# Siloxy Effect on Intramolecular Cyclization of Tungsten $-\eta^1$ -Siloxypropargyl Complexes: Formation of 2,5-Dihydrofurans versus y-Lactones

Shwu-Ju Shieh, Jang-Shyang Fan, Malapaka Chandrasekharam, Fen-Ling Liao, Sue-Lein Wang, and Rai-Shung Liu\*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC

Received April 22, 1997<sup>®</sup>

Treatment of tungsten $-\eta^{1}$ -4-(triethylsiloxy)propargyl and  $\eta^{1}$ -4-(tripropylsiloxy)propargyl compounds 8a-d and 9a-d with CF<sub>3</sub>CO<sub>2</sub>H in cold CH<sub>2</sub>Cl<sub>2</sub> yielded a mixture of tungsten  $\eta^{1}$ -2,5-dihydrofurans **10a**-**d** and  $\eta^{3}$ -syn- $\gamma$ -lactones **4a**-**d**. The product ratios depend on the types of alkyl and siloxy substituents of the propargyl ligand;  $\eta^1$ -2,5-dihydrofurans **10a**-d were formed in significant amount when the substituent is a secondary alkyl group. This cyclization pathway is in sharp contrast to our previous report that the dimethyl-tertbutylsiloxy group yielded only  $\eta^3$ -syn- $\gamma$ -lactones **4a**–**d**. To validate this reaction on a complex system, we prepared the chiral tungsten $-\eta^1$ -4-(triethylsiloxy)propargyl species **12b**, which ultimately gave optically active tungsten  $\eta^{1}$ -2,5-dihydrofuran **13** in 68% yields. In connection with our previous report, we elaborated three types of cyclization reactions on chiral tungsten  $\eta^1$ -propargylic triols **12a**-c, to afford chiral  $\eta^1$ -2,5-dihydrofurans and unsaturated  $\gamma$ - and  $\delta$ -lactones in reasonable yields.

## Introduction

Acid-promoted intramolecular alkoxycarbonylations of tungsten $-\eta^1$ -propargyl complexes **1**-**3** led to formation of  $\eta^3 - \gamma$ ,  $\eta^3 - \delta$ -, and  $\eta^3 - \epsilon$ -lactones **4**–**6** in good yields;<sup>1,2</sup> the reaction involved the tungsten $-\eta^2$ -allene cationic intermediates  $A^{1-5}$  Among these cyclizations,  $\delta$ - and  $\epsilon$ -lactones **5** and **6** followed *anti* and *syn* stereoselections<sup>1,2</sup> respectively, whereas the  $\eta^3$ - $\gamma$ -lactone **4** was formed in 1:1 diastereomeric mixtures.<sup>1,2</sup> The selectivity problem of **4** can be circumvented by introduction of a dimethyl-*tert*-butylsiloxy group on these  $\eta^1$ -propargyl species such as 7 (Scheme 1, path 2), leading to syn stereoselection of  $\eta^3$ - $\gamma$ -lactone **4**;<sup>1,2</sup> the reaction requires small amounts of H<sub>2</sub>O and CF<sub>3</sub>SO<sub>3</sub>H (optimum conditions: H<sub>2</sub>O, 0.8–1.0 equiv; CF<sub>3</sub>SO<sub>3</sub>H, 0.30 equiv). The overall reaction is shown in path 2 of Scheme 1; the proposed formation mechanism of syn  $\eta^3$ - $\gamma$ -lactones **4** is supported by results obtained from isotopic  $H_2O^*$  (O\* = <sup>18</sup>O) labeling as well as by isolation of the key  $\eta^3$ -2carboxyallyl intermediate.<sup>1,2</sup> To study thoroughly the drastic impact of the siloxy group, we report here a new cyclization of these propargyl complexes with alteration of their tethered siloxy groups.

### **Results and Discussion**

As shown in Scheme 2, tungsten $-\eta^1$ -propargyl compounds **1a**-**d** were readily converted to their triethyland tripropylsiloxy derivatives 8a-d and 9a-d in high yields (>90%). We previously reported<sup>1,2</sup> that  $CF_3SO_3H$ 

(5) Lin, S.-H.; Vong, W.-J.; Liu, R.-S. Organometallics 1995, 14, 1619

acidification of tungsten $-\eta^1$ -(dimethyl-*tert*-butylsiloxy)propargyl species 7a-d afforded the syn isomers of tungsten  $\eta^3$ - $\gamma$ -lactones **4a**-**d** in yields exceeding 80% (Scheme 2). We now expand this reaction to those tungsten complexes having different siloxy derivatives. Scheme 3 shows the results for acidification of 8a and 9a under various conditions. An interesting finding here is the formation of tungsten  $\eta^{1}$ -2,5-dihydrofuran **10a** in addition to the expected syn- $\eta^3$ - $\gamma$ -lactone **4a**. These two compounds were easily separable on a silica column; the isolated yields are provided in Scheme 3. Both triethylsiloxy and tripropylsiloxy derivatives **8a** and **9a** gave the products **10a** and **4a** with close **10a**/ 4a ratios, i. e. 1.42 and 1.42, respectively (entries 1 and 4). When the reactions were performed with CF<sub>3</sub>SO<sub>3</sub>H or in CH<sub>3</sub>CN (entries 2 and 3), the resulting ratios 10a/ **4b** were 1.47 and 1.40, respectively, similar to that (1.42) in entry 1.

We extended the reactions to other tungsten triethylsiloxy and tripropylsiloxy complexes 8b-d and 9bd; the results were summarized in Scheme 4. Entries 1-3 show the product ratios of 10n/4n (n = b-d) for  $\eta^1$ -triethylsiloxy derivatives **8b**-**d** having different alkyl substituents R'. A small ethyl group as in compound 8a gave a low 10b/4b ratio, ca. 0.44 (entry 1) in favor of the  $\eta^3$ - $\gamma$ -lactone. The **10b**/**4b** ratio increases gradually with increasing alkyl sizes, i.e. 0.65 for **8b** (entry 2,  $R' = MeC=CH_2$ ) and 0.90 for **8c** (entry 3, R' =cyclohexyl). Entries 4-6 show the results for the tripropylsiloxy derivatives **9b**-**d**; the **10b/4b** ratio was 1.2 for compound **9b** ( $\mathbf{R}' = \mathbf{Et}$ ), significantly larger than that (10b/4b = 0.43) for its triethylsiloxy analogue **8b**. In entries 5 and 6, attempts to improve the selectivity of  $\eta^1$ -2,5-dihydrofuran were less pronounced for **9c** and **9d**; the product ratios 10c/4c = 0.64 and 10d/4d = 0.93were very close to those of their triethylsiloxy analogues **8c** and **8d** (entries 2 and 3).

