)	174.3(1)	S(7) - Ru(1) - O(2)	93.4(1)
S(8) - Ru(1) - O(2)	91.1(1)	O(1) - Ru(1) - O(2)	85.0(2)
Cl(1) - Ru(1) - O(3)	87.7(1)	S(7) - Ru(1) - O(3)	176.2(1)
S(8) - Ru(1) - O(3)	87.9(1)	O(1) - Ru(1) - O(3)	89.0(2)
O(2) - Ru(1) - O(3)	88.3(2).		

(DMSO)₄Cl₂ with NaL_{OEt}. Figure 3 shows a perspective view of **3**; selected bond lengths and angles are given in Table 3. The Ru–Cl distance in **2** of 2.362(2) Å is similar to that in **1**. However, the Ru–O distances in **2** (2.118 Å) are slightly shorter than those in **1**, obviously because of the smaller steric demand of DMSO compared with PPh₃. The two DMSO ligands in **2** bind to Ru on the S atom with a mean Ru–S distance of ca. 2.188 Å, which is shorter than those in Ru(DMSO)₄Cl₂ (d(Ru–S_{trans to O}) = 2.252(1) Å)¹⁷ and (η ⁵-C₅-Me₅)Ru(DMSO)₂Cl (2.302(2) and 2.299(2) Å).¹⁸

σ-Vinyl Complex. Interaction of Ru(PPh₃)₂(CO)Cl-(CH=CHPh) with NaL_{OEt} afforded the σ -vinyl complex L_{OEt}Ru(PPh₃)(CO)(CH=CHPh) (3). The IR spectrum of **3** shows ν_{CO} at 1918 cm⁻¹, which is lower than that for TpRu(PPh₃)(CO)(CH=CH₂) (1927 cm⁻¹),⁷ⁱ in line with the stronger donor strength of L_{OEt} relative to Tp. The $^{2}J_{\rm HH}$ value for the vinyl protons (H_{α} and H_{β}) of 15.9 Hz indicates that they are trans to each other. H_a was also found to couple with the phosphorus of PPh₃ (${}^{3}J_{PH} =$ 3.06 Hz). Treatment of **3** with HBF_4 in Et_2O resulted in the precipitation of a yellow solid, identified as LOEt- $Ru(PPh_3)(CO)(\eta^2-PhCH=CH)]BF_4$ (4). The ¹H NMR spectrum of **4** shows a doublets of doublets at δ 5.91 $(cis J_{HH})$ and $trans J_{HH}$ of 13.9 and 9.1 Hz, respectively), assignable to the α -olefinic proton of coordinated styrene. The signals for the β -olefinic protons of styrene were found to overlap with those for the methylene protons of L_{OEt}. This η^2 -styrene complex was presumably formed via the protonation of the β -carbon followed by a 1,2-hydride shift (Scheme 2). A similar mechanism has been proposed for the protonation of the related iron σ-vinyl complex CpFe(CO)(PPh₃)(CH=CHMe).¹⁹

The styrene ligand in complex 4 was found to be labile in solution and can be displaced readily. Over a period of 1 day, the ¹H NMR spectrum of **4** in wet CD₂Cl₂ showed that the signals for 4 dropped gradually and a new species along with free styrene was formed concomitantly. This new species, presumably the cationic aquo complex [L_{OEt}Ru(PPh₃)(CO)(OH₂)]BF₄ (5), could be obtained as an orange solid on recrystallization of 4 from wet CH_2Cl_2 /hexane for 2 days. The presence of an aquo ligand is supported by FAB mass spectroscopy, which shows the molecular ion for [L_{OEt}Ru(PPh₃)(CO)(OH₂)]⁺. It may be noted that aquo complexes of the TpRu^{II} system are well-documented and some have been structurally characterized recently.^{7g} The IR spectrum of 5 displays ν_{CO} at 1954 cm⁻¹, which is lower than that for 4, indicating that the latter complex is more electron deficient because of the presence of a π -accepting styryl group.

Vinylidene Complex. The vinylidene complex $[L_{OEt}-Ru(PPh_3)_2(=C=CHPh)](PF_6)$ (6) was prepared by the reaction of 1 with PhCCH in the presence of NH₄PF₆. The formation of the vinylidene most likely involves the initial slippage of an η^2 to an η^1 binding of PhC=CH,

⁽¹⁷⁾ Mercer, A.; Trotter, J. J. Chem. Soc., Dalton Trans. 1975, 2480.
(18) Wang, M. H.; Kolle, U. J. Organomet. Chem. 1993, 453, 127.

