Lewis Acid-**Base Studies of Triorganogallium Compounds with Organophosphines**

O. T. Beachley, Jr.,* and John D. Maloney

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000

Received April 7, 1997^X

Summary: The relative Lewis acidities of the series of triorganogallium compounds GaR3 (R) *Me, Et, CH2- CMe3, CH2SiMe3, CH2CMe2Ph, C6H2Me3) toward the common Lewis base HPPh2 and the relative Lewis basicities of a series of organophosphines which incorporate an acidic hydrogen HPRR' (PRR' = PPh₂, P(C6H11)2, PEt2, P(H)(C6H11)) toward the common Lewis acid Ga(CH2CMe3)3 have been investigated and compared. Cryoscopic molecular weight data permitted an evaluation of the equilibrium constant for the dissociation of each of the adducts. The 31P NMR spectral data, which were consistent with the molecular weight data, were also used to study the relative rates of hydrocarbon elimination reactions to form (R2GaPRR*′*)2.*

Even though adducts are fundamental to the chemistry of the group 13 elements, suprisingly few investigations have focused on the characterization of the adducts of homoleptic triorganogallium compounds with phosphorus bases in order to understand if these compounds exist as single species in solution or whether they are partially dissociated or even fully dissociated in benzene solution. Only two of these types of adducts, $¹$ </sup> $(Me₃CCH₂)₃Ga\cdot P(H)Ph₂$ and $(Me₃SiCH₂)₃Ga\cdot P(H)Ph₂$, have been characterized in benzene solution by both cryoscopic molecular weight and NMR spectroscopic studies to our knowledge, and both were found to be extensively dissociated in benzene solution. Of these two Lewis acids, $Ga(CH_2CMe_3)_3$ was the stronger acid toward HPPh₂. The adduct $(Me₃ CCH₂)₃ Ga·P(H)Ph₂$ was a crystalline solid at room temperature and was characterized further by an X-ray structural study.¹ The other adduct (Me₃SiCH₂)₃Ga·P(H)Ph₂ melted at 23.5-24.2 °C but was not characterized in the solid state. Four other adducts of homoleptic organogallium compounds, $\rm{Me}_{3}Ga\cdot \rm{PMe}_{3}\cdot ^{2}Me_{3}Ga\cdot \rm{PPh}_{2}C_{2}H_{4}\rm{PPh}_{2}\cdot \rm{GaMe}_{3}\cdot ^{3}$ $\text{Ph}_3\text{Ga}\cdot\text{P}(\text{SiMe}_3)_3$,⁴ and $(\text{Me}_3\text{SiCH}_2)_3\text{Ga}\cdot\text{P}(\text{SiMe}_3)_3$,⁵ have been structurally characterized, but no data permitted a determination of the extent of dissociation of the first three of these adducts in solution. The last adduct, (Me3SiCH2)3Ga'P(SiMe3)3, ⁵ was investigated by 1H and 13C NMR spectroscopy and was concluded to be undissociated in benzene solution.

The Lewis acidities of the series of triorganogallium- (III) compounds GaR_3 (R = Me, Et, CH_2CHe_3 ,¹ CH_2 - SiMe_3 ,¹ CH₂CMe₂Ph, C₆H₂Me₃) toward the common

Lewis base $HPPh₂$ have been compared by using cryoscopic molecular weight data and ³¹P NMR spectroscopy. The cryoscopic molecular weight data for benzene solutions permitted calculations of the equilibrium constant for dissociation of the adduct $(K_d, eq 1)$ (Table 1), and $R_3Ga \cdot P(H)Ph_2 \rightleftharpoons GaR_3 + HPPh_2$ (1)

> the percent dissociation of the adduct (α) as a function of concentration, whereas 31P NMR spectral data (Table 2) were used to calculate changes in chemical shifts between that observed for the solution which contained the adduct and the solution of the pure phosphine (∆*δ* = $[\delta(R_3Ga \cdot P(H)Ph_2 - \delta(HPPh_2)])$ and in coupling constants $(^1J_{\text{PH}})$ as a function of concentration. All data confirm the existence of an equilibrium for each adduct (eq 1) and are consistent with the following order of Lewis acidity toward HPPh₂: GaMe₃ (strongest acid) > GaEt₃ >> Ga(CH₂CMe₃)₃¹ > Ga(CH₂SiMe₃)₃¹ > $Ga(CH_2CMe_2Ph)_3$ >> $Ga(C_6H_2Me_3)_3$.