The siloxy effect on these cyclization reactions could be potentially useful for the synthesis of various lactones

<sup>&</sup>lt;sup>®</sup> Abstract published in Advance ACS Abstracts, August 1, 1997. (1) Chen, C.-C.; Fan J.-S.; Lee, G.-H.; Peng, S.-M.; Wang, S.-L.; Liu,

<sup>(1)</sup> Chen, C.-C.; Fan J.-S.; Lee, G.-H.; Peng, S.-M.; Wang, S.-L.; Liu,
R.-S. J. Am. Chem. Soc. 1995, 117, 2933.
(2) Chen, C.-C.; Fan J.-S.; Lee, G.-H.; Peng, S.-M.; Wang, S.-L.; Liu,
R.-S. J. Am. Chem. Soc. 1996, 118, 9279.
(3) Charrier, C.; Collin, J.; Merour, J. Y.; Roustan, J. L. J. Organomet. Chem. 1978, 162, 57.
(4) Cheng, M.-H.; Ho, Y. H.; Chen, C. H.; Lee, G. H.; Peng, S. M.;
Chu, S. Y.; Liu, R. S. Organometallics 1994, 13, 4082.
(5) Lin, S.-H.; Vong, W.-J.; Liu, R.-S. Organometallics 1995, 14.

the chiral chloropropargylic triol<sup>6</sup> **11a**, which was

subsequently transformed into 11b and 11c in 92% and

96% yields, respectively. As shown in Scheme 5, treat-

ment of **11a**-**c** with CpW(CO)<sub>3</sub>Na<sup>7</sup> afforded  $\eta^1$ -(trieth-

vlsiloxy)propargyl species **12a**-c in good yields (>85%).

In contrast with **8a**-**d**, the triethylsiloxy effect was very

significant in acidification of **12b** with CF<sub>3</sub>CO<sub>2</sub>H (0.25

equiv), so that chiral 2,5-dihydrofuran 13 was formed

as the major product (68% yield) in addition to a small amount of the  $\eta^3$ - $\gamma$ -lactone **14**-*syn* (5% yield). If one

(6) Yadav, J. S.; Chander, M. C.; Rao, C. S. Tetrahedron Lett. 1989,

(7) Fischer, E. O.; Hafner, W.; Stahl, H. O. Z. Anorg. Allg. Chem.

30, 5455.

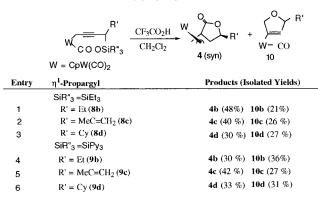

1955, *282*, 47.

C17

C18

C19

Scheme 1




equiv of CF<sub>3</sub>CO<sub>2</sub>H was used, the yields of 13 and 14 were 61% and 10%, respectively. The X-ray structure<sup>8</sup> of 13 is given in Figure 1 to confirm its absolute configuration. By our previous method given in Scheme 1 (path 1), CF<sub>3</sub>SO<sub>3</sub>H-promoted lactonization of **12a** afforded the two diastereomers 14-syn and 14-anti that were separable on a silica column in 33% and 38% yields, respectively. Figure 2 shows the X-ray structure<sup>9</sup> of 14-anti to confirm its configuration. Treatment of

<sup>(8)</sup> Crystal data for compound **13**: orthorhombic, space group  $P2_12_12_1$ , a = 7.1921(3) Å, b = 10.1576(5) Å, c = 23.9737(11) Å, Z = 4,

 $P2_{12}(2_1, a = 7.1921(3) \text{ Å}, b = 10.1576(3) \text{ Å}, c = 23.9737(11) \text{ Å}, Z = 4, V = 1751.37(23) \text{ Å}^3, \text{ final } R = 0.0186, R_w = 0.0193.$ (9) Crystal data for compound **14-anti**: orthorhombic, space group  $P2_{12}(2_1, a = 21.7945(4) \text{ Å}, b = 21.8583(2) \text{ Å}, c = 7.1876(1) \text{ Å}, Z = 8, V = 3424.1(11) \text{ Å}^3, \text{ final } R = 0.0465, R_w = 0.0434.$ 

Scheme 4



the methyl ether species 12c with CF<sub>3</sub>SO<sub>3</sub>H (0.25 equiv) under similar conditions afforded the  $\eta^3$ - $\delta$ -lactone **15**anti exclusively in 76% yield. The anti and syn configurations of 15 refer to the orientation of the methoxy group relative to CpW(CO)<sub>2</sub>. Characterization of the structure of 15-anti relies on the X-ray diffraction study<sup>10</sup> of its acetyl derivative **16** that has better crystal quality; the molecular structure of 16 is shown in Figure 3 to reveal that the methoxy group of 15-anti lies away from the bulky  $CpW(CO)_2$  fragment to minimize their mutual steric interactions. In contrast with 10a-d, compound 13 was obtained in high yields (68%); this is probably due to steric interaction of dioxolane group that forces triethylsiloxy group tilt toward the tungstenallene carbon to induce a cyclization reaction. According to this conformation effect, we propose that tungsten- $\eta^{1}$ -2,5-dihydrofurans are formed more favorably when the starting propargyl species 8a-d and 9a-d have a sterically demanding alkyl substituent R' and siloxy group OSiR"3. This model accounts for most of the product ratios shown in Scheme 4 as R' and OSiR"<sub>3</sub> were modified.

The X-ray structure of optically active  $\eta^{1}$ -2,5-dihydrofuran 13 enables us to propose its formation mechanism as shown in Scheme 6. The  $C_{\delta}$  carbon of **13** has an S configuration, implying retention of stereochemistry with respect to the  $C_{\delta}$  carbon of **12b**. The cyclization reaction can be envisaged to proceed via protonation at the  $\equiv C_{\gamma}$  carbon<sup>11–13</sup> of **12b**, yielding the  $\eta^2$ -allene cationic intermediate **A**. We believe that the the  $\eta^2$ allene carbon of **A** is highly electrophilic,<sup>10–12</sup> reacting with its siloxy oxygen to yield the trioxonium species B; further cleavage of the Si-O bond of B is achieved by counterion X. A competitive reaction here is the formation of the  $\gamma$ -lactone **14**-*syn* that was very difficult to annihilate because the formation is accelerated by a catalytic amount of water; elucidation of the mechanism including the intermediate C has been described in our previous study.<sup>1,2</sup>

Scheme 5 shows the formation of the three tungsten  $\eta^1$ -heterocycles **13**, **14**-*syn*, *anti*, and **15**, derived from the chiral chloropropargylic triol 11a; these organometallics ultimately provide optically active 2,5-dihydrofurans, unsaturated  $\gamma$ - and  $\delta$ -lactones, and demetalation reactions. As shown in Scheme 7, I<sub>2</sub> oxidative demetalation<sup>14</sup> of chiral  $\eta^{1}$ -2,5-dihydrofuran **13** in MeOH afforded unsaturated ester 17 in 45% yield. Treatment of a *syn* and *anti* diastereomeric mixture of  $\eta^3$ - $\gamma$ -lactone 14 with NOBF<sub>4</sub> yielded an allyl cation<sup>15-17</sup> that reacted with Bu<sub>4</sub>NBH<sub>4</sub> to afford chiral furanone 18 in 58% yield. A similar transformation of chiral  $\eta^3$ - $\delta$ -lactone **16** into unsaturated  $\delta$ -lactone **19** was achieved in 63% yield.