⁽¹⁹⁾ Bly, R. S.; Bly, R. K. J. Chem. Soc., Chem. Commun. 1986, 1046.

Figure 4. Perspective view of the cation [L_{OEt}Ru(PPh₃)₂-(=C=CHPh)]⁺. The phenyl rings of PPh₃ are omitted for clarity.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for [L_{OEt}Ru(PPh₃)₂(=C=CHPh)]PF₆ (6)

Ru(1)-P(4A) 2.	319(5)	Ru(1)-P(5A)	3.68(4)
Ru(1)-O(1A) 2.	156(9)	Ru(1)-O(2A)	2.110(10)
Ru(1)-O(3A) 2.	156(9)	Ru(1)-C(6A)	1.80(2)
P(4A)-Ru(1)-P(5A)	98.6(2)	P(4A) - Ru(1) - O(1A) 89.1(3)
P(5A) - Ru(1) - O(1A)	172.3(3)	P(4A) - Ru(1) - O(2A) 172.4(3)
P(5A)-Ru(1)-O(2A)	85.1(3)	O(1A) - Ru(1) - O(1A)	(2A) 87.3(4)
P(4A)-Ru(1)-O(3A)	88.6(3)	P(5A) - Ru(1) - O(3A) 98.6(2)
O(1A)-Ru(1)-O(3A)	80.8(3)	O(2A) - Ru(1) - O(2A)	(3A) 84.3(4)
P(4A) - Ru(1) - C(6A)	94.3(5)	P(5A) - Ru(1) - C(6A) 87.0(5)
O(1A) - Ru(1) - C(6A)	93.1(5)	O(2A) - Ru(1) - C(6A) 87.0(5)
O(3A) - Ru(1) - C(6A)	173.3(5)	Ru(1) - C(6A) - C(6A)	7A) 173(1)
C(6A)-C(7A)-C(17A)	126(2)		

followed by a 1,2-hydride shift, as suggested by Silvestre and Hoffmann.²⁰ Figure 4 shows a diagram of the molecule; selected bond lengths and angles are given in Table 4. The mean Ru-O and Ru-P distances are 2.127 and 2.344 Å, respectively. Despite the large standard deviation, the Ru-C(vinylidene) distance in 6 of 1.80(2) Å is within the range expected for ruthenium vinylidene complexes, e.g. 1.845(7) Å for [CpRu(PMe₃)₂-(=C=CHMe)]⁺²¹ and 1.820(5) Å for [TpRu(TMED)- $(=C=CHPh)](BPh_4)$ (TMED = N, N, NN-tetramethylethylenediamine).^{7h} The Ru– C_{α} - C_{β} linkage is essentially linear (173(1)°). The C_{α} resonant signal appears as a triplet (${}^{2}J_{PC} = 21$ Hz) at ca. δ 362, which is typical for a Ru(II) vinylidene complex, e.g. δ 350 and 369.9 for [CpRu(PPh₃)₂(=C=CHPh)]^{+ 21} and [TpRu(TMED)-(=C=CHPh)](PF₆),^{7h} respectively, indicative of the carbene character of the α carbon. The α -H in **6** was found to be acidic and can be deprotonated by bases such as NaOH. Treatment of 6 with NaOH in THF/MeOH led to isolation of the σ -acetylide $L_{OEt}Ru(PPh_3)_2(C \equiv CPh)$ (7), characterized by NMR and IR spectroscopy. The IR spectrum of 7 shows an intense band at 2066 cm⁻¹ assignable to the $C \equiv C$ stretch.

Cyclic Carbene Complex. In contrast to the [CpRu-(PR₃)₂(=C=CHPh)]⁺ complexes, which react with alco-

Figure 5. Perspective view of the cation [L_{OEt}Ru(PPh₃)₂- $\{=C(CH_2)_3O\})]^+$.