> A comparison of the 31P NMR spectroscopic data revealed significant differences between the chemical shifts and coupling constants of resonances for solutions of the adducts at the same concentration in comparison to the value observed for a solution of pure HPPh₂. Furthermore, as the concentration of the adduct increased, the chemical shift of the observed 31P NMR line moved downfield or away from the chemical shift of the line for pure HPPh₂ in benzene solution (Δδ increased) as the coupling constant ¹J_{PH} increased (Table 2). Thus, the NMR and cryoscopic molecular weight data indicate that $Me₃Ga\cdot P(H)Ph₂$ and $Et₃Ga\cdot P(H)Ph₂$ are only slightly dissociated in benzene solution but $GaMe₃$ is a stronger Lewis acid than is $GaEt₃$ toward HPPh₂. These observations may be correlated with the decreased steric effcts of methyl groups. In contrast, the diphenylphosphine adducts of Ga(CH2CMe3)3, 1 Ga(CH2SiMe3)3, 1 and $Ga(CH_2CMe_2Ph)_3$ are significantly dissociated in solution with ∼0.05 M solutions being more than 50% dissociated. Trimesitylgallium, $Ga(C_6H_2Me_3)_3$, is so weak a Lewis acid that it does not appear to form significant concentrations of adduct even when the concentrations of the Lewis acid and base are 0.138 M, the highest concentrations studied.

> The Lewis basicities of the phosphines $HPPh₂$,¹ HP- $(C_6H_{11})_2$, HPEt₂, and HP(H)(C_6H_{11}) toward the common Lewis acid Ga(CH₂CMe₃)₃ were investigated. The cryoscopic molecular weight data were used to calculate an equilibrium constant for dissociation of each adduct (K_d) , eq 1) and the percent dissociation of the adduct (α) as a function of concentration. All data (Table 3) confirm the existence of an equilibrium for each adduct and the following order of relative Lewis basicity for the phosphine: HPEt₂ (strongest base) > HP(C₆H₁₁)₂ \approx HP(H)-

^X Abstract published in *Advance ACS Abstracts,* August 1, 1997. (1) Banks, M. A.; Beachley, O. T., Jr.; Maloney, J. D.; Rogers, R. D. *Polyhedron* **1990***, 9*, 335.

^{(2) (}a) Coates, G. E. *J. Chem. Soc.* **1951**, 2003. (b) Burns, J. A.;
Pennington, W. T.; Robinson, G. H. *Organometallics* **1995**, *14*, 1533.
(3) Bradley, D. C.; Chudzynska, H.; Faktor, M. M.; Frigo, D. M.;
Hursthouse, M.

⁽⁴⁾ Wells, R. L.; Aubuchon, S. R.; Self, M. F.; Jasinski, J. P.; Woudenberg, R. C.; Butcher, R. J. *Organometallics* **1992**, *11*, 3370.
(5) Wells, R. L.; Baldwin, R. A.; White, P. S. *Organometallics* **1995**, *14*, 2123.

Table 1. Cryoscopic Molecular Weight Studies of R3Ga'**P(H)Ph2 Adduct Systems in Benzene Solution**

\cdot	ັ		$\tilde{}$	
adduct system	calcd mol wt	obsd mol wt	α	$K_{\rm d}(\rm{av})$
$Me3Ga\cdot P(H)Ph2$	0.0644 0.0525	0.0672 0.0550	4.3 4.8	1×10^{-4}
$Et_3Ga \cdot P(H)Ph_2$	0.0580 0.0422	0.0649 0.0478	12 13	8×10^{-4}
$(Me_3CCH_2)_3Ga \cdot P(H)Ph_2$ ¹	0.0522 0.0415	0.0828 0.0668	58 61	4×10^{-2}
$(Me_3SiCH_2)_3Ga \cdot P(H)Ph_2$ ¹	0.0492 0.0376	0.0794 0.0629	62 67	5×10^{-2}
$(PhMe2 CCH2)3 Ga\cdot P(H)Ph2$	0.0495 0.0371	0.0823 0.0690	66 67	5×10^{-2}
$(C_6H_2Me_3)_3Ga \cdot P(H)Ph_2$	0.0415 0.0371	0.0832 0.739	100 99	

Table 2. ³¹P NMR Spectral Data for R₃Ga[.]P(H)Ph₂ **Adduct Systems in Benzene Solution**

adduct	concn	δ	Λδ	$1J_{\rm PH}$
system	(M)	(ppm)	(ppm)	(Hz)
PPh_2H		-40.40		215
$Me3Ga\cdot P(H)Ph2$	0.0689	-33.40	7.00	290
	0.138	-33.17	7.23	292
$Et_3Ga \cdot P(H)Ph_2$	0.0689	-35.84	4.56	272
	0.138	-34.00	6.40	296
$(Me_3CCH_2)_3Ga \cdot P(H)Ph_2$ ¹	0.0689	-37.83	2.57	232
	0.138	-36.48	3.92	241
$(Me_3SiCH_2)_3Ga\cdot P(H)Ph_2^1$	0.0689	-38.45	1.95	232
	0.138	-37.74	2.66	240
$(PhMe2 CCH2)3 Ga\cdot P(H)Ph2$	0.689	-39.17	1.23	224
	0.138	-38.40	2.00	230
$(C_6H_2Me_3)_3Ga \cdot P(H)Ph_2$	0.0689	-40.40	0.00	217
	0.138	-40.40	0.00	217

