Vinylidene-, Alkynyl-, and *trans*-Bis(alkynyl)ruthenium **Complexes.** Crystal Structure of trans- $[Ru(NH_3)(C \equiv C - Ph)(Ph_2PCH_2CH_2PPh_2)_2]PF_6$

Daniel Touchard,*^{,†} Pierre Haquette,[†] Salaheddine Guesmi,[‡] Luc Le Pichon,[†] Alain Daridor,[†] Loïc Toupet,[§] and Pierre H. Dixneuf^{*,†}

Laboratoire de Chimie de Coordination et Catalyse, UMR 6509, Campus de Beaulieu, Université de Rennes, 35042 Rennes, France, Laboratoire de Chimie de Coordination et Analytique, Faculté des Sciences, Université Chouaid Doukkali, B. P. 20, El-Jadida, Morocco, and Groupe Matière Condensée et Matériaux, UMR 6626, Campus de Beaulieu, Université de Rennes, 35042 Rennes, France

Received April 29, 1997[®]

A variety of vinylidene–ruthenium complexes $[trans-Ru=C=CHR(Cl)(dppe)_2]PF_6$ (2) are obtained by reaction of $RuCl_2(dppe)_2$ (1) with terminal alkynes and $NaPF_6$. On treatment with a base, complexes **2** afford the alkynyl-ruthenium derivatives trans-Ru-C=C-R(Cl)- $(dppe)_2$ (3). *trans*-Ru(C=CR)₂(dppe)₂ 4 are prepared under mild conditions *via* the reaction of RuCl₂(dppe)₂ with terminal alkynes HC=C-R (R = Ph, ⁿBu, SiMe₃, C₁₀H₂₁, CH₂OSiMe₃, CH₂OMe) in the presence of an excess amount of NaPF₆ and NEt₃, whereas *trans*-Ru(C=CH)₂- $(dppe)_2$ (5) was obtained directly from $HC \equiv C - SnBu_3$ and precursor 1. In contrast, unsymmetrically substituted complexes trans-Ru(C \equiv CR¹)(C \equiv CR²)(dppe)₂ (**6**) were built from the vinylidenes $\mathbf{2}$ in the presence of another alkyne, NaPF₆, and NEt₃. On protonation with $NH_4^+PF_6^-$, the bis(alkynyl) derivatives **4** lead to the release of RC=CH and the formation of trans-[Ru(NH₃)(C=CR)(dppe)₂]PF₆ complexes 7. The structure of trans-[Ru(NH₃)- $(C \equiv CC_6H_5)(Ph_2PCH_2CH_2PPh_2)|PF_6$ (7a) has been determined by X-ray diffraction.

Introduction

Carbon-rich organometallics, especially those containing σ -alkynyl-metal linkages, are attracting interest since they allow both the connection of the metal to functional groups and the electronic communication of the latter to the metal through the $C \equiv C$ bond(s). σ -Alkynyl-metal derivatives associated with functional groups contain specific properties similar to those in liquid crystals¹ or for use in nonlinear optics.^{2,3} They are also used to generate carbon-rich oligomers⁴ or metal containing polymers^{3,5} and to produce bimetallic systems with carbon bridges^{6,7} and mixed-valence systems.⁸ In addition alkynyl-metal complexes have

[†] Laboratoire de Chimie de Coordination et Catalyse.

[‡] Laboratoire de Chimie de Coordination et Analytique.

[§] Groupe Matière Condensée et Matériaux.

[®] Abstract published in Advance ACS Abstracts, July 15, 1997.

^{(1) (}a) Takahashi, S.; Takai, Y.; Morimoto, H.; Sonogashira, K. J. *Chem. Soc., Chem. Commun.* **1984**, 3. (b) Altmann, M.; Enkelmann, V.; Lieser, G.; Bunz, U. H. F. *Adv. Mater.* **1995**, *7*, 726. (c) Dembek, A. A.; Burch, R. R.; Feiring, A. E. *J. Am. Chem. Soc.* **1993**, *115*, 2087. (d) Bunz, U. H. F. Angew. Chem., Int. Ed. Engl. 1994, 33, 1073. (e) Kaharu, T.; Matoubara, H.; Takahashi, S. *J. Mater. Chem.* **1992**, *2*, 43. (f) Bruce, D. W.; Marder, T. B. *J. Chem. Soc., Dalton Trans.* **1995**, 317.

^{(2) (}a) Marder, S. R. Inorganic Materials; Bruce, D. W., O'Hare, D., Eds.; Wiley: Chichester, 1992; p 136. (b) Long, N. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 21. (c) Whittall, I. R.; Humphrey, M. G.; Persoons, A.; Houbrechts, S. Organometallics 1996, 15, 1935. (d) Whittall, I. R.; Humphrey, M. G.; Houbrechts, S.; Persoons, A.;

<sup>Wintan, T. R., Humphrey, M. G., Houbrechts, S., Fersons, A.,
Hockless, D. C. R. Organometallics 1986, 15, 5738.
(3) (a) Marder, T.; Fyfe, H.; Mlekuz, M.; Stringer, G.; Taylor, N.
Inorg. Organomet. Polym. Spec. Prop. 1992, 206, 331. (b) Non-linear
Optical and Electron Active Polymers, Prasad, P. N., Ulrich, D. R., Eds.;</sup> Plenum: New York, 1988.

⁽⁴⁾ Diederich, F.; Rubin, Y. Angew. Chem., Int. Ed. Engl. 1992, 31, 1101

^{(5) (}a) Hagihara, N.; Sonogashira, K.; Takahashi, S. *Adv. Polym. Sci.* **1981**, *41*, 149. (b) Takahashi, S.; Morimoto, H.; Murata, E.; Kataoka, S.; Sonogashira, K.; Hagihara, N. *J. Polym. Sci., Polym. Chem. Ed.* **1982**, *20*, 565. (c) Markwell, R. D.; Butler, I. S.; Kakkar, A. K.; Khan, M. S.; Al-Zakwani, Z. H.; Lewis, J. Organometallics **1996**, *15*, 2331. (d) Faulkner, C. W.; Ingham, S. L.; Khan, M. S.; Lewis, J.; Long, N. J.; Raithby, P. R. *J. Org. Chem.* **1994**, *482*, 139. (e) Lavastre, O.; Even, M.; Dixneuf, P. H.; Pacreau, A.; Vairon, J. P. Organometallics **1996**, *15*, 1520 1996. 15. 1530.

^{(6) (}a) Brady, M.; Weng, W.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. **1994**, 2655. (b) Weng, W.; Ramsden, J. A.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. **1993**, 115, 3824. (c) Weng, W. Q.; Bartik, T.; Brady, M.; Bartik, B.; Ramsden, J. A.; Arif, A. M.; Gladysz, W. J. A. J. Am. Chem. Soc. **1995**, *117*, 11922. (d) Brady, M.; Weng, W.; Zhou, Y.; Seyler, J. W.; Amoroso, A. J.; Arif, A. M.; Böhme, M.; Frenking, G.; Gladysz, J. A. J. Am. Chem. Soc. **1997**, *119*, 775. (e) Yam,

V. W.; Lau, V. C.; Cheung, K. Organometallics 1996, 15, 1740.
 (7) (a) Sato, M.; Mogi, E.; Katada, M. Organometallics 1995, 14, 4837.
 (b) Wiedemann, R.; Fleischer, R.; Stalke, D.; Werner, H. Organometallics 1997, 16, 866. (c) Jia, G.; Ping Xia, H.; Fung Wu, W.; Sang Ng, W. Organometallics **1996**, *15*, 3634. (d) Colbert, M. C. B.; Lewis, J.; Long, N. J.; Raithly, P. R.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 1997, 99. (e) Wong, A.; Kang, P. C. W.; Tagge, C. D.; Leon, D. R. Organometallics **1990**, *9*, 1992. (f) Arriman, A.; Ziessel, R. J. Chem. Soc., Chem. Commun. **1996**, 1707. (g) Guesmi, S.; Touchard, D.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. **1996**, 2773. (h) Coat, F.; Lapinte, C. *Organometallics* **1996**, *15*, 477. (i) Mahias, V.; Cron, S.; Toupet, L.; Lapinte, C. *Organometallics* **1996**, *15*, 5399. (j) Lavastre, O.; Plass, J.; Bachmann, P.; Guesmi, S.; Moinet, C.; Dixneuf, P. H. Organometallics 1997, 16, 184.

^{(8) (}a) Sato, M.; Hayashi, Y.; Kumakura, S.; Shimizu, N.; Katada, M.; Kawata, S. *Organometallics* **1996**, *15*, 721. (b) Bruce, M. I.; Ke, M.; Low, P. J. Chem. Commun. 1996, 2405.

^{(9) (}a) Touchard, D.; Haquette, P.; Daridor, A.; Toupet, L.; Dixneuf, P. H. *J. Am. Chem. Soc.* **1994**, *116*, 11157. (b) Lass, R. W.; Steinert, P.; Wolf, J.; Werner, H. *Chem. Eur. J.* **1996**, *2*, 1. (c) Roth, G.; Fischer, H. Organometallics 1996, 15, 1139.

<sup>H. Organometallics 1996, 15, 1139.
(10) (a) Hayashi,Y.; Osawa, M.; Kobayashi, K.; Wakatsuki, Y. Chem.</sup> Commun. 1996, 1617. (b) Yi, C. S.; Liu, N. Organometallics 1996, 15, 3968. (c) Field, L. D.; George, A. V.; Purches, G. R.; Slip, I. H. M. Organometallics 1991, 11, 3019. (d) McMullen, A. K.; Selegue, J. P.; Wang, J. G. Organometallics 1991, 10, 3421. (e) Schäfer, M.; Mahr, N.; Wolf, J.; Werner, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 1315. (11) Albertin, G.; Antoniutti, S.; Bordignon, E.; Cazzaro, F.; Ianelli, S. Palizzi C. Organometallics 1995, 15, 4114.