Table 5. Selected Bond Lengths (Å) and Angles (deg) for $[L_{OFt}Ru(PPh_3)_{3} = C(CH_{3})_{3}O$]PF₆ (8)

(8/1(JE(3/2(-(2)3-)]	
Ru(1)-P(4)	2.337(3)	Ru(1)-P(5)	2.333(4)
Ru(1)-O(1)	2.18(1)	Ru(1)-O(2)	2.205(8)
Ru(1)-O(3)	2.140(7)	Ru(1) - C(6)	1.870(13)
P(4)-Ru(1)-P(5)	98.0(1)	P(4) - Ru(1) - O(1)	93.6(2)
P(5)-Ru(1)-O(1)	168.3(2)	P(4) - Ru(1) - O(2)	89.3(2)
P(5)-Ru(1)-O(2)	97.5(3)	O(1) - Ru(1) - O(2)	81.3(3)
P(4) - Ru(1) - O(3)	172.5	P(5) - Ru(1) - O(3)	85.6(3)
O(1) - Ru(1) - C(6)	88.9(3)	O(2) - Ru(1) - O(3)	83.7(3)
P(4) - Ru(1) - C(6)	88.9(3)	P(5) - Ru(1) - C(6)	91.7(5)
O(1) - Ru(1) - C(6)	89.8(5)	O(2) - Ru(1) - C(6)	170.8(5)
O(3) - Ru(1) - C(6)	97.6(4)		

hols to give the alkoxycarbene species,²² there is no reaction of complex 6 with MeOH even under reflux conditions. Intermolecular nucleophilic attack on the vinylidene carbon was, however, observed. Reaction of complex 1 with 3-butyn-1-ol afforded the 2-oxacyclopentylidene complex $[L_{OEt}Ru(PPh_3)_2 = C(CH_2)_3O](PF_6)$ (8), which has been characterized by X-ray crystallography.

Figure 5 shows a perspective view of the [L_{OEt}Ru(PPh₃)₂- $\{=\dot{C}(CH_2)_3\dot{O}\}$ ⁺ cation; selected bond lengths and angles are given in Table 5. The mean Ru-O and Ru-P distances are comparable to those for 6. The Ru-C

distance of 1.87(1) Å is shorter than that for [CpRu- $(PPh_3)_2{=C(OMe)Et}]^+$ (1.93 Å)²⁴ but slightly longer than that in 6. The ¹³C NMR spectrum of 8 shows a triplet at δ 305.2 with ${}^{2}J_{PC} = 16.5$ Hz, assignable to the carbenic carbon. A similar chemical shift has been

reported for the Cp analog [CpRu(PPh₃)₂{C(CH₂)₃O}]⁺ $(\delta 300.5)$ ²⁵ The signals for the remaining carbons of the oxacyclopentyl ring can be assigned with reference to the Cp analog.24

⁽²⁰⁾ Silvestre, J.; Hoffmann, R. *Helv. Chim. Acta* 1985, *68*, 1461.
(21) Bruce, M. I.; Wallis, R. C. *J. Organomet. Chem.* 1978, *161*, C1.

⁽²²⁾ Bruce, M. I.; Wong, F. S.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1982, 2203.
(23) Bruce, M. I.; Swincer, A. G. Aust. J. Chem. 1980, 33, 1471.
(24) Bruce, M. I.; Humphrey, M. G.; Snow, M. R.; Tiekink, E. R. T. J. Organomet. Chem. 1986, 314, 213.

⁽²⁵⁾ Bruce, M. I.; Swincer, A. G.; Thomson, B. J.; Wallis, R. C. Aust. J. Chem. 1980, 33, 2065.

Figure 6. Perspective view of the cation $[L_{OEt}Ru(PPh_3)_2-Cl]^+$.

Table 6. Selected Bond Lengths (Å) and Angles (deg) for [L_{OEt}Ru(PPh₃)₂Cl]PF₆ (1·PF₆)

Ru(1)-Cl(1)	2.300(3)	Ru(1)-P(4)	2.372(3)
Ru(1)-P(5)	2.388(3)	Ru(1)-O(1)	2.128(8)
Ru(1)-O(2)	2.097(7)	Ru(1)-O(3)	2.059(8)
$\begin{array}{c} Cl(1)-Ru(1)-P(4)\\ Cl(1)-Ru(1)-O(1)\\ Cl(1)-Ru(1)-O(3)\\ P(4)-Ru(1)-O(1)\\ P(4)-Ru(1)-O(3)\\ P(5)-Ru(1)-O(2)\\ O(1)-Ru(1)-O(2)\\ O(2)-Ru(1)-O(3)\\ \end{array}$	$\begin{array}{c} 88.3(1)\\ 88.0(2)\\ 171.5(2)\\ 172.6(2)\\ 97.1(2)\\ 172.6(2)\\ 87.5(3)\\ 82.7(3)\end{array}$	$\begin{array}{c} Cl(1)-Ru(1)-P(5)\\ Cl(1)-Ru(1)-O(2)\\ P(4)-Ru(1)-P(5)\\ P(4)-Ru(1)-O(2)\\ P(5)-Ru(1)-O(1)\\ P(5)-Ru(1)-O(3)\\ O(1)-Ru(1)-O(3)\\ \end{array}$	95.2(1) 91.2(2) 97.6(1) 86.2(2) 89.1(2) 90.5(2) 85.6(8)