Table 3. Cryoscopic Molecular Weight Studies for (Me3CCH2)3Ga'**P(H)RR**′ **Adduct Systems in Benzene Solution**

adduct system	calcd mol wt	obsd mol wt	α	$K_d(\text{av})$
$(Me3 CCH2)3 Ga\cdot P(H)Et2$	0.0541 0.0460	0.0584 0.0507	7.9 10	5×10^{-4}
$(Me3CCH2)3Ga\cdot P(H)(C6H11)2$	0.0526 0.0413	0.0785 0.0639	49 55	2×10^{-2}
$(Me3CCH2)3Ga\cdot P(H)2(C6H11)$	0.0552 0.0430	0.0828 0.0663	52 54	3×10^{-2}
$(Me3CCH2)3Ga·P(H)Ph21$	0.0522 0.0415	0.0828 0.0668	58 61	4×10^{-2}

Table 4. 31P NMR Spectral Data for (Me3CCH2)3Ga'**P(H)RR Adduct Systems in Benzene Solution**

 (C_6H_{11}) > HPPh₂. Thus, the least sterically demanding base $HPEt_2$ is the strongest, as expected. The one surprise from our data is that $HP(C_6H_{11})_2$ and $HP(H)$ - (C_6H_{11}) have similar basicities.

The bulky dicyclohexylphosphine has an apparent base strength which is comparable to that of the less sterically demanding monocyclohexylphosphine. Since $HP(H)(C_6H_{11})$ would have been expected to be more basic than $HP(C_6H_{11})_2$, steric effects cannot be the only important factor influencing the Lewis basicity of these two phosphines. One possible explanation for the observation of similar base strengths of $HP(C_6H_{11})_2$ and of $HP(H)(C_6H_{11})$ might be related to solvation effects. If the solvation of free $HP(H)(C_6H_{11})$ is more favorable than is the solvation of the adduct, dissociation of the adduct would be favored. Molecular models suggest that the P-H protons in the adduct might be protected by the three neopentyl groups on gallium from an interaction with the π -cloud of benzene, whereas such hindrance would not occur for the free phosphine. It is also noteworthy that although $(Me₃CCH₂)₃Ga\cdot P(H)$ - $(C_6H_{11})_2$ is significantly dissociated in benzene solution (∼50%), the adduct has been isolated as a colorless crystalline solid with a sharp melting point (42-43 °C). A partial elemental (C,H) analysis of a sublimed sample was consistent with the empirical formula of the adduct. This observation is consistent with the existence of a pure, single compound in the solid state. It is regrettable that attempts to characterize this adduct in the solid state by an X-ray structural study were unsuccessful.

All of the phosphines used in these investigations have acidic protons with the potential to eliminate the hydrocarbon⁶ RH and form a phosphide of the type $(R_2$ - GapR'_2 _{*n*}.

$$
GaR_3 + HPR'_2 \rightarrow (1/n)(R_2GaPR'_2)_n + RH \qquad (2)
$$

Available 31P NMR spectral data were used to study the relative order of reactivity of different organogallium compounds with $HPPh₂$ and of different phosphines with $Ga(CH_2CMe_3)_3$, all as benzene solutions of the same concentration. The following order was observed for decreasing ease of elimination in benzene solution when the phosphine was $HPPh_2$: GaEt₃ (most reactive) $>$ GaMe₃ > Ga(CH₂SiMe₃)₃ >> Ga(CH₂CMe₃)₃ \approx $Ga(C_6H_2Me_3)$ ₃ (no reaction). It should be noted that this order is not the same order as was observed for the relative Lewis acidities toward HPPh₂, as the order for $GaEt₃$ and $GaMe₃$ are reversed. Both $GaEt₃$ and $GaMe₃$ eliminated an alkane and formed the organogallium phosphide $(R_2GaPPh_2)_n$ in benzene solution at room temperature, but both reactions were very slow. The NMR data demonstrated that approximately 45% of the $Et_3Ga \cdot P(H)Ph_2$ as a 0.138 M solution was converted to

⁽⁶⁾ Beachley, O. T., Jr.; Coates, G. E. *J. Chem. Soc.* **1965**, 3241.