In conclusion, we have reported the effect of the siloxy group in the intramolecular cyclization of tungsten propargylic alcohol. The products may be syn- $\eta^3$ - $\gamma$ lactones and  $\eta^3$ -2,5-dihydrofuran. As described before, utilization of the dimethyl-tert-butylsiloxy group only yielded an  $\eta^3$ - $\gamma$ -lactone. Formation of  $\eta^1$ -2,5-dihydrofuran was favored by increasing sizes of siloxy groups and alkyl substituents of the propargyl ligands. Toward this direction, we prepared the large chiral chloropropargylic alcohol **11**, which afforded chiral  $\eta^{1}$ -2,5-dihydrofuran in good yield. In connection with our previous investigation, we also demonstrated that this chiral chloropropargylic alcohol 11 could ultimately give optically active unsaturated  $\gamma$ - and  $\epsilon$ -lactones in reasonable yields.

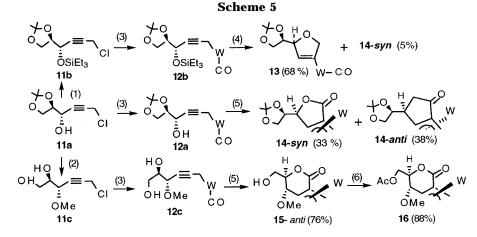
#### **Experimental Section**

Unless otherwise noted, all reactions were carried out under a nitrogen atomsphere in oven-dried glassware using standard syringe, cannula, and septa apparatus. Benzene, diethyl ether, tetrahydrofuran, and hexane were dried with sodium benzophenone and distilled before use. Dichloromethane was dried over CaH<sub>2</sub> and distilled before use. W(CO)<sub>6</sub>, CF<sub>3</sub>CO<sub>2</sub>H, CF<sub>3</sub>SO<sub>3</sub>H, propargyl chloride, and sodium were obtained commercially and used without purification. Syntheses of compounds 1-6 were reported in our previous paper. Elemental analyses were performed at National Cheng Kung University, Taiwan. The synthetic scheme and characterization of 11a-c were provided in the Supporting Information of our previous paper.

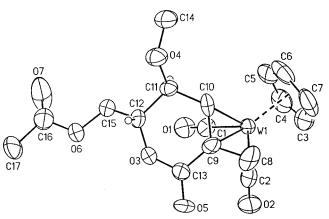
(1) General Procedure for Syntheses of Tungsten $-\eta^{1}$ -(Triethylsiloxy)propargyl Complexes. Synthesis of 8a. To a DMF solution (30 mL) of 1a (1.20 g, 2.70 mmol) and imidazole (370 mg, 5.40 mmol) was added triethylsilyl chloride (450 mg, 3.00 mmol); the mixture was stirred for 8 h before sequential addition of aqueous NaCl (25 mL). The solution was extracted with diethyl ether (3  $\times$  20 mL) and flashchromatographed through a short silica column to yield 8a as a yellow oil (1.50 g, 2.56 mmol, 95%). IR (neat,  $cm^{-1}$ ):  $\nu$ (CO) 2018 (vs), 1921 (vs). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>): δ 5.48 (s, 5H, Cp), 4.15 (m 1H, OCH), 2.01 (d, J = 2.1 Hz, 2H, W-CH<sub>2</sub>), 1.76 (m, 1H, CHMe<sub>2</sub>), 0.94 (m, 15H, CHMe<sub>2</sub> + SiCH<sub>2</sub>CH<sub>3</sub>), 0.64 (m, 6H, Si(CH<sub>2</sub>CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>):  $\delta$  229.1, 216.2, 93.8, 92.5, 80.6, 68.1, 18.4, 17.6, 6.8, 4.9, -32.1. MS  $(75 \text{ eV}; m/e): 530 (M^+ - 28).$ 

(2) Synthesis of 8b. Compound 1b (1.50 g, 3.50 mmol), imidazole (480 mg, 7.00 mmol), and triethylsilyl chloride (580 mg, 3.80 mmol) afforded 8b as a yellow oil (1.83 g, 3.36 mmol, 96%). IR (neat, cm<sup>-1</sup>): v(CO) 2018 (vs), 1921 (vs). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>): δ 5.49 (s, 5H, Cp), 4.30 (m, 1H, OCH), 1.99 (d, J = 2.2 Hz, 2H, W-CH<sub>2</sub>), 1.63 (m; 2H, CH<sub>2</sub>), 0.95 (m, 12H, CH<sub>2</sub>CH<sub>3</sub> + SiCH<sub>2</sub>CH<sub>3</sub>), 0.63 (m, 6H, SiCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (75

<sup>(10)</sup> Crystal data for compound 16: monoclinic, space group P21, a = 8.0692(2) Å, b = 9.5150(2) Å, c = 12.0951(4) Å, z = 2, V = 879.6(3) Å<sup>3</sup>, final R = 0.0396,  $R_{\rm w} = 0.0420$ .

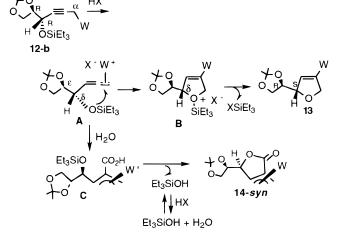

<sup>(11)</sup> Giulieri, F.; Benaim, J. Nouv. J. Chem. **1985**, *9*, 335. (12) Giulieri, F.; Benaim, J. J. Organomet. Chem. **1984**, *276*, 367. (13) Rosenblum, M.; Watkins, J. C. J. Am. Chem. Soc. 1990, 112, 6316

<sup>(14)</sup> Shu, H.-G.; Shiu, L.-H.; Wang, S.-H.; Wang, S.-L.; Lee, G.-H.; Peng, S.-M.; Liu, R.-S. J. Am. Chem. Soc. 1996, 118, 530.