⁽¹¹⁾ Aber Hil, G., Antoinatti, S., Bonghon, E., Cazzalo, F., Tahen,
S.; Pelizzi, G. Organometallics 1995, 15, 4114.
(12) (a) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.;
Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453. (b) Wakatsuki, Y.;
Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J. Am. Chem. Soc. 1991, 113, 9604. (c) Trost, B. M.; Flygare, J. A. J. Am. Chem. Soc. 1992. 114. 5476.

Bis(alkynyl)ruthenium Complexes

recently been shown to give access to metallocumulenes,⁹ favor selective $C-\tilde{C}$ coupling,^{10–12a} and promote catalytic reactions, especially via their corresponding vinylidene derivatives.^{12,13}

These properties motivate the selective building of alkynyl-metal complexes and unsymmetrically substituted bis(alkynyl)-metal derivatives. The σ -alkynylmetal complexes are usually made by substitution of metal halides by classical alkynyl derivatives of Li, Mg, or Cu^{11,14} or more efficiently with an alkynyltin derivative and palladium catalysts.¹⁵ The metal activation of terminal alkynes into vinylidene-metal complexes is a well-known process,¹⁶⁻¹⁹ and the easy deprotonation of the latter may constitute a good method to produce (σ alkynyl)ruthenium metal complexes.¹⁹ Following our preliminary work,²⁰ we now (i) report the synthesis of new (vinylidene)ruthenium and (alkynyl)ruthenium complexes, (ii) report the selective formation of transbis(alkynyl)ruthenium derivatives, symmetrically substituted directly from RuCl₂(Ph₂PCH₂CH₂PPh₂)₂ (RuCl₂- $(dppe)_2$; 1) and unsymmetrically substituted from vinylidene derivatives, and (iii) show that the trans-Ru- $(C \equiv CR)_2(dppe)_2$ precursors can be used for the preparation of new mixed ammonia-alkynylruthenium complexes.

Results and Discussion

Synthesis of Ruthenium-Vinylidene Complexes **2.** The reaction of *cis*-RuCl₂(dppe)₂²¹ (1) in dichloromethane with 2 equiv of (trimethylsilyl)acetylene, at room temperature, in the presence of 2 equiv of $NaPF_6$ afforded the yellow complex 2a in 87% yield (Scheme 1). The structure of **2a** corresponds to the *trans*-chloro-(vinylidene)ruthenium complex, as indicated in NMR by the equivalence of the four phosphorous nuclei, the low-frequency resonance as a quintet of the (Ru=C) carbon nucleus (δ = 349.9 ppm, ${}^{\bar{2}}J_{PC}$ = 13 Hz), and the =CH₂ carbon signal as a triplet at δ = 92.4 ppm, ¹J_{CH} = 165 Hz). This reaction corresponds to the activation of the terminal alkyne into the vinylidene with subsequent desilylation.²²

(18) (a) Le Bozec, H.; Ouzzine, K.; Dixneuf, P. H. Organometallics **1991**, *10*, 2768. (b) Devanne, D.; Dixneuf, P. H. J. Organomet. Chem. 1990. 390. 371.

Complex 1 was also reacted with several terminal alkynes under the same conditions, and *trans*-chloro-(vinylidene)ruthenium complexes 2b-e were isolated in 77-86% yields and characterized by elemental analysis and NMR (Scheme 1). The vinylidenes 2a-e are air stable and do not react with methanol, as it was observed to occur by activation of the same alkynes with RuCl₂(PR₃)(arene) derivatives to give the carbene complexes [Ru=C(OMe)CH₂R(Cl)(PR₃)(arene)]PF₆.¹⁸ This is likely due to the steric hindrance of the four phenyl groups of the dppe ligands around the carbon C_1 in 2 and to the electron-donor character of the (dppe)₂ClRu⁺ moiety, which makes the vinylidene less electrophilic than the (arene)(PR₃)ClRu⁺ moiety despite its cationic nature.

All of these complexes **2** show a low-field quintet in the ¹³C NMR in the range $\delta = 358-327$ ppm (Ru=C) with *cis*-P,C coupling (${}^{2}J_{PC} \approx 13$ Hz) and a Ru=C=CH quintet in the ¹H NMR at $\delta \approx 3.00$ ppm (⁴*J*_{PH} = 3 Hz). This proton is clearly at high field as compared to other ruthenium vinylidene derivatives.^{23–25}

The activation of the alkyne into a vinylidene by complex **1** in the presence of $NaPF_6$ is expected to take place by initial formation of the 16-electron species $RuCl(dppe)_2^+PF_6^-$, which has already been characterized,²⁶ followed by η^2 -coordination of the alkyne and an intramolecular 1,2-shift of the terminal hydrogen²⁷ or by C-H bond oxidative addition to the 16-electron ruthenium(II) intermediate to generate a ruthenium-(IV) moiety, with subsequent migration of the (RuH) hydride to the β carbon, as observed with the more electron-rich and bulky complex [RuCl(ⁱPr₂PCH₂CH₂-PiPr₂)(C₅Me₅)].²⁸

Synthesis of Ruthenium-Acetylide Complexes 3. Complexes 2 in dichloromethane were easily deprotonated with a base such as Et₃N or DBU (1,8-diazabicyclo[5.4.0]-undec-7-ene) at room temperature. Complexes 3 were isolated after chromatography on alumina and identified as the trans-acetylide ruthenium(II) complexes 3a-e, obtained in 64-67% yields (Scheme 1). The acetylide complexes show, in the infrared, a C=C absorption at 1933 cm⁻¹ for **3a**, 1952 cm⁻¹ for **3e**, and 2094 cm⁻¹ for **3b**. The *trans*-position of the chloro and acetylide ligands is indicated by the equivalence of the phosphorus nuclei in the ³¹P NMR spectrum and the ¹³C NMR spectrum shows one quintet for Ru-C=and one singlet for \equiv CR carbon nuclei (Table 1).

Synthesis of Symmetrical Bis(acetylide) Ruthenium Complexes 4–5. It was not found possible or easily feasible to directly introduce two alkynyl groups on the Ru(dppm)₂ moiety from the complex RuCl₂-(dppm)₂,¹⁹ which is isoelectric to derivative **1**. However, $RuCl_2(dppm)_2$ has been shown to give *trans*- $Ru(C \equiv C -$ Ph)₂(dppm)₂ on reaction with the stannyl alkyne

⁽¹³⁾ Rappert, T.; Yamamoto, A. Organometallics 1995, 13, 4984. (14) (a) Kim, P. J.; Masai, H.; Songashira, K.; Hagihara, N. Inorg. Nucl. Chem. Lett. **1970**, 6, 181. (b) Wong, A.; Kang, P. C. W.; Tagge, C. D.; Leon, D. R. Organometallics **1990**, 9, 1992. (c) Brady, M.; Weng, W.; Zhou, Y.; Seyler, J. W.; Amoroso, A. J.; Arif, A. M.; Bohme, M.; Frenking, G.; Gladysz, J. A. *J. Am. Chem. Soc.* **1997**, *119*, 775. (d) Bruce, M. I.; Ke, M.; Low, P. I. *J. Chem. Soc., Chem. Commun.* **1996**, 2405

^{(15) (}a) Crescenzi, R.; Sterzo, C. L. Organometallics 1992, 11, 4301. (b) Cianfriglia, P.; Narducci, V.; Sterzo, C. L.; Viola, E.; Bocelli, G.; Kodenkandath, T. A. *Organometallics* **1996**, *15*, 5220 and references therein.

^{(16) (}a) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983 22, 59. (b) Antonova, A. B.; Ioganson, A. A. Russ. Chem. Rev. 1989, 58, 593. (c) Bruce, M. I. *Chem. Rev.* **1991**, *91*, 197.
 (17) (a) Bianchini, C.; Peruzzini, M.; Romerosa, A.; Zanobini, F.

Organometallics 1995, 14, 3152. (b) Bianchini, C.; Innocenti, P.; Masi, D.; Peruzzini, M.; Romerosa, A.; Zanobini, F. J. Chem. Soc., Chem. Commun. 1994, 2219.

⁽¹⁹⁾ Touchard, D.; Haquette, P.; Pirio, N.; Toupet, L.; Dixneuf, P. (19) Touchard, D., Haquette, T., Tax, T., Tax, T., Tay, T., Toupet,
 H. Organometallics 1993, 12, 3132.
 (20) Touchard, D.; Morice, C.; Cadierno, V.; Haquette, P.; Toupet,
 (20) Touchard, D.; Morice, C.; Cadierno, V.; Haquette, P.; Toupet,

L.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. **1994**, 859. (21) Chaudret, B.; Commenges, G.; Poilblanc, R. J. Chem. Soc.,

Dalton Trans. 1984, 1635.

^{(22) (}a) Rahm, A.; Wulff, W. D.; Rheingold, A. L. Organometallics 1993, 12, 597. (b) Hartbaum, C.; Roth, G.; Fisher, H. Chem. Ber. 1997, 130. 479.