 $Et₂GaPPh₂$ after 12 days, whereas a benzene solution of $Me₃Ga\cdot P(H)Ph₂$ eliminated methane much more slowly. It is noteworthy that Robinson, Burns, and Pennington⁷ described the use of a toluene (10 mL) solution of $GaMe₃$ (5 mmol) and $HPPh₂$ (5 mmol) to prepare $(Me_2GaPPh_2)_3$ for an X-ray structural study. When no solvent was used, temperatures of 90-110 °C were reported by Coates and Graham⁸ to be necessary to initiate the elimination of methane from the adduct $Me₃Ga⁺P(H)Ph₂$ in a sealed tube. When the elimination of SiMe₄ from a benzene solution of $(Me_3SiCH_2)_3Ga$. $(H)Ph₂$ was investigated,^{1,9} heating to reflux was necessary to initiate a very slow reaction. In constrast, (Me3CCH2)3Ga'P(H)Ph2 did not eliminate CMe4, even upon refluxing a solution for 3 weeks.^{1,10} Reactivity studies of $Ga(CH_2CMe_3)$ ₃ with $HP(H)(C_6H_{11})$ demonstrated that approximately 90% of the CMe₄ was eliminated after a solution of $Ga(CH_2CMe_3)_3$ and HP- $(H)(C_6H_{11})$ in benzene had been heated in a 70 °C oil bath for 7 days. However, heating for 18 days was necessary for complete reaction. The two phosphines $HP(C_6H_{11})_2$ and $HPEt_2$ did not undergo elimination reactions with $Ga(CH_2CMe_3)_3$, even upon heating benzene solutions at 70 °C for 3 weeks.

These observations of the relative rates of elimination reactions in gallium phosphorus chemistry are consistent with the mechanism proposed for the elimination reaction in aluminum nitrogen chemistry.11,12 Kinetic studies for the $HMe₂Al·N(H)(Me)(Ph)$ system supported a bimolecular reaction between the Lewis acid and base.11 Formation of the adduct was suggested to be a "dead-end path" for elimination. Furthermore, studies of the $HMe₂Al·N(H)₂(CH₂Ph)$ system¹² provided additional support for the conclusion that dissociation of the adduct was needed for the elimination reaction to occur. When $HMe₂Al·N(H)₂(CH₂Ph)$ was present as a solution in toluene, elimination of H_2 was observed. However, when the adduct precipitated from toluene solution, H_2 was not formed. The temperature was constant for these observations for the $HMe₂Al·N(H)₂$ - (CH_2Ph) system. Similarly, a benzene or toluene⁸ solution of $Me₃Ga·P(H)Ph₂$ eliminated methane at room temperature, whereas the pure adduct without solvent7 required $90-110$ °C. If the adduct had been the active species for elimination, the solution would have been expected to be less reactive. Second, the elimination of ethane from a benzene solution of $Et_3Ga \cdot P(H)Ph_2$ was faster than was the elimination of methane from a solution of $Me₃Ga\cdot P(H)Ph₂$, even though $GaMe₃$ is the stronger Lewis acid. Lastly, the extended times necessary for complete reactions for $Et_3Ga \cdot P(H)Ph_2$ and (Me₃- $CCH₂$)₃Ga·P(H)₂(C₆H₁₁) are also consistent with the occurrence of bimolecular reactions.

The observed reactivity patterns of GaMe₃¹³ and $Ga(CH_2SiMe_3)_3^5$ with $P(SiMe_3)_3$ also suggest that dissociation of these adducts might be required for the elimination of SiMe₄ with formation of $\left[\text{R}_{2}Ga\text{P(SiMe}_{3})_{2}\right]_{n}$. The reagents $GaMe₃$ and $P(SiMe₃)₃$ reacted smoothly in toluene solution to form $[Me_{2}GaP(SiMe_{2})_{2}]_{2}.^{13}$ In contrast, $Ga(CH_2SiMe_3)_3$ reacted with $P(SiMe_3)_3$ in pentane solution to form only the adduct⁵ (Me₃SiCH₂)₃Ga·P- $(SiMe₃)₃$. ¹H and ¹³C NMR spectra demonstrated that the adduct did not dissociate in benzene solution. The product of the elimination reaction $[(Me₃SiCH₂)₂Ga\cdotP (SiMe₃)₂|₂$ was not formed.⁵

Experimental Section

All compounds described in this section were extremely sensitive to oxygen and water and were manipulated in a standard vacuum line or under a purified argon atmosphere. The compounds $\rm Ga(CH_2CMe_3)_3.^{14}~Ga(CH_2SiMe_3)_3.^{15}~Ga(C_6H_2 \rm{Me}_3)_3$, \rm^{16} $\rm{Ga(CH_2CMe_2Ph)_3}$, \rm^{17} $(\rm{Me}_3CCH_2)_3Ga\cdot P(H)Ph_2$, \rm^{1} and $(\rm{Me}_3 SiCH₂$)₃Ga·P(H)Ph₂¹ were prepared and purified by literature methods. Dicyclohexylphosphine, cyclohexylphosphine, and diethylphosphine were purchased from Alfa Products, whereas diphenylphosphine, trimethylgallium, and triethylgallium were purchased from Strem Chemicals, Inc. All phosphines were purified by distillation prior to use. Solvents were dried by conventional procedures. Elemental analyses were performed by $E + R$ Microanalytical Laboratory, Inc., Corona, NY. ¹H NMR spectra were recorded at 300 MHz by using a Varian Gemini-300 spectrometer. Proton chemical shifts are reported in *δ* units (ppm) and are referenced to SiMe₄ at 0.00 ppm (*δ*) and C_6D_6 at 7.15 ppm. The ³¹P NMR spectra were recorded at 161.9 MHz by using a Varian VXR-400 spectrometer. Proton-decoupled 31P NMR chemical shifts are referenced to 85% H3PO4 at *δ* 0.00 ppm. All samples for NMR spectra were contained in tubes sealed by fusion of the glass. Melting points were observed in sealed capillaries and are uncorrected.