<sup>(15)</sup> Faller, J. W.; Rosan, A. M. Ann. N. Y. Acad. Sci. 1977, 295, 186.

<sup>(16)</sup> Faller, J. W.; Chodosh, D. F.; Katahira, D. J. Organomet. Chem. 1980. 187. 227.

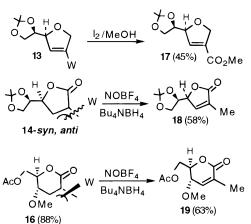
<sup>(17)</sup> Adams, R. D.; Chodosh, D. F.; Faller, J. W.; Rosan, A. M. J. Am. Chem. Soc. 1979, 101, 2570.




$$\begin{split} & = CpW(CO)_2 \ (1) \ CISiEt_3 \ (1.0 \ equiv), \ imidazole, \ 2.0 \ equiv) \ (2) \ NaH(1.0 \ equiv), \ Mel \ (2.0 \ equiv); \ CH_3CO_2H \ (60 \ wt\%) \ (3) \ NaCpW(CO)_3 \ (1.0 \ equiv) \ (4) \ CF_3CO_2H \ (0.25 \ equiv), \ - \ 40 \ ^0C) \ (5) \ CF_3SO_3H \ (0.25 \ equiv) \ (6) \ Ac_2O/DMAP \end{split}$$



**Figure 3.** ORTEP drawing of compound **16.** Selected bond lengths (Å): W(1)-C(8) = 2.285(11), W(1)-C(1) = 1.994-(11), W(1)-C(10) = 2.267(11), C(9)-C(8) = 1.416(16), C(9)-C(10) = 1.413(17), C(13)-O(5) = 1.206(14).


#### Scheme 6



MHz; CDCl<sub>3</sub>):  $\delta$  229.1, 216.3, 93.2, 92.6, 81.8, 64.6, 32.6, 9.7, 6.8, 4.8, -32.3. MS (75 eV; m/e): 544 (M<sup>+</sup>).

(3) Synthesis of 8c. Compound 1c (1.20 g, 2.70 mmol), imidazole (370 mg, 5.40 mmol), and triethylsilyl chloride (450 mg, 3.00 mmol) afforded 8c as a yellow oil (1.40 g, 2.52 mmol, 93%). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2020 (s), 1918 (s). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  5.48 (s, 5H, Cp), 5.04 (s, 1H, =CHH), 4.80 (s, 1H, =CHH'); 4.78 (d, J = 2.2 Hz, 1H, OCH), 1.98 (d, J = 2.2 Hz, 2H, W–CH<sub>2</sub>), 1.82 (s, 3H, Me), 0.95 (m, 9H, SiCH<sub>2</sub>CH<sub>3</sub>),

Scheme 7



0.64 (m, 6H, SiC $H_2$ CH<sub>3</sub>). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>):  $\delta$  229.0, 216.3, 216.2, 146.2, 110.3, 94.3, 92.6, 81.6, 67.1, 17.8 (C<sub>7</sub>), 6.8, 4.8, -32.3. MS (75 eV; m/e): 556 (M<sup>+</sup>).

(4) Synthesis of 8d. Compound 1d (2.00 g, 4.1 mmol), imidazole (560 mg, 8.2 mmol), and triethylsilyl chloride (680 mg, 4.5 mmol) afforded 8d as a yellow oil (2.32 g, 3.89 mmol, 95%). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2018 (s), 1921 (s). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>):  $\delta$  5.48 (s, 5H, Cp), 4.15 (m, 1H, OCH), 2.01 (d, J = 2.2 Hz, 2H, W-CH<sub>2</sub>), 1.83-1.63, 1.23-1.03 (m, 11H, cyclohexyl), 0.96 (m, 9H, SiCH<sub>2</sub>CH<sub>3</sub>), 0.62 (m, 6H, Si(CH<sub>2</sub>-CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>):  $\delta$  229.1, 216.2, 93.9, 92.6, 81.1, 68.1, 45.7, 29.0, 28.4, 26.6, 26.1, 6.9, 4.9, -32.0. MS (75 eV; m/e): 570 (M<sup>+</sup> - 28).

(5) Synthesis of 9a. Compound 1a (1.50 g, 3.37 mmol), imidazole (460 mg, 6.74 mmol), and tripropylsilyl chloride (710 mg, 3.7 mmol) afforded 9a as a yellow oil (1.94 g, 3.24 mmol, 96%). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2019 (s), 1931 (s). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>):  $\delta$  5.46 (s, 5H, Cp), 4.15 (m, 1H, OCH), 2.00 (d, J = 2.2 Hz, 2H, W–CH<sub>2</sub>), 1.73 (m, 1H, CHMe<sub>2</sub>), 1.43–1.33 (m, 6H, (SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 0.97–0.91 (m, 15H, Si(CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>) + 2Me), 0.66–0.59 (m, 6H, SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>):  $\delta$  229.1, 216.2, 93.9, 92.6, 80.6, 68.8, 35.9, 18.6, 18.4, 16.7, -32.1. MS (75 eV; m/e): 600 (M<sup>+</sup>).

(6) Synthesis of 9b. Compound 1b (1.50 g, 3.48 mmol), imidazole (475 mg, 6.96 mmol), and tripropylsilyl chloride (736 mg, 3.83 mmol) afforded 9b as a yellow oil (1.98 g, 3.37 mmol, 97%). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2012 (s), 1912 (s). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>):  $\delta$  5.47 (s, 5H, Cp), 4.25 (m, 1H, OCH), 1.98 (d, J = 2.2 Hz, 2H, W–CH<sub>2</sub>), 1.62 (m, 2H, CH<sub>2</sub>), 1.43–1.33 (m, 6H, SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, 0.94 (m, 12H, SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> + Me), 0.64– 0.58 (m, 6H, SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>):  $\delta$  (7) Synthesis of 9c. Compound 1c (1.40 g, 3.16 mmol), imidazole (430 mg, 6.32 mmol), and tripropylsilyl chloride (670 mg, 3.47 mmol) afforded 9c as a yellow oil (1.8 g, 3.0 mmol, 95%). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2021 (s), 1923 (s). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>):  $\delta$  5.46 (s, 5H, Cp), 5.45 (s, 1H, =CH*H*), 5.02 (s, 1H, C*H*H'), 4.78 (s, 1H, OCH), 1.98 (d, J = 2.2 Hz, 2H, W-CH<sub>2</sub>), 1.82 (s, 3H, C<sub>5</sub>H), 1.44–1.28 (m, 6H, SiCH<sub>2</sub>C*H*<sub>2</sub>C*H*<sub>3</sub>), 0.97–0.91 (m, 9H, SiCH<sub>2</sub>C*H*<sub>2</sub>C*H*<sub>3</sub>), 0.65–0.60 (m, 6H, SiC*H*<sub>2</sub>-CH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>):  $\delta$  228.9, 216.1, 146.2, 110.2, 94.2, 92.5, 80.4, 67.1, 18.6, 18.3, 17.7, 16.7, -32.3. MS (75 eV; *m*/*e*): 598 (M<sup>+</sup>).

