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Summary: A coordinatively unsaturated acetylide spe-
cies CsMesRu(PPh3)C=CPh (1) was generated in situ
from the reaction of ruthenium—vinylidene complex Cs-
MesRu(Cl)(PPh3)=C=CHPh (2) with EtsN. The vi-
nylidene complex 2 was prepared from the substitution
reaction of CsMesRu(PPhs),Cl with PhC=CH. The
in-situ-generated 1 was found to react readily with a
variety of small molecules. For example, the reaction of
1 with CO produced the stable adduct CsMesRu(CO)-
(PPh3)C=CPh (3) in 85% yield, the structure of which
was established by X-ray crystallography. The similar
reactions of 1 with H, and PhC=CPh also gave the
hydride complex CsMesRu(PPh3)(H)(H,C=CHPh) (4)
(76% vyield) and the alkyne complex CsMesRu(PPhs)-
(PhC=CPh)C=CPh (5) (85% vyield), respectively. The
reaction of 1 with CO; produced the carboxylate complex
CsMesRu(PPh3)(172-O,CC=CPh) (6) from the insertion of
CO, to the ruthenium—acetylide carbon bond.

Transition metal o-acetylide complexes are known to
be involved in a number of catalytic and stoichiometric
reactions of alkynes.! The copper—acetylide catalysts
have been widely employed in industrial-scale alkyne
coupling reactions, such as in the production of H,C=
CHC=CH from the linear dimerization of acetylene’a
and in the synthesis of butyndiol from the coupling of
acetylene with formaldehyde.’® A well-characterized
rhodium—acetylide complex has recently been shown to
promote the living polymerization of phenylacetylene.9
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Interest in the metal-coordinated o-acetylide complexes
has also grown in recent years because such complexes
have emerged as key components in generating nonlin-
ear optical, molecular conducting and liquid crystalline
materials.2 While ligand-based reactions of coordina-
tively saturated metal—acetylide complexes have been
well-established,¢3 the reactivity of unsaturated metal—
acetylide complexes has not been thoroughly explored.
In an attempt to extend the ruthenium-mediated dimer-
ization of terminal alkynes* and CO, activation reac-
tions,> we have begun searching for new ways to
generate unsaturated ruthenium—acetylide complexes.
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Herein, we report an in situ generation of a coordina-
tively unsaturated ruthenium acetylide species CsMes-
Ru(PPh3)C=CPh (1) and its reactions with small mol-
ecules.
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Recent reports on the ruthenium—vinylidene com-
plexes!e3 suggested that the coordinatively unsaturated
ruthenium acetylide species 1 could be generated from
the reaction of ruthenium—vinylidene complexes
with a base. Following a literature procedure,® a chiral
ruthenium—vinylidene precursor CsMesRu(PPhgz)(Cl)=
C=CHPh (2) was readily prepared from the ligand
substitution reaction of CsMesRu(PPh3z),Cl7 with
PhC=CH and a subsequent acetylene-to-vinylidene
tautomerization reaction. Thus, treatment of CsMes-
Ru(PPh3),Cl (1.0 g, 1.26 mmol) with excess PhC=CH
(2.38 mL, 10 equiv) in THF at 60 °C for 12 h produced
the vinylidene complex 2 (698 mg, 88% yield). The
structure of 2 was completely established by both
solution spectroscopic methods® and by single-crystal
X-ray crystallography (Figure 1).° The X-ray crystal
structure of 2 showed an antiperiplanar geometry
between the g-vinylidene hydrogen and the chloride
ligand, as indicated by the dihedral angle between the
plane of the g-vinylidene carbon and the Ph group
(C(12)—C(13)) and the plane containing the Ru and ClI
atoms (Ru—Cl) (6 = 20.0°). The bond distance between
Ru and the a-vinylidene carbon (Ru—C(11) = 1.817(3)
A) was typical for a ruthenium(l1) complex.l¢ Recently,
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Figure 1. Molecular structure of 2 drawn with 30%
thermal ellipsoids. Selected bond lengths (A) and bond
angles (deg): Ru—C(11), 1.817(3); C(11)—C(12), 1.315(4);
Ru—Cl, 2.4018(7); Ru—P, 2.3099(7); Ru—Cp* (cent), 1.936-
(3); CI-Ru—P, 89.17(3); C(11)—Ru—P, 88.03(9); Ru—C(11)—
C(12), 175.3(3); C(11)—C(12)—C(13), 123.6(3).

C(43)

Figure 2. Molecular structure of 3 drawn with 30%
thermal ellipsoids. Selected bond lengths (A) and bond
angles (deg): Ru—C(11), 2.030(4); C(11)—C(12), 1.203(5);
Ru—C(19), 1.850(4); Ru—P, 2.3144(10); Ru—Cp* (cent),
1.902(4); C(11)—Ru—P, 82.52(10); C(11)—Ru—C(19), 93.5-
(2); C(11)—C(12)—C(18), 173.7(4).

a crystal structure of a similar ruthenium—vinylidene
complex, TpRuU(CI)(PPh3)=C=CHPh, has been reported.1®

The antiperiplanar geometry between the S-vinylidene
proton and the chloride ligand of complex 2 is nicely
set up for the elimination of HCIl. The treatment of
complex 2 (200 mg, 0.31 mmol) with EtsN (0.22 mL, 5
equiv) in the presence of CO (1 atm) at room tempera-
ture cleanly gave the stable acetylide complex CsMes-
Ru(CO)(PPh3)C=CPh (3) in an 85% isolated yield
(Scheme 1). The structure of 3 was established by both
spectroscopic methods® and by X-ray crystallography
(Figure 2).11 Bond lengths of the acetylide ligand (Ru—
C(11) = 2.030(4) A, C(11)—C(12) = 1.203(5) A, and
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C(12)—C(18) = 1.446(5) A) indicate a minimal n-delo-
calization between the acetylide ligand and the metal
center.