In a typical NMR spectroscopic study, the volatile component, either the phosphine or the triorganogallium compound, was vacuum-distilled into a tared tube equipped with a Teflon valve and a standard tapered joint and weighed. Then, a stoichiometric quanity of the nonvolatile component and a known amount of C_6D_6 were placed into a reaction tube which was equipped with a magnetic stirbar and attached to an NMR tube and a Teflon valve adapter. After the volatile component was vacuum-distilled into the reaction tube, the reaction mixture was stirred for 20 min at room temperature. The resulting solution was then poured into the NMR tube, the tube was cooled to -196 °C and flame-sealed.

The adduct systems for cryoscopic molecular weight studies were prepared by using a procedure similar to that described previously for the NMR studies. Freezing point depressions were measured by using an instrument similar to that described by Shriver and Drezdzon.¹⁸ Since the error typical of these types of measurements is approximately 10%, the data in the experimental section for each compound give the actual calculated result, whereas the corresponding values for K_d in the tables have been rounded off to one significant figure to avoid misinterpretation or overinterpretation.

(Me₃CCH₂)₃Ga·P(H)Et₂. (a) ¹H NMR (0.0689 M, C₆D₆, $δ)$: 0.75 (m, -CH₃), 0.92 (s, Ga-CH₂-), 1.18 (m, P-CH₂-), 1.21 (s, -CMe₃), 3.04 (dm, ¹J_{PH} = 273 Hz, -PH). ¹H NMR (0.138 M, C6D6, *δ*): 0.76 (m, -CH3), 0.91 (s, Ga-CH2-), 1.18 (m, P-CH₂-), 1.21 (s, -CMe₃), 3.05 (dm, ¹J_{PH} = 273 Hz, -PH). ³¹P NMR (0.0689 M, C₆D₆, δ): -38.29 (dp, ¹J_{PH} = 271 Hz,

⁽⁷⁾ Coates, G. E.; Graham, J. *J. Chem. Soc.* **1963**, 233.

⁽⁸⁾ Robinson, G. H.; Burns, J. A.; Pennington, W. T. *Main Group Chem.* **1995**, *1*, 153.

⁽⁹⁾ Beachley, O. T., Jr.; Kopasz, J. P.; Zhang, H.; Hunter, W. E.; Atwood, J. L. *J. Organomet. Chem.* **1987**, *325*, 69.

⁽¹⁰⁾ Banks, M. A.; Beachley, O. T., Jr.; Buttrey, L. A.; Churchill, M. R.; Fettinger, J. C. *Organometallics* **1991**, *10*, 1901.

⁽¹¹⁾ Beachley, O. T., Jr.; Tessier-Youngs, C. *Inorg. Chem.* **1979**, *18*, 3188.

⁽¹²⁾ Beachley, O. T., Jr. *Inorg. Chem*. **1981**, *20*, 2825.
(13) Dillingham, M. D. B.; Burns, J. A.; Byers-Hill, J.; Gripper, K.
D.; Pennington, W. T.; Robinson, G. H. *Inorg. Chim. Acta* **1994**, *216*, 267.

⁽¹⁴⁾ Beachley, O. T., Jr.; Pazik, J. C. *Organometallics* **1988**, *7*, 1516. (15) Beachley, O. T., Jr.; Simmons, R. G. *Inorg. Chem.* **1980**, *19*, 1021.

⁽¹⁶⁾ Beachley, O. T., Jr.; Churchill, M. R.; Pazik, J. C.; Ziller, J. W. *Organometallics* **1986**, *5*, 1814.

⁽¹⁷⁾ Beachley, O. T., Jr.; Noble, M. J.; Churchill, M. R.; Lake, C. H. *Organometallics* **1992**, *11*, 1051. (18) Shriver, D. F.; Drezdzon, M. A. *The Manipulation of Air-*

Sensitive Compounds; Wiley: New York, 1986; p 38.