(8) Synthesis of 9d. Compound 1d (1.6 g, 3.3 mmol), imidazole (450 mg, 6.6 mmol), and tripropylsilyl chloride (700 mg, 3.63 mmol) afforded 9d as a yellow oil (2.05 g, 3.2 mmol, 97%). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2023 (s), 1927 (s). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>):  $\delta$  5.46 (s, 5H, Cp), 4.12 (m, 1H, C<sub>4</sub>H), 2.00 (d,  $J_{14} = 2.0$  Hz, 2H, C<sub>1</sub>H), 1.75–1.65, 1.42–1.27, 1.25–1.01, 0.96–0.90, 0.65–0.58 (m, 32H, cyclohexyl + OTPS). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>):  $\delta$  229.1, 216.2 (3W–CO), 93.9 (C<sub>3</sub>), 92.6 (Cp), 81.0 (C<sub>2</sub>), 68.1 (C<sub>4</sub>), 45.7 (C<sub>5</sub>), 28.9, 28.2, 26.6, 26.1, 25.9 (cyclohexyl), 18.6 (Si(CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>)<sub>3</sub>), 18.5 (Si(CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>)<sub>3</sub>), 16.8 (Si(*C*H<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>)<sub>3</sub>), -32.0 (C<sub>1</sub>). MS (75 eV; *m/e*): 640 (M<sup>+</sup>).

(9) General Procedure for Syntheses of CpW(CO)<sub>3</sub>( $\eta^{1}$ -2,5-dihydrofuran) Compounds. Synthesis of 10a. In a typical reaction, to a cold CH<sub>2</sub>Cl<sub>2</sub> (-40 °C) solution (20 mL) of 8a (480 mg, 0.86 mmol) was added CF<sub>3</sub>CO<sub>2</sub>H (98 mg, 0.86 mmol), and the mixture was stirred for 4 h before the temperature was raised to 0 °C. To this solution was added a saturated NaHCO<sub>3</sub> solution, followed by evaporation to half its volume. The organic layer was extracted with diethyl ether  $(2 \times 20 \text{ mL})$ , concentrated, and eluted through a silica column (diethyl ether/hexane, 1/1) to give **10a** ( $R_f$  0.4, 141 mg, 0.32 mmol, 37%) and 4a (Rf 0.60, 99 mg, 0.22 mmol, 26%). Spectral data for 10a: IR (Nujol, cm<sup>-1</sup>) v(CO) 2023 (s), 1930 (s); <sup>1</sup>H NMR (300 MHz;  $C_6D_6$ )  $\delta$  5.70 (br s, 1H, =CH), 4.7 (m, 1H, OCH), 4.63 (m, 2H, OCH<sub>2</sub>), 4.50 (s, 5H, Cp), 1.85 (m, 1H, CHMe<sub>2</sub>), 1.02 (t, J = 6.8 Hz, 3H, Me), 1.00 (t, J = 6.8 Hz, 3H, Me); <sup>13</sup>C NMR (75 MHz; C<sub>6</sub>D<sub>6</sub>) & 228.4, 216.9, 216.8, 141.6, 118.7, 92.7, 90.9, 89.2, 34.6, 18.6, 18.1; MS (EI, 12 eV; m/e) 472 (M<sup>+</sup>). Anal. Calcd for C<sub>15</sub>H<sub>16</sub>WO<sub>4</sub>: C, 40.57; H, 3.67. Found: C, 40.68; H, 3.70.

(10) Synthesis of 10b. Compound 8b (510 mg, 0.94 mmol) and CF<sub>3</sub>CO<sub>2</sub>H (107 mg, 0.94 mmol) in cold CH<sub>2</sub>Cl<sub>2</sub> (-40 °C) afforded 10b (86 mg, 0.20 mmol, 21%) and 4b (194 mg, 0.45 mmol, 48%). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2012 (s), 1912 (s). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>):  $\delta$  5.65 (br s, 1H, =CH), 5.48 (s, 5H, Cp), 4.65 (m, 1H, OCH), 4.50 (m, 2H, OCH<sub>2</sub>), 1.48 (m, 2H, CH<sub>2</sub>), 0.85 (t, *J* = 7.4 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>)  $\delta$  227.1, 216, 142.7, 117.5, 91.2, 88.6, 88.3, 29.1, 9.1. MS (EI, 12 eV; *m/e*): 430 (M<sup>+</sup>). Anal. Calcd for C<sub>14</sub>H<sub>14</sub>WO<sub>4</sub>: C, 39.10; H, 3.28. Found: C, 39.28; H, 3.17.

(11) Synthesis of 10c. Compound 8c (500 mg, 0.90 mmol), and CF<sub>3</sub>CO<sub>2</sub>H (103 mg, 0.90 mmol) in cold CH<sub>2</sub>Cl<sub>2</sub> (-40 °C) afforded 10c (104 mg, 0.23 mmol, 26%) and 4c (160 mg, 0.36 mol, 40%). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2013 (s), 1912 (s). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>):  $\delta$  5.54 (br s, 1H, =CH), 5.49 (s, 5H, Cp), 4.87 (s, 1H, =CHH'), 4.74 (s, 1H, =CHH'), 4.57 (m, 2H, C<sub>1</sub>H), 1.59 (s, 3H, C<sub>7</sub>H). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>):  $\delta$  226.8, 216.0, 147.1, 141.1, 118.7, 110.8, 93.9, 91.0, 89.5, 17.0. MS (EI, 12 eV; *m/e*): 442 (M<sup>+</sup>). Anal. Calcd for C<sub>15</sub>H<sub>14</sub>WO<sub>4</sub>: C, 40.75; H, 3.19. Found: C, 40.45; H, 3.11.