⁽²³⁾ δ (Ru=C=CH)= 5.66 ppm in [Ru=C=CHPh(Cl)(PMe_3)(C_6-CHPh(Cl)(PMe_3)))(C_6-CHPh(Cl)(PMe_3))(C_6-CHPh(Cl)(PMe_3)))(C_6-CHPh(Cl)(PMe_3)))(C_6-CHPh(Cl)(PMe_3)))(C_6-CHPh(Cl)(PMe_3)))(C_6-CHPh(Cl)(PMe_3)))(C_6-CHPh(Cl)(PMe_3)))(C_6-CHPh(Cl)(PMe_3)))) Me₆)]PF₆,^{18a} 5.42 ppm in [Ru=C=CHPh(PMe₂Ph)₂C₅Me₅)]PF₆,²⁴ or 5.22 M(6)]PF6, ... 3.42 ppm in [Ru=C=CHPn(PMe2Ph)2C5M(6)]PF6, ... 05.22 in [Ru=C=CHPh(PPh₃)₂(η^{3} -C₃H₇)]PF6, ... 25 This high-field shift is likely due to the presence of four phenyl groups neighboring the vinylidene ligand as it is found in [Ru=C=CHPh(Cl)(dppm)₂]PF6 (δ = 3.05 ppm).¹⁹ (24) Le Lagadec, R.; Roman, E.; Toupet, L.; Muller, V.; Dixneuf, P.

 ⁽²⁵⁾ Gamasa, M. P.; Gimeno, J.; Martin-Vaca, B. M.; Borge, J.;
 (25) Gamasa, M. P.; Gimeno, J.; Martin-Vaca, B. M.; Borge, J.;

⁽²⁵⁾ Gamasa, M. P.; Gimeno, J.; Martin-Vaca, B. M.; Borge, J.;
Garcia-Granda, S.; Perez-Carreno, E. Organometallics 1994, 13, 4045.
(26) Chin, B.; Lough, A. J.; Morris, R. H.; Schweitzer, C. T.;
D'Agostino, C. Inorg. Chem. 1994, 33, 6278.
(27) Sylvestre, J.; Hoffmann, R. Helv. Chim. Acta 1985, 68, 1461.
(28) de los Rios, I.; Jimenez Tenorio, M.; Carmen Puerta, M.;
Valerga, P. J. Chem. Soc., Chem. Commun. 1995, 1757.

Published on August 5, 1997 on http://pubs.acs.org | doi: 10.1021/om9703620 Downloaded by CARLI CONSORTIUM on June 30, 2009

Table 1. Selected NMR Data (δ , ppm) for **Compounds 3–5**

		$^{13}C\{^{1}H\}$	
	$^{31}P\{^1H\}$	C1	C2
3a	49.28	131.1	100.6
3b	49.81	97.8	110.2
3c	49.44	124.4	113.6
3d	49.44	а	123.7
3e	48.56	а	129.3
4a	53.78	131.98	116.88
4b	54.36	108.1	113.1
4 c	53.43	154.9	121.4
4d	55.46	108.1	113.3
4e	55.21	119.1	111.7
5	52.96	121.7	102.7

^a C masked by phenyl carbons.

PhC=CSnMe₃ in the presence of CuI,²⁹ whereas Ru-(C≡CPh)₂(PMe₃)₄ was obtained directly from RuCl₂- $(PMe_3)_4$ and $PhC \equiv CSnMe_3$ without the assistance of

copper iodide.³⁰ It is noteworthy that other bis(acetylide) ruthenium derivatives were obtained in more drastic conditions, such as from RuCl₂(Et₂PCH₂CH₂-PEt₂)₂, which led to a variety of *trans*-Ru(C=CR)₂(Et₂-PCH₂CH₂PEt₂)₂ complexes by reaction with MeONa/ MeOH in the presence of alkyne HC≡CR.³¹ From $RuCl_2(R_2PCH_2CH_2PR_2)_2$ (R = Me, Et) on reduction with sodium in isopropyl alcohol, a mixture of cis- and transdihydrides Ru(H)₂(R₂PCH₂CH₂PR₂)₂ was obtained and reacted with terminal alkynes to give the complexes trans-Ru(C=CR)₂(R₂PCH₂CH₂PR₂)₂.³¹

The substitution of the two chlorides of complex 1 was attempted under these conditions, leading to both the formation of the monovinylidene complex 2 and its deprotonation giving 3. Thus, complex 1 was reacted with an excess (3 equiv) of phenylacetylene, NaPF₆, and NEt₃ in dichloromethane at room temperature for 4 h

⁽²⁹⁾ Faulkner, C. W.; Ingham, S. L.; Khan, M. S.; Lewis, J.; Long, N. J.; Raithby, P. R. *J. Organomet. Chem.* **1994**, *482*, 139.

⁽³⁰⁾ Davies, S. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. J. Organomet. Chem. 1991, 414, C51.
(31) Field, L. D.; Georges, A. V.; Hockless, D. C. R.; Purches, G. R.;

White, A. H. J. Chem. Soc., Dalton Trans. 1996, 2011.

Bis(alkynyl)ruthenium Complexes

to give the yellow *trans*-bis(alkynyl)ruthenium complex **4a** in **82**% yield (Scheme 1). It is noteworthy that this reaction *does not* take place in the absence of the NaPF₆ salt, and thus, the formation of a 16-electron ruthenium intermediate twice by displacement of the chloride ligands is an essential step in the activation process. It is likely that the alkyne on coordination is easily deprotonated either as an η^2 -ligand, as observed for (η^2 -alkyne)rhenium complexes,³² or as its tautomer, the vinylidene intermediate.

Under similar conditions, a variety of terminal alkynes led to the symmetrical bis(alkynyl) derivatives 4b-f (R¹ = ⁿBu, SiMe₃, (CH₂)₉CH₃, CH₂OSiMe₃, CH₂OMe) in 45– 80% yields (Scheme 1). Their NMR data ressemble that of monoalkynyl derivatives (Table 1), except for the PCH₂CH₂P protons which are equivalent in complexes 4 and not equivalent in complexes 2 or 3.

It should be pointed out that from (trimethylsilyl)acetylene the bis(alkynyl) derivative **4c** was obtained without desilylation, in contrast with the formation of the vinylidene complex **2a** arising from the same alkyne. This is consistent with a more reactive $(sp^2)C-Si$ bond in the cationic vinylidene intermediate.

The synthesis of the unsubstituted bis(acetylide) ruthenium derivative **5** was performed according to eq 1 by activation of the stannylalkyne HC=CSnBu₃ in dichloromethane with NaPF₆ and NEt₃, e.g., under the same conditions as the $\mathbf{1} \rightarrow \mathbf{4c}$ transformation, and **5** was obtained in 35% yield only (eq 1).

Synthesis of Unsymmetrical Bis(acetylide) Ruthenium(II) Complexes 6. Several planar or octahedral trans-bis(alkynyl)-metal complexes have been shown to have liquid crystal properties.¹ However, in order to provide such physical properties, these organometallic molecules need to be unsymmetrically substituted and contain a lipophile chain in the *trans* position of an alkynyl chain linked to a polar group alternatively in order to create a large dipolar moment and provide nonlinear optical properties;³³ two polar groups, one electron-donating and the other electronwithdrawing, have to be linked at each end of the conjugated alkynyl chains in a linear arrangement. These properties motivate the search for synthetic methods allowing the selective introduction of two different trans-alkynyl groups in a metal complex.

As it is possible to introduce two identical alkynyl groups in the *trans*-position of the Ru(dppe)₂ unit starting from complex **1** in the presence of NaPF₆, the reaction of complex **3c** with an excess of HC=C⁻ⁿBu and NaPF₆ and NEt₃ was attempted in dichloromethane. A mixture of the mixed bis(alkynyl) derivative **6a** and of the symmetrical bis(alkynyl) complex **4b** was formed

in the ratio 6a:4b = 70:30, and 6a was isolated by fractional crystallization in 40% yield (eq 2).

A more selective route was formed directly starting from the vinylidene complexes **2** by addition of a solution of 1.5 equiv of a terminal alkyne and 3 equiv of NEt₃ to a mixture of a vinylidene **2** with 1.5 equiv of NaPF₆ in dichloromethane at room temperature. Under these conditions, the mixed alkynylruthenium complexes **6**

Thus, from complex $\mathbf{2c}$ ($\mathbb{R}^1 = \mathbb{Ph}$) complexes $\mathbf{6a}$ ($\mathbb{R}^2 = \mathbb{Ph}$ and $\mathbf{6b}$ ($\mathbb{R}^2 = p$ -PhNO₂) were obtained in 47% and 45% yields. The red complexes $\mathbf{6c}$ (51%) and $\mathbf{6d}$ (47%), which contain an electron-donor or an electron-acceptor group, were made by reaction of p-O₂N-C₆H₄C=CH with **2b** and **2e**, respectively.

were formed selectively (Scheme 1).

These unsymmetrically substituted complexes **6** show, in the NMR spectra, one singlet for the four equivalent ³¹P nuclei, consistent with the *trans*-arrangement of the alkynyl groups. In the ¹³C NMR spectra, the (Ru–C=) carbon nuclei are nonequivalent and give a quintet of triplets for the ⁿBu–C=*C*–Ru and a simple quintet for the PhC=*C*–Ru carbon nuclei (**6a** = 107.0 (${}^{2}J_{PC} = 16$ Hz, ${}^{3}J_{CH} = 4$ Hz), 133.8 (${}^{2}J_{PC} = 16$ Hz)).

Preparation of Ammonia–Alkynylruthenium **Complexes 7.** The preparation of bis(alkynyl)ruthenium complexes **4** and **6** may take place *via* the formation of a vinylidene alkynylruthenium intermediate, before deprotonation. However, mixed vinylidene– alkynyl–metal complexes are still exceptions,^{10e,11} but they are likely to be formed in the head-to-head dimerization of terminal alkynes, *via* insertion of the vinylidene ligand into the σ -alkynyl carbon–ruthenium bond.^{11–13} We have attempted to produce them simply by protonation of the *trans*-bis(alkynyl)ruthenium complexes **4**, but these attempts led us to discover a new route to ammonia–ruthenium complexes.

The protonation of bis(alkynyl) complexes **4a** or **4b** with strong acids, such as HCl, HBF₄, CF₃CO₂H, takes place, but the resulting intermediate rapidly decomposes. However, when **4a** was reacted with an excess of $NH_4^+PF_6^-$ in dichloromethane, an orange compound was obtained and identified as the ammonia complex **7a** (73%) (Scheme 2). Analogously, the reaction of **4b** and **4c** with NH_4PF_6 afforded the derivatives **7b** (81%) and **7c** (73%), respectively.