 ${}^{3}J_{\text{PCCH}} = 13.4 \text{ Hz}$). ${}^{31}P \text{ NMR}$ (0.138 m, C₆D₆, δ): -37.87 (dp, $1J_{PH} = 272$ Hz, $3J_{PCCH} = 13.4$ Hz). Cryoscopic molecular weight (measured upon mixing reagents; formula weight 373.1; calcd mol wt, obsd mol wt, α or percent dissociation, K_d): 0.0541, 0.0584, 7.95%, 3.71×10^{-4} ; 0.0460, 0.0507, 10.2%, 5.35×10^{-4} ; 0.0376, 0.0422, 12.2%, 6.41×10^{-4} .

(b) A solution to study the elimination reaction was prepared by mixing 0.19 g (0.66 mmol) of $Ga(CH_2CMe_3)_3$, 0.060 g (0.67 mmol) of HPEt₂, and 4.82 g of C₆D₆. ³¹P NMR (0.14 M, 20 °C, *δ*): initial spectrum, -37.87 (dp, ¹J_{PH} = 272 Hz, ${}^{3}J_{\text{PCCH}} = 13.4 \text{ Hz}$, (Me₃CCH₂)₃Ga·P(H)Et₂). No change in the spectrum occurred after heating the sample for 3 weeks at an oil bath temperature of 70 °C.

(Me₃CCH₂)₃Ga·P(H)₂(C₆H₁₁). (a) ¹H NMR (0.0689 M, C_6D_6 , *δ*): 0.90 (s, $-C_6H_{11}$), 0.94 (s, $-C_6H_{11}$), 1.00 (s, $-CMe_3$), 1.07 (s, Ga-CH₂-), 1.12 (s, -CMe₃), 1.15 (s, -C₆H₁₁), 1.18-1.7 (br, C₆H₁), 2.75 (dm, ¹J_{PH} = 225 Hz, -PH). ¹H NMR (0.138) M, C_6D_6 , δ): 0.90 (s, $-C_6H_{11}$), 0.93 (s, $-C_6H_{11}$), 1.01 (s, $-CMe_3$), 1.06 (s, Ga-CH₂-), 1.10 (s, -CMe₃), 1.20-1.7 (br, -C₆H₁₁), 2.76 (dm, $^{1}J_{\text{PH}} = 225$ Hz, -PH). ³¹P NMR (0.0689 M, C₆D₆, *δ*): -98.3 (t, $^1J_{\text{PH}} = 227$ Hz). ³¹P NMR (0.138 M, C₆D₆, *δ*): -95.9 (t, $1J_{PH} = 227$ Hz). Cryoscopic molecular weight (measured upon mixing reagents; formula weight 399.3; (calcd mol wt, obsd mol wt, α or percent dissociation, K_d): 0.0552, 0.0828, 51.8%, 2.76×10^{-2} ; 0.0430, 0.0663, 54.2%, 2.76×10^{-2} .

(b) A solution to study the elimination reaction was prepared by using 0.10 g (0.36 mmol) of $Ga(CH_2CMe_3)_3$, 0.042 g (0.36 mmol) of $H_2P(C_6H_{11})$, and 2.69 g of C_6D_6 . ³¹P NMR (0.13 M, 20 °C, δ): initial spectrum, -95.9 (t, ¹J_{PH} = 227 Hz, $(Me₃CCH₂)₃Ga·P(H)₂(C₆H₁₁));$ 3 weeks after mixing reagents, -63.63 (s, 3.9, (Me₃CCH₂)₂GaP(H)(C₆H₁₁)), -73.29 (s, 4.1, (Me₃- $CCH₂)₂GaP(H)(C₆H₁₁), -105.3$ (s, 1.0, (Me₃CCH₂)₃Ga·P(H)₂- (C_6H_{11}) . A second solution was prepared by combining 0.13 g (0.47 mmol) of Ga(CH₂CMe₃)₃, 0.054 g (0.47 mmol) of H₂P- (C_6H_{11}) , and 7.2 g of C_6D_6 . ³¹P NMR, (0.065 m, 20 °C, δ): initial spectrum, -98.3 (t, ¹J_{PH} = 227 Hz, (Me₃CCH₂)₃Ga·P(H)₂- (C_6H_{11}) ; 7 days at 70 °C, -63.58 (s, 4.3, (Me₃CCH₂)₂GaP(H)- (C_6H_{11}) ,-73.27 (s, 5.3, (Me₃CCH₂)₂GaP(H)(C_6H_{11})), -104.8 (s, 1.0, $(Me₃CCH₂)₃Ga\cdot P(H)₂(C₆H₁₁)$; 14 days at 70 °C, -63.83 (s, 5.3, $(Me₃CCH₂)₂GaP(H)(C₆H₁₁), -73.10$ (s, 8.2, $(Me₃CCH₂)₂$ $GaP(H)(C_6H_{11})$, -107.3 (s, 1.0, (Me₃CCH₂)₃Ga·P(H)₂(C₆H₁₁)); 18 days at 70 °C, -63.60 (s, 1.0, $(Me₃CCH₂)₂GaP(H)(C₆H₁₁)),$ -73.31 (s, 1.2, $(Me₃CCH₂)₂GaP(H)(C₆H₁₁)$).