(12) Synthesis of 10d. Compound 8d (600 mg, 1.00 mmol) and CF<sub>3</sub>CO<sub>2</sub>H (114.0 mg, 1.00 mmol) in cold CH<sub>2</sub>Cl<sub>2</sub> (-40 °C) afforded 10d (145.6 mg, 0.30 mmol, 30%) and 4d (131 mg, 0.27 mmol, 27%). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2012 (s), 1912 (s). <sup>1</sup>H NMR (300 MHz; CDCl<sub>3</sub>):  $\delta$  5.64 (d, J = 2.0 Hz, 1H, =CH), 5.46 (s, 5H, Cp), 4.45 (m, 3H, OCH + OCH<sub>2</sub>), 1.69–0.91 (m, 11H, cyclohexyl). <sup>13</sup>C NMR (75 MHz; CDCl<sub>3</sub>):  $\delta$  227.1, 216.1, 141.3, 117.3, 91.7, 91.1, 88.6, 44.1, 28.7, 28.3, 26.6, 26.2. MS

(75 eV; m/e): 484 (M<sup>+</sup>). Anal. Calcd for C<sub>18</sub>H<sub>20</sub>WO<sub>4</sub>: C, 44.65; H, 4.16. Found: C, 44.80; H, 4.22.

(13) Synthesis of Chiral Tungsten- $\eta^1$ -Propargyl Complex 12a. To a THF solution (50 mL) of CpW(CO)<sub>3</sub>Na (5.25 g, 14.7 mmol) was slowly added the chloropropargylic triol<sup>6</sup> 11a (3.00 g, 14.7 mmol) in THF (5.0 mL); the mixture was stirred for 5 h at 23 °C. The solution was evaporated to dryness, and the residue was chromatographed on a silica column to yield 12a as a yellow solid (6.50 mg, 13.1 mmol). [ $\alpha$ ] = 7.20° (c = 0.50, CH<sub>2</sub>Cl<sub>2</sub>). IR (Nujol, cm<sup>-1</sup>): 3445 (vs),  $\nu$ (CO) 2015 (s), 1920 (s). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.48 (s, 5H, Cp), 4.39 (dt, J = 4.7, 2.3 Hz, 1H, OCH), 4.08 (ddd, J = 11.2, 6.1, 4.7 Hz, 1H, OCH), 4.02–3.92 (m, 2H, OCH<sub>2</sub>), 1.91 (d, J = 2.3 Hz, 2H, W–CH<sub>2</sub>). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  228.6, 216.5, 109.6, 95.9, 91.2, 78.9, 77.9, 65.5, 62.8, 26.5, 26.2, -33.2. MS (EI, 12 eV; m/e): 502 (M<sup>+</sup>).

(14) Synthesis of 12b. Optically active chloropropargylic triol 11b (2.00 g, 6.30 mmol) and CpW(CO)<sub>3</sub>Na (2.30 g, 6.30 mmol) afforded 12b (3.56 g, 5.78 mol) as a yellow solid. [ $\alpha$ ] = 33.5° (c = 0.33, CH<sub>2</sub>Cl<sub>2</sub>). IR (Nujol, cm<sup>-1</sup>):  $\nu$ (CO) 2013 (s), 1918 (s). <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  4.78 (s, 5H, Cp), 4.52 (dt, J = 5.3, 2.1 Hz, 1H, SiOCH), 4.10–4.06 (m, 3H, OCH + OCH<sub>2</sub>), 1.93 (d, J = 2.1 Hz, 2H, W–CH<sub>2</sub>), 1.45 (s, 3H, CH<sub>3</sub>), 1.30 (s, 3H, CH<sub>3</sub>), 1.07 (t, J = 8.0 Hz, 9H, SiCH<sub>2</sub>CH<sub>3</sub>), 0.74 (q, J = 8.0 Hz, 6H, SiCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  229.4, 216.6, 100.6, 92.5, 95.3, 79.9, 80.3, 66.6, 64.9, 27.0, 25.7, 6.9, 5.5, -32.5. MS (EI, 12 eV; m/e): 616 (M<sup>+</sup>), 588 (M<sup>+</sup> – CO), 560 (M<sup>+</sup> – 2CO).

(15) Synthesis of 12c. Optically active chloropropargylic triol 11c (2.00 g, 6.30 mmol) and CpW(CO)<sub>3</sub>Na (4.00 g, 11.23 mmol) afforded 12c (4.38 g, 9.21 mmol) as a yellow solid. [ $\alpha$ ] = 29.5° (c = 0.25, CH<sub>2</sub>Cl<sub>2</sub>). IR (Nujol, cm<sup>-1</sup>):  $\nu$ (OH) 3444 (vs),  $\nu$ (CO) 2016 (s), 1915 (s). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.47 (s, 5H, Cp), 4.13 (dt, J = 5.5, 2.3 Hz, 1H, OCH), 3.83 (q, J = 6.0 Hz, 1H, OCH), 3.75–3.69 (m, 2H, OCH<sub>2</sub>), 3.39 (s, 3H, OCH<sub>3</sub>), 1.97(d, J = 2.3 Hz, 2H, W–CH<sub>2</sub>). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  228.1, 216.7, 92.4, 92.0, 74.9, 74.6, 73.3, 63.4, 56.6. –32.1. MS (EI, 12 eV; m/e): 476 (M<sup>+</sup>).

(16) Intramolecular Cyclization of 12a. Compound 12a (2.50 g, 4.98 mmol) and  $CF_3CO_2H$  (1.25 mmol) in cold  $CH_2Cl_2$  (-40 °C) afforded 14-*anti* (825 mg, 1.64 mmol, 33%) and 14-*syn* (950 mg, 1.89 mol, 38%) after chromatographic separation.

Spectral data for **14**-*syn*:  $[\alpha] = -47.5^{\circ}$  (c = 0.10, CH<sub>2</sub>Cl<sub>2</sub>); IR (neat, cm<sup>-1</sup>)  $\nu$ (CO) 2018 (s), 1917 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.32 (s, 5H, Cp), 4.86 (dd, J = 9.2, 3.9 Hz, 1H, OCH), 4.11–4.00 (m, 2H, OCH<sub>2</sub>), 3.76 (d, J = 3.9 Hz, 1H,  $\eta^3$ -CH), 3.48 (dt, J = 9.2, 5.0 Hz, 1H, OCH), 3.05 (d, J = 4.0 Hz, 1H,  $\eta^3$ -CHH), 1.49 (d, J = 4.0 Hz, 1H,  $\eta^3$ -CHH), 1.45 (s, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  221.9, 220.5, 176.1, 110.0, 93.5, 81.0, 79.5, 68.8, 67.4, 65.4, 27.0, 25.3, 20.0; MS (75 eV; m/e) 502 (M<sup>+</sup>), 474 (M<sup>+</sup> – CO). Anal. Calcd for C<sub>17</sub>H<sub>18</sub>WO<sub>6</sub>: C, 40.66; H, 3.61. Found: C, 40.65; H, 3.77.