The infrared and NMR spectra of the complexes **7** show the presence of the alkynyl group, the equivalence of the four ³¹P nuclei (*trans* isomer), and a resonance for the NH₃ ligand in the ¹H NMR spectra ($\delta = 0.09$ (**7a**), 0.01 (**7b**), and -0.08 (**7c**)). The structure has been ascertained by an X-ray diffraction study of the derivative **7a**.

The formation of complex 7 can be understood as the protonation with the ammonium ion NH_4^+ of the β carbon of one alkynyl chain of complex 4 to produce an unstable mixed vinylidene–alkynylruthenium interme-

⁽³²⁾ Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 923.

⁽³³⁾ Marder, T. B.; Lesley, G.; Yuan, Z.; Fyfe, H. B.; Chow, P.; Stringer, G.; Jobe, I. R.; Taylor, N. J.; Williams, I. D.; Kurtz, S. K. *ACS Symp. Ser.* **1991**, *455*, 604.

 $\mathbf{C} \equiv \mathbf{C} - \mathbf{R}^1$

PF₆

 PF_6

RuP4NC60H56PF6

 $0.30\times0.45\times0.55$

0-18, 0-28, -22 to 22

1161.05

Cc

monoclinic

14.345(7)22.079(3)

17.857(4)

104.00(3)

5488(2)

1.405

2384

4.81

294

50

60

0.1%

6396

0.09

0.07

5134 (2σ) 0.014

0.21 - 0.09

5134/819

0.12, 0.74

0.033

0.031

1.10

scan type

 $t_{\rm max}$ (for one measure) (s)

no. of reflns obsd ($I > \sigma(I)$)

R_{int} (from merging equiv refl)

variance of standards range of HKL

no. of reflns measd

R (isotropic)

R (anisotropic)

N(obs)/N(var)

final R

 $R_{\rm w}^{a}$

 $S_{\rm w}$

Fourier difference

max residual e·Å⁻³, Δ/σ

^a $W = 1/\sigma(F_0)^2 = [\sigma^2(I) + (0.04F_0^2)^2]^{-1/2}.$

Μο Κα

 $\omega/2\theta = 1$

4

Scheme 2

Figure 1.	ORTEP	diagram for	trans-[(NH	I ₃)Ru(C≡C-	-Ph)
(dppe) ₂]PF	₆ (7a).	U			

C8

C9

(C37

diate (A) and ammonia. The transformation of A takes place with the release of the vinylidene ligand, rearranging into the terminal alkyne, and the formation of the 16-electron ruthenium intermediate **B**, eager to trap the two electrons of the free ammonia. When the latter, **B**, is generated by addition of a strong acid (HBF₄ or CF_3CO_2H), it decomposes in the absence of a coordinating ligand. Ammonia-ruthenium complexes have been recently prepared by protonation of $Ru(H)_2(PR_3)_4$ complexes with NH₄PF₆. Elimination of molecular hydrogen takes place, generating a 16-electron ruthenium intermediate which coordinates the ammonia.34

The molecular structure of **7a** is shown in Figure 1. Experimental crystallographic data are given in Table 2, and a selection of bond distances and angles are given

(35) Bruce, M. I.; Humphrey, M. G.; Snow, M. R.; Tiekink, E. R. T. J. Organomet. Chem. **1986**, 314, 213.

in Table 3. The structural data shows a distorded

octahedral coordination for the ruthenium atom. The

ammonia occupies an apical position trans to the alkynyl

group, without colinearity $[C_1-Ru-N \ 169.1(2)^\circ)$. The

metal atom is in the center of the plane formed by the

four phosphorous atoms. The C_1-C_2 bond distance

(1.187(7) Å) is long with respect to that in the neutral

CH

C10

⁽³⁴⁾ Rappert, T.; Yamamoto, A.; Organometallics 1994, 13, 4984.

Table 3. Selected Bond Distances and Angles for 7a

Bond Distances (Å)							
2.014(5)	$Ru-P_1$	2.401(1)					
1.187(7)	$Ru-P_2$	2.347(1)					
1.441(7)	$Ru-P_3$	2.385(1)					
2.215(5)	$Ru-P_4$	2.347(1)					
Bond Angles (deg)							
176.4(6)	C_2 - C_1 -Ru	168.9(5)					
176.6(5)	P ₂ -Ru-N	90.2(1)					
169.1(2)	$C_1 - Ru - P_3$	98.7(1)					
92.1(1)	$C_1 - Ru - P_2$	78.9(1)					
	Bond Dist 2.014(5) 1.187(7) 1.441(7) 2.215(5) Bond Any 176.4(6) 176.6(5) 169.1(2) 92.1(1)	$\begin{array}{c c} Bond \ Distances (\AA) \\ 2.014(5) \\ Ru-P_1 \\ 1.187(7) \\ Ru-P_2 \\ 1.441(7) \\ Ru-P_3 \\ 2.215(5) \\ Ru-P_4 \\ \hline \\ Bond \ Angles \ (deg) \\ 176.4(6) \\ C_2 \cdot C_1 \cdot Ru \\ 176.6(5) \\ P_2 - Ru - N \\ 169.1(2) \\ C_1 - Ru - P_3 \\ 92.1(1) \\ C_1 - Ru - P_2 \\ \end{array}$					

complex (1.162(9) Å in Cl(dppm)₂Ru(C=CH))¹⁹ but slightly shorter than that in the derivatives Ru–C=C– Ph(dppe)(C₅H₅) (1.204(5) Å)³⁵ or *trans*-Ru(C=CH)₂(CO)₂-(PEt₃)₂ (1.199(2) Å).³⁶ The Ru–N bond distance (2.215-(5) Å) is longer than (2.159(6) Å) in the cation [Ru(NH₂-CHMe₂(H)(PMe₃)(η^{6} -C₆Me₆]⁺,³⁷ probably due to the *trans* influence of the alkynyl group.

Conclusion

The above methodology for the preparations of symmetrical and unsymmetrical bis(alkynyl)-metal derivatives has been used to give access to ferrocenylalkynylruthenium complexes.⁴⁰ It also motivates the search for the formation of a carbon-carbon bond by the coupling of the alkynyl ligands to give functional polyynes and suggests that bis(alkynyl)-metal or mixed ammoniaalkynyl-metal derivatives should be used for the generation of 16-electron ruthenium intermediates.

Experimental Section

General Data. All reactions were performed under an argon or nitrogen atmosphere with the use of Schlenk techniques. The solvents were deoxygenated and dried by standard methods. Infrared spectra were recorded on a Nicolet 205 FT-IR spectrometer. ¹H (300.13 MHz), ³¹P (121.50 MHz), and ¹³C (75.47 MHz) NMR spectra were recorded on a Bruker AC300P spectrometer at 297 K and referenced to TMS for ¹H and ¹³C and to 86% H₃PO₄ for ³¹P. Elemental analyses were performed by the Service National de Microanalyses du CNRS at Vernaison, France. The complex *cis*-RuCl₂(dppe)₂ (dppe = Ph₂PCH₂CH₂PPh₂) was prepared by the literature method.²¹

Synthesis of Vinylidenes *trans*-[(dppe)₂(Cl)Ru=C= CHR]PF₆ (2a-e). A solution of the terminal alkyne (1 mmol) in 50 mL of dichloromethane was added to *cis*-RuCl₂(dppe)₂ (1; 0.5 mmol, 484 mg) and NaPF₆ (1 mmol, 168 mg). After 12 h of stirring at room temperature, the solution was filtered through a filter-paper-tipped cannula, the solvent was removed under *vacuum*, and the precipitate was washed with diethyl ether. After dissolution in a minimum amount of dichloromethane and slow addition of hexane in order to form a biphasic system, crystals of **2** were obtained.

trans-[(dppe)₂(Cl)Ru=C=CH₂]PF₆ (2a). From 140 μ L of (trimethylsilyl)acetylene (1.0 mmol), 480 mg of yellow crystals of **2a** (87%) was isolated. Anal. Calcd for C₅₄H₅₀ClF₆P₅Ru: C, 58.73; H, 4.56. Found: C, 58.58; H, 4.73. IR (cm⁻¹, KBr): 1619 (s, $\nu_{C=C}$), 889 (s, ν_{PF_6}). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.45–7.10 (40H, Ph), 2.91, 2.80 (m, 8H, PCH₂-

(39) Enraf-Nonius Molecular Structure Determination Package Mo1EN; Enraf-Nonius: Delft,: The Netherlands, 1990. CH₂P), 2.43 (quint, 2H, =CH₂, ${}^{4}J_{PH}$ = 3 Hz). 13 C NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 349.9 (quint, Ru=C, ${}^{2}J_{PC}$ = 13 Hz), 135.5–126.3 (Ph), 92.4 (t, =CH₂, ${}^{1}J_{CH}$ = 165 Hz), 29.02 (t m, PCH₂CH₂P, ${}^{1}J_{CH}$ = 136 Hz). 13 C{¹H} NMR (δ , ppm): 349.9 (quint, Ru=C, ${}^{2}J_{PC}$ = 13 Hz), 92.4 (quint, =CH₂, ${}^{3}J_{PC}$ = 1.5 Hz), 29.03 (quint, PCH₂CH₂P, ${}^{1}J_{PC}$ + ${}^{3}J_{PC}$ | 23 Hz). 31 P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 41.47 (s, PPh₂), -143.94 (sept, PF₆, ${}^{1}J_{PF}$ = 710 Hz).