Synthesis of Me_3CCH_2 **)₃Ga·P(H)(C₆H₁₁)₂. (a) The re**agents 0.524 g (1.85 mmol) of $Ga(CH_2CMe_3)$ and 0.367 g (1.85 mmol) of $HP(C_6H_{11})_2$, contained in screw-cap vials, were transferred quantitatively to a Schlenk flask with repeated washing with dry pentane. After the solution was stirred for 2 h, the pentane was removed by vacuum distillation to leave a colorless solid, which was purified by sublimation (0.995 g of (Me3CCH2)3Ga'P(H)(C6H11)2, 1.69 mmol, 91.6% yield). Mp: 42-43 °C. ¹H NMR (0.0689 M, C₆D₆, δ): 0.82 (s, -C₆H₁₁), 1.05 (s, Ga-CH₂-), 1.11 (s, -C₆H₁₁), 1.17 (s, -CMe₃), 1.37 (s, $-C_6H_{11}$, 1.54 (s, $-C_6H_{11}$), 1.60 (s, $-C_6H_{11}$), 1.73 (s, $-C_6H_{11}$), 2.98 (dt, $^{1}J_{PH}$ = 215 Hz, $^{2}J_{HCH}$ = 5.3 Hz, -PH). ¹H NMR (0.138 M, C₆D₆, δ): 0.90 (s, -C₆H₁₁), 1.00 (s, -C₆H₁₁), 1.07 (s, Ga-CH₂-), 1.08 (s, $-C_6H_{11}$), 1.14 (s, $-C_6H_{11}$), 1.20 (s, $-CMe_3$), 1.41 $(s, -C_6H_{11}), 1.55$ $(s, -C_6H_{11}), 1.61$ $(s, -C_6H_{11}), 1.74$ $(s, -C_6H_{11}),$ 1.75 (s, $-C_6H_{11}$), 3.02 (dt, ¹J_{PH} = 231 Hz, ²J_{HCH} = 4.5 Hz, -PH). ³¹P NMR (0.0689 M, C₆D₆, δ): -25.02 (d, ¹J_{PH} = 219 Hz). ³¹P NMR (0.138 M, C₆D₆, δ): -23.80 (d, ¹J_{PH} = 230 Hz). Anal. Calcd: C, 67.35; H, 11.72. Found: C, 67.27; 11.57. Cryoscopic molecular weight (formula weight 481.50; calcd mol wt, obsd mol wt, α or percent dissociation, K_d): 0.0638, 0.0918, 43.8%, 2.18×10^{-2} ; 0.0528, 0.0785, 48.8%, 2.46 $\times 10^{-2}$; 0.0413, 0.0639, 54.6%, 2.71×10^{-2} .

(b) Equal molar quantities of $Ga(CH_2CMe_3)_3$ and $HP(C_6H_{11})_2$ were combined in C_6D_6 in order to test for the occurrence of an elimination reaction. Initial 31P NMR spectrum (0.14 m, 20 °C, δ): -25.02 (d, ¹J_{PH} = 219 Hz, (Me₃CCH₂)₃Ga·P(H)- $(C_6H_{11})_2$). No change in the spectrum occurred after heating the sample for 3 weeks at 70 °C.

Me₃Ga</sub>·**P(H)Ph₂:** ¹H NMR (0.0689 m, C₆D₆, δ): 0.10 (s, $-CH_3$), 5.19 (d, $^1J_{PH} = 293$ Hz, $-PH$), 6.8-7.4 (m, Ph). ¹H NMR (0.138 m, C₆D₆, δ): 0.99 (s, -CH₃), 5.20 (d, ¹J_{PH} = 290 Hz, $-PH$), 6.8-7.4 (m, Ph). ³¹P NMR (0.0.0689 M, C₆D₆, δ): -33.40 (dt, $^1J_{\text{PH}} = 290$ Hz, $^3J_{\text{PCCH}} = 9.0$ Hz). ³¹P NMR (0.138 M, C_6D_6 , δ : -33.17 (dp, $^1J_{PH} = 292$ Hz, $^3J_{PCCH} = 9.2$ Hz). Cryoscopic molecular weight (measured upon mixing reagents; formula weight 301.02; calcd mol wt, obsd mol wt, α or percent dissociation, K_d): 0.0644, 0.0672, 4.34%, 1.27 \times 10⁻⁴; 0.0542, 0.0567, 4.61%, 1.21×10^{-4} ; 0.0525, 0.0550, 4.76%, 1.25×10^{-4} .