The formation of 3 was consistent with the generation
of an unsaturated acetylide species 1. In an attempt
to directly detect the acetylide 1 in the reaction mixture,
the reaction of 2 with EtzN in THF-dg was monitored
by 'H NMR spectroscopy. No detectable intermediates
were detected with or without CO in the temperature
range of 25—60 °C, and the reaction did not proceed in
the absence of CO at room temperature. The relatively
long reaction time (~24 h) for the formation of complex
3 suggested that the concentration of 1 was too low to
be detected by NMR with the weak base NEt;. The
reaction of complex 2 (10 mg, 0.016 mmol) with the
strong base LiOMe (6 mg, 10 equiv) in THF-dg (0.5 mL)
was monitored by H NMR at room temperature. The
initially red-colored solution turned to brownish-yellow
after 5 h, and a set of new peaks gradually appeared at
the expense of those due to 2. The spectral data of the
new species was consistent with the solvent-coordinated
form of the acetylide complex 1-THF,'2 but several
attempts to isolate the complex were not successful as
it decomposed during evaporation of the solvent. Treat-
ment of this solution with CO (1 atm) led to the
formation of the same adduct 3.

The in-situ-generated acetylide species 1 was found
to react with small molecules, such as H,, PhC=CPh,
and COg, under mild reaction conditions. For example,
the reaction of in-situ-generated 1 with H, at room
temperature cleanly produced the hydride—alkene com-
plex 4. In a typical reaction, H» (1 atm) was transferred
via a vacuum line to a THF solution containing complex
2 (200 mg, 0.31 mmol) and EtsN (0.44 mL, 10 equiv)
and the reaction mixture was stirred at room temper-
ature for 24 h. Analytically pure ruthenium product 4
was obtained after a recrystallization in Et,O/hexanes
(144 mg, 76% vyield). The *H NMR of 4 exhibited a
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(12) Selected spectroscopic data for 1-THF: 'H NMR (THF-dg, 300
MHz) ¢ 1.21 (s, CsMes); 33C{*H} NMR (THF-dg, 75 MHz) 6 124.5 (d,
Jpc = 24.5 Hz, Ru—C=), 114.5 (Ru—C=C), 94.4 (CsMes), 10.1 (CsMes);
S1IP{*H} NMR (THF-ds, 121.6 MHz) ¢ 53.0 (s, PPh3); IR (CsHg) vc=c
2067 cm™L.

Organometallics, Vol. 16, No. 17, 1997 3731

single ruthenium—hydride resonance at 6 —10.20 (d, Jpn
= 36.8 Hz), along with the coordinated alkene reso-
nances.® The similar reaction of 1 with PhC=CPh
produced the alkyne adduct 5 in 85% yield.8 The
addition of EtzN was found to be essential in initiating
these reactions since the vinylidene complex 2 alone did
not produce 4 or 5 in its absence.

The addition of CO, (2—3 atm) to a C¢Ds solution of
in-situ-generated 1 at 60 °C resulted in the formation
of the carboxylate complex 6. Complex 6 was cleanly
formed in a sealed NMR tube (>90%) but decomposed
to uncharacterizable products upon evaporation of the
solvent. The n2-carboxylate geometry of 6 was estab-
lished from the observations of a carbonyl carbon at ¢
168.2 (d, Jpc = 8.6 Hz) in the 13C NMR and two carbonyl
stretching modes (vco, (Sym) = 1452, vco, (asym) = 1618
cm™1) in the IR spectrum, which are similar to the
previously characterized formate complex CsMesRu-
(PCys3)(172-0O,CH).5 The formation of 6 can be explained
by migratory insertion of the nucleophilic acetylide
ligand to a weakly coordinated carbonyl carbon of CO.
The insertion of CO, to metal—carbon and —hydrogen
bonds has been commonly observed in other organome-
tallic CO; reactions.’® The addition of CO, to a satu-
rated metal—acetylide complex is usually known to
occur at the g-acetylide carbon to produce a carboxylate-
substituted vinylidene complex.!* Related CS; insertion
to a ruthenium—acetylide complex has also been
documented.3ab

In summary, the unsaturated ruthenium—acetylide
complex 1 was cleanly generated in situ from the
reaction of ruthenium—vinylidene complex 2 with a
base. Complex 1 was shown to react with a variety of
small molecules, such as CO, H,, PhC=CPh, and CO,.
Recent preliminary results indicate that complex 1 is
an effective catalyst for the dimerization of terminal
alkynes.’> Studies directed toward the reactions of 1
with alkenes and alkynes are currently underway.
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