trans-[(dppe)₂(Cl)Ru=C=CHⁿBu]PF₆ (2b). From 180 µL of 1-hexyne (1.5 mmol), 475 mg of orange crystals of 2b (82%) was isolated. Anal. Calcd for C₅₈H₅₈ClF₆P₅Ru: C, 60.03; H, 5.04. Found: C, 59.80; H, 5.00. IR (cm⁻¹, KBr): 1648 (s, $\nu_{C=C}$), 838 (s, $\nu_{\rm PF_6}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.41-6.99 (40H, Ph), 2.84, 2.60 (m, 8H, PCH₂CH₂P), 2.15 (m, 1H, =CH), 1.37 (m, 2H, =CH-CH₂-), 0.80 (m, 2H, =CHCH₂-CH₂-), 0.67 (m, 5H, -CH₂CH₃). ¹³C NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 327.9 (quint, Ru=C, ${}^{2}J_{PC} = 13$ Hz), 135.5–127.3 (Ph), 105.3 (d m, =CH, ¹J_{CH} = 151 Hz), 32.8 (t m, =CH-CH₂-, ${}^{1}J_{CH}$ = 124 Hz), 29.4 (t quint, PCH₂CH₂P, ${}^{1}J_{CH} = 132$ Hz, $|{}^{1}J_{PC} + {}^{3}J_{P'C}| = 23$ Hz), 22.2 (t m, =CH-CH₂- CH_2 -, ${}^1J_{CH}$ = 127 Hz), 21.1 (t m, $-CH_2$ - CH_3 , ${}^1J_{CH}$ = 132 Hz), 13.8 (q m, $-CH_3$, ${}^1J_{CH} = 126$ Hz). ${}^{13}C{}^{1}H}$ NMR (δ , ppm): 327.94 (quint, Ru=C, ${}^{2}J_{PC} = 13$ Hz), 105.3 (quint, =CH, ${}^{3}J_{PC}$ = 2 Hz), 32.7 (s, =CH-CH₂-), 29.4 (quint, PCH₂CH₂P, $|^{1}J_{PC}$ $+ {}^{3}J_{P'C}| = 23$ Hz), 22.17 (s, =CH-CH₂-CH₂-), 21.16 (s, $-CH_2-CH_3$), 13.8 (s, $-CH_3$). ³¹P{¹H} NMR (121.50 MHz, CD₂-Cl₂, 297 K, δ (ppm)): 42.77 (s, PPh₂), -143.93 (sept, PF₆, ¹J_{PF} = 709 Hz)

trans-[(**dpp**)₂(**C**])**Ru**=**C**=**CHPh**]**PF**₆ (**2c**). From 110 μ L of phenylacetylene (1.0 mmol), 490 mg of red crystals of **2c** (83%) was isolated. Anal. Calcd for C₆₀H₅₄ClF₆P₅Ru: C, 61.05; H, 4.61. Found: C, 60.77; H, 4.59. IR (cm⁻¹, KBr): 1628 (s, $\nu_{C=C}$), 837 (s, ν_{PF_6}). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.33–5.67 (45H, Ph), 3.04 (quint, 1H, =CH, ⁴*J*_{PH} = 3 Hz), 2.87, 2.66 (m, 8H, PCH₂CH₂P). ¹³C NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 354.5 (d quint, Ru=C, ²*J*_{PC} = 13 Hz, ²*J*_{CH} = 4 Hz), 135.6–127.4 (Ph), 109.7 (d m, =CH, ¹*J*_{CH} = 150 Hz), 29.02 (t m, PCH₂CH₂P, ¹*J*_{CH} = 138 Hz). ¹³C{¹H} NMR (δ , ppm): 354.5 (quint, Ru=C, ²*J*_{PC} = 13 Hz), 109.7 (quint, =CH, ³*J*_{PC} = 2 Hz), 29.03 (quint, PCH₂CH₂P, |¹*J*_{PC} + ³*J*_{PC}| = 23 Hz). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 40.15 (s, PPh₂), –143.87 (sept, PF₆, ¹*J*_{PF} = 709 Hz).

trans-[(dppe)₂(Cl)Ru=C=CH(*p*-PhOMe)]PF₆ (2d). From 132 mg of 4-methoxyphenylacetylene (1.0 mmol), 520 mg of green crystals of 2d (86%) was isolated. Anal. Calcd for C₆₁H₅₆ClF₆P₅Ru: C, 60.53; H, 4.66. Found: C, 60.39; H, 4.54. IR (cm⁻¹, KBr): 1637 (m, $v_{C=C}$), 837 (s, v_{PF_6}). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.40–5.66 (44H, Ph), 3.67 (s, 3H, OCH₃), 3.02 (quint, 1H, =CH, ⁴J_{PH} = 3 Hz), 2.92, 2.69 (m, 8H, PCH₂CH₂P). ¹³C NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 357.4 (quint, Ru=C, ²J_{PC} = 14 Hz), 135.6–113.2 (Ph), 109.2 (d m, =CH, ¹J_{CH} = 147 Hz), 55.6 (q, OCH₃, ¹J_{CH} = 145 Hz), 29.04 (t quint, PCH₂CH₂P, ¹J_{CH} = 133 Hz, ¹J_{PC} + ³J_{PC}] = 23 Hz). ¹³C {¹H} NMR (δ , ppm): 357.4 (quint, Ru=C, ²J_{PC} = 14 Hz), 109.2 (s large, =CH), 29.09 (quint, PCH₂CH₂P, ¹J_{PC} + ³J_{PC}] = 23 Hz). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 40.46 (s, PPh₂), -143.93 (sept, PF₆, ¹J_{PF} = 710 Hz).

trans-[(dppe)₂(Cl)Ru=C=CH(*p*-PhNO₂)]PF₆ (2e). From 147 mg of 4-nitrophenylacetylene (1.0 mmol), 472 mg of dark red crystals of **2e** (77%) was isolated. Anal. Calcd for C₆₀H₅₃-ClF₆O₂NP₅Ru: C, 58.81; H, 4.36. Found: C, 58.67; H, 4.27. IR (cm⁻¹, KBr): 1630 (m, $\nu_{C=C}$), 838 (s, ν_{PF_6}). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.38–5.62 (44H, Ph), 3.96 (quint, 1H, =CH, ⁴J_{PH} = 2.9 Hz), 2.98, 2.81 (m, 8H, PCH₂-CH₂P). ¹³C NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 350.7 (d quint, Ru=C, ²J_{PC} = 13 Hz, ²J_{CH} = 2 Hz), 135.5–123 (Ph), 109.3 (d quint, =CH, ¹J_{CH} = 151 Hz, ³J_{PC} = 2 Hz), 29.03 (t quint, PCH₂CH₂P, ¹J_{CH} = 138 Hz, |¹J_{PC} + ³J_{PC}| = 23 Hz). ¹³C-{¹H} NMR (δ , ppm): 350.7 (quint, Ru=C, ²J_{PC} = 1 Hz), 109.3 (quint, =CH, ³J_{PC} = 2 Hz), 29.1 (quint, PCH₂CH₂P, |¹J_{PC} + ³J_{PC}| = 23 Hz). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 39.94 (s, PPh₂), -143.84 (sept, PF₆, ¹J_{PF} = 710 Hz).

⁽³⁶⁾ Sun, Y.; Taylor, N. J.; Carty, A. J. Organometallics 1992, 11, 4293.

⁽³⁷⁾ Werner, H.; Kletzin, H.; Zolk, R.; Otto, H. J. Organomet. Chem. 1986, 310, C11.

⁽³⁸⁾ International Tables for X-ray Crystallography, Kynoch Press: Birmingham, England, 1974 (present distributor D. Reidel: Dordrecht). (39) Enraf-Nonius Molecular Structure Determination Package

⁽⁴⁰⁾ Lebreton, C.; Touchard, D.; Le Pichon, L.; Daridor, A.; Toupet, L.; Dixneuf, P. H. *Inorg. Chim. Acta*, submitted for publication.

Synthesis of Monoacetylides *trans*-[(dppe)₂(Cl)Ru– C=C-R] (3a–e). A mixture of 2 (0.25 mmol) and an excess of Et₃N (1 mmol) was stirred in 20 mL of dichloromethane at room temperature. After 1 h of stirring, the solvent was removed under *vacuum*. The residue was purified by filtration through a column of neutral alumina using diethyl ether as eluent. After dissolution in a minimum amount of dichloromethane and slow addition of hexane, in order to form a biphasic system, crystals of **3** were obtained.

trans-[(**dpp**)₂(**C**)**Ru**-**C**=**C**-**H**] (3a). From 276 mg of 2a (0.25 mmol), 20 mL of dichloromethane, and 140 μ L of triethylamine (1.0 mmol), 163 mg of yellow crystals of **3a** (68%) was obtained. Anal. Calcd for C₅₄H₄₉ClP₄Ru: C, 67.67; H, 5.15. Found: C, 67.49; H, 5.07. IR (cm⁻¹, KBr): 1932.7 (s, $\nu_{C=C}$), 3279.9 (m, $\nu_{=CH}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.57–6.89 (40H, Ph), 2.67 (m, 8H, PCH₂CH₂P), 1.30 (quint, 1H, =C-H, ⁴J_{PH} = 1.6 Hz). ¹³C NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 136–125.5 (Ph), 131.1 (quint, Ru-C=, ²J_{PC} = 15.5 Hz), 100.6 (d, =CH, ¹J_{CH} = 224 Hz), 31.0 (t m, PCH₂CH₂P, ¹J_{CH} = 141 Hz). ¹³C{¹H} NMR (δ , ppm): 131.1 (quint, Ru-C=, ²J_{PC} = 15 Hz), 100.6 (s, =CH), 31.0 (quint, PCH₂CH₂P, ¹J_{PC} + ³J_{PC}| = 24 Hz). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 49.28 (s, PPh₂).