Spectral data for **14**-*anti*:  $[\alpha] = 66.9^{\circ}$  (c = 0.25, CH<sub>2</sub>Cl<sub>2</sub>); IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 1956 (vs), 1887 (vs); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.33 (s, 5H, Cp), 4.42 (d, J = 6.8 Hz, 1H, OCH), 4.16–4.02 (m, 3H, OCH + OCH<sub>2</sub>), 3.65 (s, 1H,  $\eta^3$ -CH), 3.05 (d, J = 4.0 Hz, 1H,  $\eta^3$ -CHH'), 1.47 (d, J = 4.0 Hz, 1H,  $\eta^3$ -CHH'), 1.41 (s, 3H, CH<sub>3</sub>), 1.33 (s, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  224.7, 218.8, 176.0, 110.4, 93.8, 83.0, 82.8, 78.1, 68.1, 62.9, 26.7, 24.9, 20.9; MS (75 eV; m/e) 502 (M<sup>+</sup>), 474 (M<sup>+</sup> – CO). Anal. Calcd for C<sub>17</sub>H<sub>18</sub>WO<sub>6</sub>: C, 40.66; H, 3.61. Found: C, 40.55; H, 3.76.

(17) Intramolecular Cyclization of 12b. Compound 12b (3.00 g, 4.87 mmol) and CF<sub>3</sub>CO<sub>2</sub>H (0.10 mL, 1.22 mmol) in cold CH<sub>2</sub>Cl<sub>2</sub> (-40 °C) afforded 13 (1.66 g, 3.31 mmol, 68%) and 14-*syn* (0.12, 0.24 mmol, 5%) after chromatographic separation. [ $\alpha$ ] = -9.5° (c = 0.44, CHCl<sub>3</sub>). IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 2025 (s), 1919 (s), 1457, 1371. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.71 (t, J = 1.5 Hz, 1H, =CH), 5.45 (s, 5H, Cp), 4.64 (dd, J = 6.0, 1.5 Hz, 1H, OCH), 4.50 (dd, J = 4.4, 2.2 Hz, 2H, OCH<sub>2</sub>), 3.98 (dd, J = 7.7, 6.4 Hz, 1H, OCH), 3.88 (q, J = 6.2 Hz, 1H, OCHH'), 3.78 (dd, J = 7.7, 5.8 Hz, 1H, OCHH'), 1.40 (s, 3H,

CH<sub>3</sub>), 1.33 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  226.6, 216.0, 138.9, 120.9, 109.8, 91.2, 89.4, 87.7, 78.7, 66.5, 26.6, 25.3. MS (75 eV; *m/e*): 502 (M<sup>+</sup>). Anal. Calcd for C<sub>17</sub>H<sub>18</sub>WO<sub>6</sub>: C, 40.66; H, 3.61. Found: C, 40.75; H, 3.77.

(18) Intramolecular Cyclization of 12c. Compound 12c (1.00 g, 2.10 mmol) and CF<sub>3</sub>CO<sub>2</sub>H (40  $\mu$ L, 0.53 mmol) in cold CH<sub>2</sub>Cl<sub>2</sub> (-40 °C) afforded 15-anti (0.81 g, 1.60 mmol, 76%).  $[\alpha] = -103.7^{\circ} (c = 0.4, \text{CDCl}_3)$ . IR (neat, cm<sup>-1</sup>):  $\nu$ (CO) 3423 (vs), 1970 (vs), 1898 (vs). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): endo form,  $\delta$  5.35 (s, 5H, Cp), 4.54 (dd, J = 10.4, 1.5 Hz, 1H,  $CHOCH_3$ , 4.28 (dt, J = 10, 3.5 Hz, 1H, OCH), 3.89–3.74 (dd, J = 12.5, 3.5 Hz, 2H, CH<sub>2</sub>OH), 3.42 (s, 3H, OCH<sub>3</sub>), 3.17 (d, J = 1.5 Hz, 1H,  $\eta^{3}$ -CH), 2.93 (s, 1H,  $\eta^{3}$ -CHH'), 1.62 (s, 1H,  $\eta^{3}$ -CHH); exo form, 5.44 (s, 5H, Cp), 4.35 (dt, J = 10.2, 3.2 Hz, 1H, OCH), 3.99 (dd, J = 10.2, 1.5 Hz, 1H, CHOCH<sub>3</sub>), 3.89- $3.74 \, (dd, J = 12.5, 3.5 \, Hz, 2H, OCH_2), 3.54 \, (s, 3H, OCH_3),$ 3.17 (d, J = 1.5 Hz, 1H,  $\eta^{3}$ -CH), 2.32 (d, J = 2.2 Hz, 1H,  $\eta^{3}$ -CHH'), 1.06 (d, J = 2.2 Hz, 1H,  $\eta^3$ -CHH). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): endo form, & 223.6, 219.2, 169.7, 88.7, 83.3, 74.5, 72.5, 61.3, 57.6, 46.0, 23.6; exo-form, 244.0, 216.6, 172.6, 94.7, 83.5, 73.5, 73.6, 60.6, 58.2, 57.9, 55.6, 29.5. MS (75 eV; m/e): 502 (M<sup>+</sup>). Anal. Calcd for C<sub>17</sub>H<sub>18</sub>WO<sub>6</sub>: C, 40.66; H, 3.61. Found: C, 40.88; H, 3.77.

(19) Synthesis of Compound 16. To 15-anti (1,00 g, 1.99 mL) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added Ac<sub>2</sub>O (0.28 mL, 2.99 mmol) and DMAP (0.48 g, 3.98 mL) at 23 °C; the mixture was stirred for 1 h. The solution was concentrated and eluted through a silica column to afford 16 (0.96 mg, 1.77 mmol, 89%) as a yellow solid.  $[\alpha] = -172.5^{\circ}$  (*c* = 1.0, CDCl<sub>3</sub>). IR (neat, cm<sup>-1</sup>): v(CO) 1969 (vs), 1804 (vs), 1742 (s), 1708 (s). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): endo form,  $\delta$  5.34 (s, 5H, Cp), 4.36–4.25 (m, 3H, OCH + OCH<sub>2</sub>), 3.78 (d, J = 8.5 Hz, 1H, CHOMe), 3.40 (s, 3H, OCH<sub>3</sub>), 3.17 (1H, s, η<sup>3</sup>-CHH), 2.65 (s, 1H, η<sup>3</sup>-CHH), 2.03 (s, 3H, OAc), 1.62 (s, 1H, η<sup>3</sup>-CHH); *exo* form, 5.39 (s, 5H, Cp), 4.54 (d, J = 6.2 Hz, 1H, CHOCH<sub>3</sub>), 4.37-4.22 (3H, m), 3.46 (s, 3H, OCH<sub>3</sub>), 3.17 (1H, s, η<sup>3</sup>-CHH'), 2.38 (1H, s, η<sup>3</sup>-CH), 2.07 (s, 3H, OAc), 1.11 (1H, s, η<sup>3</sup>-CHH). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): endo form, & 223.4, 220.7, 170.7, 169.8, 88.8, 80.5, 75.7, 72.9, 62.5, 57.6, 45.6, 23.9, 20.6; endo form, 223.7, 216.5, 171.5, 168.0, 94.3, 80.7, 75.0, 62.6, 59.1, 58.6, 55.2, 29.6, 20.6. MS (75 eV; *m/e*): 518 (M<sup>+</sup>). Anal. Calcd for C<sub>17</sub>H<sub>18</sub>O<sub>7</sub>W: C, 39.41; H, 3.5. Found: C, 39.46; H, 3.5.