Ruthenium(III) Complexes. Interaction of complex 1 with stoichiometric I₂ afforded the cation [L_{OEt}- $Ru(PPh_3)_2Cl^+$ (1⁺) in good yield, isolated as the I₃ salt. Anion metathesis of $1 \cdot I_3$ with PF₆ afforded $1 \cdot PF_6$, which has been characterized by X-ray crystallography. Figure 6 shows a perspective view of 1^+ ; selected bond lengths and angles are given in Table 6. The mean Ru-O, Ru-P, and Ru-Cl distances are 2.095, 2.380, and 2.300(3) Å, respectively. As expected, the Ru–O and Ru–Cl distances in 1^+ are shorter than those for the Ru(II) congener 1. Interestingly, however, the Ru–P distances in 1^+ were found to be longer than that in 1. This may be rationalized by the fact that Ru(II) forms a stronger π -bond with PPh₃ than the Ru(III) counterpart. This difference is particularly prominent for complexes of L_{OEt} , which is a strong π -donor ligand. Consistent with this bonding picture, the PPh₃ in $\mathbf{1}^+$ is more substitutionally labile than the Ru(II) congener. 1.PF₆ was found to undergo substitution reactions with pyridine and 2,2'-bipyridine in THF/MeOH. Reactions of 1⁺ with RLi or LiOR, however, led to a reduction of Ru(III) to Ru(II) and formation of complex 1.

Figure 7. Cyclic voltammogram of $L_{OEt}Ru(PPh_3)_2Cl$ at a glassy-carbon electrode in CH_2Cl_2 with 0.1 M [*n*-Bu₄N]PF₆ as supporting electrolyte (scan rate 100 mV s⁻¹).

Electrochemistry. The electrochemistry of the Ru– L_{OEt} complexes in CH₂Cl₂ solutions has been studied by cyclic voltammetry. The cyclic voltammogram (CV) of **1** exhibits a reversible couple at -0.021 V assignable to the metal-centered Ru(III/II) couple (Figure 7). This assignment is confirmed by the fact that oxidation of **1** gives the well-defined Ru(III) cation **1**⁺, which shows a CV identical with that for **1**. Under the same conditions, the Ru(III/II) potential for CpRu(PPh₃)₂Cl was determined to be 0.451 V vs Cp₂Fe^{+/0}. This demonstrates that π -donating L_{OEt} is more capable of stabilizing the Ru(III) state than Cp. The Ru(III/II) couple for **2** (0.386 V) is more anodic than that for **1**, suggesting that DMSO is a stronger π -acid than PPh₃.

Summary. The first ruthenium vinylidene and carbene complexes containing the π -donating oxygen tripod ligand L_{OEt} have been isolated. On the basis of electrochemical, structural, and IR spectroscopic data, it is evident that L_{OEt} is a stronger donor than Cp and, as a result, $L_{OEt}Ru^{III}$ complexes are more easily accessible than the CpRu^{III} analogs. Furthermore, the $L_{OEt}Ru^{II}$ fragment is very electron-rich and tends to form strong bonds with π -acid ligands, suggesting that $Ru-L_{OEt}$ complexes are potentially useful in homogeneous catalysis. The study of the catalytic activities of these complexes is under investigation.

Acknowledgment. Support from The Hong Kong University of Science and Technology and The Hong Kong Research Grants Council is gratefully acknowledged.

Supporting Information Available: Listings of calculated atomic coordinates, bond lengths and angles, and thermal parameters for complexes **1**, **2**, **6**, **8**, and $1 \cdot \text{PF}_6$ (98 pages). Ordering information is given on any masthead page.

OM9701130