trans-[(dppe)₂(Cl)Ru-C=C-ⁿBu] (3b). From 290 mg of **2b** (0.25 mmol), 20 mL of dichloromethane, and 140 μ L of triethylamine (1.0 mmol), 162 mg of 3b (64%) was isolated. Anal. Calcd for C58H57ClP4Ru: C, 68.67; H, 5.66. Found: C, 68.17; H, 5.69. IR (cm⁻¹, KBr): 2094.3 (m, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.37-6.90 (40H, Ph), 2.57 (m, 8H, PCH₂CH₂P), 1.83 (m, 2H, ≡C-CH₂-), 1.13 (m, 4H, $-CH_2-CH_2-$), 0.77 (t, 3H, CH_3 , ${}^3J_{HH} = 7$ Hz). ${}^{13}C$ NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 137.5–126 (Ph), 110.2 $(m, \equiv C-), 97.9 (m, Ru-C=), 33.83 (m, \equiv C-CH_2-), 31.24 (t)$ m, PCH₂CH₂P, ${}^{1}J_{CH} = 134$ Hz), 23.95 (t, $-CH_{2}-$, ${}^{1}J_{CH} = 126$ Hz), 23.22 (t m, $-CH_2-$, ${}^1J_{CH} = 124$ Hz), 14.28 (q, $-CH_3$, ${}^1J_{CH}$ = 124 Hz). ${}^{13}C{}^{1}H$ NMR (δ , ppm): 110.2 (s, $\equiv C-$), 97.8 (quint, Ru–C=, ${}^{2}J_{PC} = 16$ Hz), 33.8 (s, =C–CH₂–), 31.22 (quint, PCH₂CH₂P, $|{}^{1}J_{PC} + {}^{3}J_{P'C}| = 24$ Hz), 23.9 (s, $-CH_{2}-$), 23.17 (s, $-CH_2-$), 14.27 (s, $-CH_3$). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 49.81 (s, PPh₂).

trans-[(**dpp**)₂(**C**)**Ru**−**C**=**C**−**Ph**] (3c). From 295 mg of **2c** (0.25 mmol), 20 mL of dichloromethane, and 140 µL of triethylamine (1.0 mmol), 199 mg of 3c (77%) was isolated. Anal. Calcd for C₆₀H₅₃ClP₄Ru: C, 69.62; H, 5.16. Found: C, 69.48; H, 5.11. IR (cm⁻¹, KBr): 2066.8 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.40−6.62 (45H, Ph), 2.67 (quint, 8H, PCH₂CH₂P, |²J_{PH} + ⁴J_{PH}| = 8 Hz). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 137.3−123.2 (Ph), 124.4 (quint, Ru−C=, ²J_{PC} = 16 Hz), 113.6 (s, ≡C−), 31.08 (quint, PCH₂CH₂P, |¹J_{PC} + ³J_{PC}| = 24 Hz). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 49.44 (s, PPh₂).

trans-[(dppe)₂(Cl)Ru–C=C–C₆H₄–*p*-OMe] (3d). From 302 mg of 2d (0.25 mmol), 20 mL of dichloromethane, and 140 μ L of triethylamine (1.0 mmol), 183 mg of 3d (69%) was isolated. Anal. Calcd for C₆₁H₅₅ClOP₄Ru: C, 68.83; H, 5.21. Found: C, 69.07; H, 5.19. IR (cm⁻¹, KBr): 2073 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.39–6.55 (44H, Ph), 3.74 (s, 3H, OCH₃), 2.66 (quint, 8H, PCH₂CH₂P, |²J_{PH} + ⁴J_{PH}| = 8 Hz). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 137.5–127.2 (Ph), Ru–C= masked by phenyl carbons, 123.7 (s, =C–), 55.5 (s, OCH₃), 31.08 (quint, PCH₂CH₂P, |¹J_{PC} + ³J_{PC}| = 23 Hz). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 49.44 (s, PPh₂).

trans-[(**dpp**)₂(**C**)**Ru**-**C**=**C**-**C**₆**H**₄-*p*-**NO**₂] (3e). From 306 mg of **2e** (0.25 mmol), 20 mL of dichloromethane, and 140 μ L of triethylamine, 172 mg of **3e** (64%) was isolated. Anal. Calcd for C₆₀H₅₂ClO₂P₄Ru: C, 66.76; H, 4.86. Found: C, 66.47; H, 4.77. IR (cm⁻¹, KBr): 2052 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.85–6.35 (44H, Ph), 2.62 (quint, 8H, PCH₂CH₂P₄) ${}^{2}J_{PH} + {}^{4}J_{P'H} = 8$ Hz). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 135–127.4 (Ph), Ru– C= masked by phenyl groups, 129.3 (s, =C–), 30.86 (quint,

PCH₂CH₂P, $|{}^{1}J_{PC} + {}^{3}J_{P'C}| = 23$ Hz). ${}^{31}P{}^{1}H$ NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 48.56 (s, PPh₂).

Synthesis of Symmetrical Bis(acetylides) trans-[(dppe)₂Ru(C=C-R¹)₂] (4a-f). A mixture of terminal alkyne (1.5 mmol) and triethylamine (3 mmol) in 60 mL of dichloromethane was added to 1 (0.5 mmol) and NaPF₆ (1.5 mmol). After 4 h of stirring at room temperature, the solution was filtered, the solvent was removed under vacuum, and the residue was washed with hexane. After dissolution in a minimum amount of THF, the solution was filtered through an alumina column using ether as the eluent. The solvent was removed under vacuum, and the resulting powder was recrystallized in a mixture of dichloromethane-hexane to obtain crystals of 4.

trans-[(dppe)₂Ru(C=C-Ph)₂] (4a). From 484 mg of 1 (0.5 mmol), 252 mg of NaPF₆ (1.5 mmol), 160 μ L of phenylacetylene (1.5 mmol), and 420 μ L of Et₃N, 450 mg of yellow crystals of 4a (82%) were isolated. Anal. Calcd for C₆₈H₅₈P₄Ru: C, 74.24; H, 5.31. Found: C, 73.97; H, 5.27. IR (cm⁻¹, KBr): 2058 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.45–6.69 (m, 50H, Ph), 2.57 (m, 8H, PCH₂CH₂P). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 137.66–123.28 (Ph), 131.98 (quint, Ru–C=, ²*J*_{PC} = 15 Hz), 116.88 (s, Ru–C=C), 31.87 (quint, PCH₂CH₂P, |¹*J*_{PC} + ³*J*_{PC}| = 23 Hz). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 53.78 (s, PPh₂).

trans-[(dppe)₂Ru(C=C-ⁿBu)₂] (4b). From 484 mg of 1 (0.5 mmol), 252 mg of NaPF₆ (1.5 mmol), 140 μ L of 1-hexyne (1.5 mmol), and 420 µL of Et₃N, 371 mg of yellow crystals of 4b (70%) were isolated. Anal. Calcd for C₆₄H₆₆P₄Ru: C, 72.43; H, 6.27. Found: C, 72.40; H, 6.11. IR (cm⁻¹, KBr): 2086 (s, $\nu_{C=C}$). ¹H NMR (300.134 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.40-6.86 (m, 40H, Ph), 2.49 (m, 8H, PCH₂CH₂P), 1.88 (m, 4H, =C-CH₂), 1.21 (m, 8H, -CH₂-CH₂-), 0.82 (m, 6H, -CH₃). ¹³C NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 138.47–125.80 (Ph), 113.15 (m, $Ru-C \equiv C$), 108.06 (m, Ru-C), 33.03 (t, \equiv CCH₂, ¹J_{CH} = 127 Hz), 32.08 (t m, PCH₂CH₂P, ¹J_{CH} = 133 Hz), 23.75 (t m, \equiv CCH₂CH₂, ¹J_{CH} = 127 Hz), 23.15 (t, \equiv CCH₂- CH_2CH_2 , ${}^1J_{CH} = 125$ Hz), 14.31 (q, CH_3 , ${}^1J_{CH} = 124$ Hz). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 138.61-126.88 (Ph), 113.15 (s, Ru–C=C), 108.06 (quint, Ru–C, ${}^{2}J_{PC}$ = 15 Hz), 33.04 (s, \equiv CCH₂), 32.08 (quint, PCH₂CH₂P, |¹J_{PC} + ${}^{3}J_{P'C}| = 24$ Hz), 23.75 (s, =CCH₂CH₂), 23.16 (s, =CCH₂CH₂-CH₂), 14.31 (s, CH₃). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 54.36 (s, PPh₂).

trans-[(**dpp**)₂**Ru**(**C**=**CSiM**e₃)₂] (4c). From 484 mg of **1** (0.5 mmol), 252 mg of NaPF₆ (1.5 mmol), 140 μL of (trimethylsilyl)acetylene (1.5 mmol), and 420 μL of Et₃N, 300 mg of yellow crystals of **4c** (55%) were isolated. Anal. Calcd for C₆₂H₆₆P₄Si₂Ru: C, 64.84; H, 5.79. Found: C, 65.16; H, 5.97. IR (cm⁻¹, KBr): 1985 (s, ν_{C=C}). ¹H NMR (300.134 MHz, CD₂-Cl₂, 297 K, δ (ppm)): 7.46–6.89 (m, 40H, Ph), 2.61 (m, 8H, PCH₂CH₂P), -0.22 (s, 18H, SiMe₃). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 154.98 (quint, Ru–C, ²*J*_{PC} = 15 Hz), 137.97–127.17 (Ph), 121.43 (s, Ru–C=C), 31.73 (quint, PCH₂CH₂P, $|^{1}J_{PC} + {}^{3}J_{PC}| = 24$ Hz). ³¹P{¹H} NMR (121.50 MHz, CD₂-Cl₂, 297 K, δ (ppm)): 53.43 (s, PPh₂).