(20) I<sub>2</sub> Oxidation of Compound 13. To compound 13 (200 mg, 0.44 mmol) in MeOH (3.0 mL) was added I<sub>2</sub> (120 mg, 0.48 mmol) at -40 °C, and the mixture was stirred for 4 h before an aqueous NaHSO3 (2.00 M) solution (5.00 mL) was added. The solution was reduced to ca. 5 mL, and the remaining solution was extracted with diethyl ether (2  $\times$  10 mL). The solution was concentrated and chromatographed by a preparative silica TLC to yield 17 (37.2 mg, 0.20 mmol, 45%) as an oil.  $[\alpha] = -15.5^{\circ}$  (c = 0.5, CHCl<sub>3</sub>). IR (neat, cm<sup>-1</sup>):  $\nu$ (OH) 3450 (vs),  $\nu$ (CO) 1700 (s),  $\nu$ (C=C) 1624 (m). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.84 (s, 1H, =C*H*H'), 4.96(dd, 1H, J = 9.6, 4.4 Hz, OCH), 4.78-4.85 (m, 2H, OCH2), 3.76 (s, 3H, OMe), 3.67-3.78 (m, 3H, OCH+OCH2). 13C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  163.9, 155.1, 121.3, 89.4, 87.3, 78.6, 66.5, 51.2. MS (75 eV; *m/e*): 186 (M<sup>+</sup>). HRMS: calcd for C<sub>8</sub>H<sub>10</sub>O<sub>5</sub> 186.0528, found 186.0497.

(21) Synthesis of Unsaturated y-Lactone 18. To a mixture of 14-syn and 14-anti (500 mg, 0.996 mmol) in CH<sub>3</sub>-CN (5.0 mL, 0 °C) was added NOBF<sub>4</sub> (115 mg, 0.996 mmol), and the mixture was stirred for 20 min. To the resulting solution was added Bu<sub>4</sub>NBH<sub>4</sub> (320 mg, 1.25 mmol) at 23 °C, and after 1 h Ce(NH<sub>4</sub>)<sub>2</sub>(NO<sub>3</sub>)<sub>6</sub> (1.10 g, 1.99 mmol) was added to the mixture. The solution was concentrated and chromatographed by a preparative silica TLC to yield 18 as an oil (158 mg, 0.80 mmol, 58%).  $[\alpha] = -45.4^{\circ}$  (c = 1.0, CHCl<sub>3</sub>). IR (neat, cm<sup>-1</sup>): v(CO) 1765 (s), v(C=C) 1644 (m). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.10 (t, J = 1.7 Hz, 1H, =CH), 4.69 (dd, J = 8.5, 1.7Hz, 1H, OCH), 4.13–4.03 (dd, J=9.4, 6.0 Hz, 2H, OCH<sub>2</sub>), 3.83 (m, 1H, OCH), 1.91 (t, J = 1.6 Hz, 3H, =CCH<sub>3</sub>), 1.43 (s, 3H, CH<sub>3</sub>), 1.32 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  175.3, 146.8, 131.2, 110.3, 80.9, 76.6, 67.2, 26.7, 25.0, 10.5. MS (75 eV; m/e): 198 (M<sup>+</sup>). HRMS: calcd for C<sub>10</sub>H<sub>14</sub>O<sub>4</sub> 198.0892, found 198.0890.

(22) Synthesis of Unsaturated  $\delta$ -Lactone 19. Compound 16 (0.50 g, 0.92 mmol), NOBF<sub>4</sub> (107 mg, 0.92 mmol), and Bu<sub>4</sub>-NBH<sub>4</sub> (237 mg, 0.92 mmol) afforded 19 as an oil (123 mg, 0.58 mmol, 63%). [ $\alpha$ ] = 30.5° (c = 1, CHCl<sub>3</sub>). IR (neat, cm<sup>-1</sup>):  $\nu$ -(CO) 1745 (s),  $\nu$ (C=C) 1634 (m). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.61 (d, J = 1.5 Hz, 1H, =CH), 4.43 (ddd, J = 8.7, 4.7, 3.2 Hz, 1H, OCH), 4.36–4.26 (dd, J = 12.3, 4.7, 3.2 Hz, 2H, CH<sub>2</sub>-OAc), 3.42 (s, 3H, OCH<sub>3</sub>), 2.07 (s, 3H, OAc), 1.93 (t, J = 1.6 Hz, =CMe, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  170.2, 163.3, 138.5, 129.1, 78.2, 71.9, 62.8, 57.0, 20.5, 16.8; MS (75 eV m/e): 214 (M<sup>+</sup>). HRMS: calcd for C<sub>10</sub>H<sub>14</sub>O<sub>5</sub> 214.0814, found 214.0812.

**X-ray Diffraction Studies of 13**, 14-*anti*, and 16. Single crystals of 13, 14-*anti*, and 16 were sealed in glass capillaries under an inert atmosphere. Data for 13, 14-*anti*, and 16 were collected on a Siemens SMART CCD diffractometer using graphite monochromated Mo K $\alpha$  radiation. The structures of 13, 14-*anti*, and 16 were solved by direct methods; all data reduction and structural refinements were performed with the Siemens SHELXTL-PLUS package. Crystal data, details of data collection and structural analysis of these three compounds are provided in the Supporting Information. For all structures, all non-hydrogen atoms were refined with anisotropic parameters, and all hydrogen atoms included in the structure factors were placed in idealized positions.

**Acknowledgment.** We wish to thank the National Science Council and National Institute of Health, Taiwan, ROC, for financial support of this work.

**Supporting Information Available:** Tables of crystal data, atomic coordinates, bond distances and angles, and thermal parameters for compounds **13**, **14**-*anti*, and **16** and an additional ORTEP drawing for **14**-*syn* (23 pages). Ordering information is given on any current masthead page.

OM970335Y