trans [(dppe)₂Ru(C=C-(CH₂)₉CH₃)₂] (4d). From 484 mg of 1 (0.5 mmol), 252 mg of NaPF₆ (1.5 mmol), 180 μ L of H-C=C-C₁₀H₂₁ (1.5 mmol), and 420 μ L of Et₃N, 522 mg of 4d (85%) was isolated. Anal. Calcd for C₇₆H₉₀P₄Ru·0.25CH₂-Cl₂: C, 73.28; H, 7.30. Found: C, 73.47; H, 7.34. IR (cm⁻¹, KBr): 2087 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CDCl₃, 297 K, δ (ppm)): 7.48-6.92 (m, 40H, Ph), 2.56 (m, 8H, PCH₂CH₂P), 1.92 (m, 4H, C=CCH₂-), 1.33-1.25 (m, 32H, -(CH₂)₈-CH₃), 0.89 (t, 6H, CH₃, ³J_{HH} = 6.7 Hz). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 138.76-126.95 (Ph), 113.29 (s, Ru-C=C), 108.15 (quint, Ru-C=C, ²J_{PC} = 15.2 Hz), 54.60-23.21 (-(CH₂)₉-CH₃), 32.13 (quint, PCH₂CH₂P, |¹J_{PC} + ³J_{PC}| = 24.4 Hz), 14.41 (s, CH₃). ³¹P{¹H} NMR (121.50 MHz, CDCl₃, 297 K, δ (ppm)): 55.46 (s, PPh₂).

trans-[(dppe)₂Ru(C=CCH₂OSiMe₃)₂] (4e). From 484 mg of 1 (0.5 mmol), 252 mg of NaPF₆ (1.5 mmol), 160 μ L of

H−C≡C−CH₂OSiMe₃ (1.5 mmol), and 420 μL of Et₃N, 392 mg of **4e** (68%) was isolated. Anal. Calcd for C₆₄H₇₀RuP₄O₂Si₂: C, 66.71; H, 6.12. Found: C, 66.87; H, 6.30. IR (cm⁻¹, KBr): 2087 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CDCl₃, 297 K, δ (ppm)): 7.47−6.91 (m, 40H, Ph), 3.95 (s, 4H, CH₂OSiMe₃), 2,59 (m, 8H, PCH₂CH₂P), 0.05 (s, 18H, OSiMe₃). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 138.21−127.05 (Ph), 119.12 (quint, Ru−*C*≡C, ²*J*_{PC} = 15.2 Hz), 111.75 (s, Ru−C≡*C*), 54.73 (s, *C*H₂OSiMe₃), 31.96 (quint, PCH₂CH₂P, |¹*J*_{PC} + ³*J*_{PC}| = 24.4 Hz), −0,13 (s, OSiMe₃). ³¹P{¹H} NMR (121.50 MHz, CDCl₃, 297 K, δ (ppm)): 55.21 (s, PPh₂).

trans-[(**dpp**)₂**Ru**(**C**=**CCH**₂**OMe**)₂] (**4f**). From 484 mg of **1** (0.5 mmol), 252 mg of NaPF₆ (1.5 mmol), 160 μ L of H–C=C–CH₂OMe (1.5 mmol), and 420 μ L of Et₃N, 233 mg of **4f** (45%) was isolated. Anal. Calcd for C₆₀H₅₈RuP₄O₂: C, 69.48; H, 5.64. Found: C, 69.14; H, 5.55. IR (cm⁻¹, KBr): 2075 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CDCl₃, 297 K, δ (ppm)): 7.45–6.95 (m, 40H, Ph), 3.78 (quint large, 4H, CH₂, ⁵*J*_{PC} = 1.3 Hz), 3.1 (s, 6H, OCH₃), 2.57 (m, 8H, PCH₂CH₂P). ³¹P{¹H} NMR (121.50 MHz, CDCl₃, 297 K, δ (ppm)): 54.80 (s, PPh₂).

trans-[(**dpp**)₂**Ru**(**C**=**CH**)₂] (5). From 484 mg of 1 (0.5 mmol), 252 mg of NaPF₆ (1.5 mmol), 170 μL of H−C=C−SnBu₃ (1.5 mmol), and 420 μL of Et₃N, 166 mg of **5** (35%) was isolated. Anal. Calcd for C₅₆H₅₀P₄Ru: C, 70.95; H, 5.21. Found: C, 71.17; H, 5.32. IR (cm⁻¹, KBr): 1917 (s, $\nu_{C=C}$). ¹H NMR (300.134 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.51−6.64 (m, 40H, Ph), 2.65 (m, 8H, PCH₂CH₂P), 1.42 (quint, 2H, =CH, ⁴*J*_{PH} = 2 Hz). ¹³C NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 137.80−125.85 (Ph), 121.74 (quint, Ru−C, ²*J*_{PC} = 15 Hz), 102.72 (d, Ru−C=CH, ¹*J*_{CH} = 219 Hz), 31.77 (t m, PCH₂CH₂P, ¹*J*_{CH} = 129 Hz). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 137.95−126.93 (Ph), 121.74 (quint, Ru−C, ²*J*_{PC} = 15 Hz), 102.72 (s, Ru−C=C), 31.78 (quint, PCH₂CH₂P, ¹*J*_{PC} + ³*J*_{PC}| = 24 Hz). ³¹P{¹H</sup> NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 52.96 (s, PPh₂).

Synthesis of Mixed Bis(acetylides) *trans*-[(dppe)₂Ru-(C=C-R¹)(C=CR²)] (6a-d) from Vinylidenes 2. A solution of the terminal alkyne (0.75 mmol) and triethylamine (1.5 mmol) in 50 mL of dichloromethane was transferred into a Schlenk tube containing 0.5 mmol of vinylidene 2 and 0.75 mmol of NaPF₆. After 12 h of stirring at room temperature, the solution was filtered through a filter-paper-tipped cannula and the solvent removed under *vacuum*. The residue was purified by column chromatography (neutral alumina) using diethyl ether as the solvent. The crude product was recrystallized in a dichloromethane-hexane mixture to give crystals of **6**.

trans-[(dppe)₂Ru(C=C-Ph)(C=CⁿBu)] (6a). From 590 mg of **2c** (0.5 mmol), 126 mg of NaPF₆ (0.75 mmol), 105 μ L of 1-hexyne, and 210 µL of Et₃N in 50 mL of dichloromethane, 254 mg of yellow crystals of 6a (47%) were isolated. Anal. Calcd for C₆₆H₆₂P₄Ru: C, 73.39; H, 5.79. Found: C, 73.59; H, 5.83. IR (cm⁻¹, KBr): 2061 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.51–6.73 (m, 45H, Ph), 2.58 (quint, 8H, PCH₂CH₂P, $|{}^{2}J_{PH} + {}^{4}J_{P'H}| = 8$ Hz), 1.95 (m, 2H, \equiv C–CH₂), 1.29 (m, 4H, $-CH_2-CH_2-$), 0.88 (t, $-CH_3$, ${}^3J_{HH} = 7$ Hz). ${}^{13}C$ NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 138.6–121.8 (Ph), 133.8 (quint, Ru– $C \equiv C$ –Ph, ² $J_{PC} = 15$ Hz), 116.8 (s, Ru– $C \equiv C$ – Ph), 114.5 (m, Ru–C=C–ⁿBu), 106.9 (t quint, Ru–C=C–ⁿBu, ${}^{2}J_{\text{PC}} = 15 \text{ Hz}, {}^{3}J_{\text{CH}} = 4 \text{ Hz}), 32.9 \text{ (t m, } \equiv \text{C}-C\text{H}_{2}-, {}^{1}J_{\text{CH}} = 127$ Hz), 32.0 (t m, PCH₂CH₂P, ${}^{1}J_{CH} = 135$ Hz), 23.7 (t m, $-CH_{2}-$ CH₂, 126 Hz), 23.1 (t m, $-CH_2-CH_2$, ${}^1J_{CH} = 121$ Hz), 14.3 (q, $-CH_{3}$, ${}^{1}J_{CH} = 124$ Hz). ${}^{13}C{}^{1}H$ NMR (δ , ppm): 133.8 (quint, $Ru-C \equiv C-Ph$, ² $J_{PC} = 15$ Hz), 116.8 (s, $Ru-C \equiv C-Ph$), 114.5 (s, Ru–C= $C^{-n}Bu$), 106.94 (quint, Ru–C=C– ^{n}Bu , $^{2}J_{PC} = 15$ Hz), 32.95 (s, $\equiv C - CH_2 - 1$) 32.03 (quint, PCH₂CH₂P, $|^1J_{PC} + 1$) $^{3}J_{PC}|=24$ Hz), 23.76 (s, $-CH_{2}-CH_{2}^{-})$, 23.19 (s, $-CH_{2}-CH_{2}-$), 14.32 (s, $-CH_{3})$. $^{31}P\{^{1}H\}$ NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 54.08 (s, PPh₂).

trans-[(dppe)₂Ru(C=C-Ph)(C=C-C₆H₄-p-NO₂)] (6b). From 590 mg of 2c (0.5 mmol), 126 mg of NaPF₆ (0.75 mmol), 110 mg of H-C=C-p-PhNO₂ (0.75 mmol), and 210 μ L of Et₃N, 258 mg of **6b** (45%) of red crystals were obtained. Anal. Calcd for $C_{68}H_{57}NO_2P_4Ru$: C, 71.25; H, 5.02. Found: C, 70.77; H, 4.99. IR (cm⁻¹, KBr): 2052 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.96–6.52 (49H, Ph), 2.61 (m, 8H, PCH₂CH₂P). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 154.73 (quint, Ru–C=, ² J_{PC} = 15 Hz), 142.95–123.68 (Ph), 119.11 (s, Ru–C=*C*), 118.63 (s, Ru–C=*C*), 31.76 (quint, PCH₂CH₂P, |¹ J_{PC} + ³ $J_{P'C}$ | = 24 Hz). ³¹P{¹H} NMR (121.50 MHz, CDCl₃, 297 K, δ (ppm)): 54.02 (s, PPh₂).

trans-[(dppe)₂Ru(C \equiv C⁻ⁿBu)(C \equiv C^{-C}₆H₄-*p*-NO₂)] (6c). From 580 mg of 2b (0.5 mmol), 126 mg of NaPF₆ (0.75 mmol), 110 mg of H–C=C–p-PhNO₂ (0.75 mmol), and 210 μ L of Et₃N, 287 mg of red crystals 6c (51%) were obtained. Anal. Calcd for C₆₆H₆₁NO₂P₄Ru: C, 70.45; H, 5.46. Found: C, 70.21; H, 5.23. IR (cm⁻¹, KBr): 2050 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.87–6.46 (44H, Ph), 2.53 (m, 8H, PCH_2CH_2P), 2.00 (m, 2H, $\equiv C-CH_2$), 1.22 (m, 4H, $-CH_2CH_2$), 0.83 (m, 3H, -CH₃). ¹³C NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 157.44 (quint, Ru–C \equiv , ² $J_{PC} = 14$ Hz), 142.20–122.24 (Ph), 118.55 (t, $Ru-C \equiv C-CH_2$, ${}^2J_{CH} = 4$ Hz), 104.75 (quint, $Ru-C \equiv C^{-n}Bu$, ${}^{2}J_{PC} = 16$ Hz), 32.43 (t m, $\equiv C-CH_{2}$, ${}^{1}J_{CH} =$ 124 Hz), 31.49 (t m, PCH₂CH₂P, ${}^{1}J_{CH} = 134$ Hz), 22.69 (t m, $-CH_2-$, ${}^1J_{CH}=125$ Hz), 15.32 (q m, CH₃, ${}^1J_{CH}=126$ Hz, ${}^3J_{CH}$ = 3 Hz). ${}^{31}P{}^{1}H{}$ NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 53.57 (s, PPh₂).

trans-[(**dppe**)₂**Ru**(**C**=**C**-**C**₆**H**₄-*p*-**NO**₂)(**C**=**C**-**C**₆**H**₄-*p*-**OMe**)] (**6d**). From 610 mg of [(dppe)₂Ru(Cl)=**C**=CH-*p*-PhNO₂)]PF₆ (**2e**; 0.5 mmol), 126 mg of NaPF₆ (0.75 mmol), 100 mg of H-C=**C**-*p*-PhOMe (0.75 mmol), and 210 μ L of Et₃N, 276 mg of red crystals of **6d** (47%) were obtained. Anal. Calcd for C₆₉H₅₉NO₃P₄Ru: C, 70.52; H, 5.06. Found: C, 70.69; H, 4.97. IR (cm⁻¹, KBr): 2050 (s, $\nu_{C=C}$). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 7.94-6.54 (48H, Ph), 3.76 (s, 3H, OCH₃), 2.61 (m, 8H, PCH₂CH₂P). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 53.40 (s, PPh₂).

Synthesis of *trans*-[(NH₃)(dppe)₂Ru–C=C–R¹]PF₆ (7a– c). A suspension in 50 mL of dichloromethane of 0.5 mmol of bis(acetylide) complex **4** and 2.5 mmol of NH₄PF₆ was stirred for 12 h at room temperature. The solution was filtered, and after evaporation of the solvent, the residue was dissolved in a minimum amount of dichloromethane. After slow addition of hexane, in order to form a biphasic system, crystals of complex **7** were obtained.

trans-[(**dpp**)₂**Ru**(**NH**₃)(**C**=**C**-**Ph**)]**PF**₆ (7a). From 550 mg of **4a** (0.5 mmol) and 407 mg of **NH**₄**PF**₆ (2.5 mmol), 424 mg of **7a** was isolated (73%). Anal. Calcd for $C_{60}H_{56}F_6NP_5$ -Ru: C, 62.07; H, 4.86; N, 1.21. Found: C, 61.89; H, 4.91; N, 1.15. IR (cm⁻¹, KBr): 2078 (s, $\nu_{C=C}$), 836 (s, **PF**₆). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 8.07–6.38 (44H, Ph), 2.58 (m, 8H, PCH₂CH₂P), 0.09 (s large, 3H, NH₃). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 136.25–124.96 (Ph), 117.84 (s, Ru–C=*C*-), 114.98 (quint, Ru–*C*=, ²*J*_{PC} = 16 Hz), 30.59 (quint, PCH₂CH₂P), $|^{1}J_{PC} + {}^{3}J_{P'C}| = 23$ Hz). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 53.24 (s, PPh₂), -143.9 (sept, PF₆, ¹*J*_{PF} = 710 Hz).

trans-[(dppe)₂Ru(NH₃)(C=C-ⁿBu)]PF₆ (7b). From 530 mg of 4b (0.5 mmol) and 407 mg of NH₄PF₆ (2.5 mmol), 462 mg of yellow crystals of 7b were isolated (81%). Anal. Calcd for C₅₈H₆₀F₆NP₅Ru: C, 61.05; H, 5.30. Found: C, 60.77; H, 5.17. IR (cm⁻¹, KBr): 2094 (s, $\nu_{C=C}$), 837 (s, PF₆). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 8.09–6.41 (40H, Ph), 2.59 (quint, 8H, PCH₂CH₂P, |²J_{PH} + ⁴J_{P'H}| = 7 Hz), 2.38 (m, 2H, =C-CH₂-), 1.39 (m, 4H, CH₂-CH₂-), 0.89 (t, -CH₃, ³J_{HH} = 7 Hz), 0.01 (s large, 3H, NH₃). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 136.64–128.18 (Ph), 116.23 (s, Ru-C=C-), 91.04 (quint, Ru-C=C, ²J_{PC} = 16 Hz), 32.72 (s, =C-CH₂-), 30.59 (quint, PCH₂CH₂P, |¹J_{PC} + ³J_{P'C}| = 23 Hz), 23.31, 23.15 (s, -CH₂-CH₂-), 14.18 (s, CH₃). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 53.30 (s, PPh₂), -143.96 (sept, PF₆, ¹J_{PF} = 718 Hz).

trans-[(dppe)₂Ru(NH₃)(C=C-SiMe₃)]PF₆ (7c). From 574 mg of 4c (0.5 mmol) and 407 mg of NH₄PF₆ (2.5 mmol),

422 mg of **7c** was isolated (73%). Anal. Calcd for $C_{57}H_{60}$ - F_6NP_5RuSi : C, 59.17; H, 5.23. Found: C, 58.87; H, 5.07. IR (cm⁻¹, KBr): 1996 (s, $\nu_{C=C}$), 836 (s, PF₆). ¹H NMR (300.133 MHz, CD₂Cl₂, 297 K, δ (ppm)): 8.17–6.31 (40H, Ph), 2.58 (m, 8H, PCH₂CH₂P), 0.01(s, 9H, SiMe₃), -0.08 (s large, 3H, NH₃). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K, δ (ppm)): 136.33–128.17 (Ph), 139.75 (quint, Ru– $C\equiv$, ² J_{PC} = 15 Hz), 125.38 (s, Ru– $C\equiv C$ –), 30.48 (quint, PCH₂CH₂P, |¹ J_{PC} + ³ $J_{P'C}$ | = 23 Hz), 0.01 (s, SiMe₃). ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂, 297 K, δ (ppm)): 53.36 (s, PPh₂), -143.9 (sept, PF₆, ¹ J_{PF} = 713 Hz).

Crystal Structure Analysis of 7a. The sample $(0.30 \times 0.45 \times 0.55 \text{ mm})$ was studied on an automatic diffractometer (CAD₄ Enraf-Nonius) with graphite-monochromated Mo K α radiation. The cell parameters were obtained by fitting a set of 25 high- θ reflections. The data collection ($2\theta_{\text{max}} = 54^{\circ}$, scan $\omega/20 = 1$, $t_{\text{max}} = 60$ s, range *hkl*: *h*, 0.18, *k*, 0.28, *l* –22 to 22; intensity controls without appreciable decay (0.1%)) gave 6396 reflections from which 5134 were independent ($R_{\text{int}} = 0.014$) with $I > 2\sigma(I)$.

After Lorentz and polarization corrections, the structure was solved with direct methods which reveal the Ru and P atoms. The remaining non-hydrogen atoms of the structure were found after successive scale factor refinements and Fourier differences. After isotropic (R = 0.090) then anisotropic refinement (R = 0.07), many hydrogen atoms (in particular

hydrogen atoms of nitrogen) were found with a Fourier difference (between 0.21 and 0.09 e Å⁻³). The whole structure was refined by full-matrix least-square techniques (use of *F* magnitude; *x*, *y*, *z* β_{ij} for Ru, P, F, N, and C atoms and *x*, *y*, *z* for H atoms; 819 variables and 5134 observations; $W = 1/\sigma$ - $(F_0)^2 = [\sigma^2(I) + (0.04F_0^{-2})^2]^{-1/2}$), with R = 0.033, $R_w = 0.031$, and $S_w = 1.1$ (residual $\Delta \rho \leq 0.12$ e Å⁻³). Atomic scattering factors were obtained from ref 38. All of the calculations were performed on a Digital Micro VAX 3100 computer with the MolEN package (Enraf-Nonius, 1990).³⁹

Acknowledgment. We thank the French Ministère MENESR for the award of a thesis grant to P.H. and the University Chouaid Doukkali of El Jadida (Morocco) for the leave of absence of S.G.

Supporting Information Available: Tables of bond lengths and angles, torsion angles, positional parameters, and displacement parameters and ORTEP diagram for **7a** (23 pages). Ordering information is given on any current masthead page.

OM970362O