Et3Ga'**P(H)Ph2:** 1H NMR upon mixing reagents (0.0689 M, C_6D_6 , *δ*): 0.76 (s, -CH₂-), 1.41 (t, ²J_{HCH} = 8.0 Hz, -CH₃), 5.31 $(d, {}^{1}J_{PH} = 276 \text{ Hz}, -PH), 6.8-7.4 \text{ (m, Ph)}.$ ¹H NMR (0.138 M, C_6D_6 , δ): 0.75 (s, -CH₂-), 1.40 (t, ²J_{HCH} = 8.0 Hz, -CH₃), 5.31 $(d, {}^{1}J_{PH} = 294 \text{ Hz}, -PH), 6.8-7.4 \text{ (m, Ph)}.$ ³¹P NMR (1 h after mixing reagents; 0.0689 M, C₆D₆, δ): -35.84 (dp, ¹J_{PH} = 272 Hz, ${}^{3}J_{\text{PCCH}} = 9.4$ Hz, 4.3 Et₃Ga·P(H)Ph₂), -46.32 (s, 1.0, Et₂-Ga·PPh₂). ³¹P NMR (1 h after mixing reagents; 0.138 M, C_6D_6 , $δ)$: -34.00 (dp, $1J_{PH} = 296$ Hz, $3J_{PCCH} = 9.4$ Hz, 4.4, Et₃Ga·P-(H)Ph₂), -46.33 (s, 1.0, $Et_2Ga\cdot PPh_2$). ³¹P NMR (3 days after mixing reagents; 0.0689 M, C₆D₆, δ): -35.83 (dp, ¹J_{PH} = 272 Hz, ${}^{3}J_{\text{PCCH}} = 8.4$ Hz, 3.9, Et₃Ga·P(H)Ph₂), -46.24 (s, 1.0, Et₂-Ga·PPh₂). ³¹P NMR (3 days after mixing reagents, 0.138 M, C_6D_6 , δ): -33.98 (dp, ${}^1J_{\text{PH}} = 294$ Hz, ${}^3J_{\text{PCCH}} = 9.6$ Hz, 2.7, $Et_3Ga \cdot P(H)Ph_2$), -46.23 (s, 1.0, $Et_2Ga \cdot PPh_2$). ³¹P NMR (12 days after mixing reagents, 0.0689 M, C₆D₆, δ): -36.05 (dp, $1J_{\text{PH}} = 278$ Hz, $3J_{\text{PCCH}} = 8.0$ Hz, 2.6, Et₃Ga·P(H)Ph₂), -46.39 (s, 1.0, $Et_2Ga\cdot PPh_2$). ³¹P NMR (12 days after mixing reagents, 0.138 M, C₆D₆, δ): -34.14 (dp, ¹J_{PH} = 295 Hz, ³J_{PCCH} = 9.1 Hz, 1.2, $Et_3Ga \cdot P(H)Ph_2$), -46.39 (s, 1.0, $Et_2Ga \cdot PPh_2$). Cryoscopic molecular weight (measured upon mixing reagents; formula weight 343.10; calcd mol wt, obsd mol wt, α or percent dissociation, K_d): 0.0720, 0.0785, 9.03%, 6.45 \times 10⁻⁴; 0.0580, 0.0649, 11.9%, 9.32×10^{-4} ; 0.0422, 0.0478, 13.3%, 8.57×10^{-4} .

(PhMe2CCH2)3Ga'**P(H)Ph2.** 1H NMR (0.0689 M, C6D6, *δ*): 0.83 (s, Ga-CH₂-), 1.23 (s, -CMe₂-), 5.15 (d, ¹J_{PH} = 219 Hz, -PH), 6.80-7.40 (m, Ph). ¹H NMR (0.138 M, C₆D₆, δ): 0.84 (s, Ga-CH₂-), 1.24 (s, -CMe₂-), 5.13 (d, ¹J_{PH} = 231 Hz, $-PH$), 6.82-7.42 (m, Ph). ³¹P NMR (0.0689 M, C₆D₆, δ): -39.17 (dp, $^1J_{\text{PH}} = 224$ Hz, $^3J_{\text{PCCH}} = 7.3$ Hz). ^{31}P NMR (0.138) M, C_6D_6 , δ : -38.40 (dp, $^1J_{PH} = 230$ Hz, $^3J_{PCCH} = 7.4$ Hz). Cryoscopic molecular weight (formula weight 655.56; calcd mol wt, obsd mol wt, α or percent dissociation, K_d): 0.0495, 0.0823, 66.3%, 6.44 \times 10⁻²; 0.0414, 0.0690, 66.7%, 5.52 \times 10⁻²; 0.0315, 0.0518, 64.4%, 3.68×10^{-2} .

Reaction of Ga(C₆H₂Me₃)₃ with HPPh₂. ¹H NMR (0.0689) M of each reagent, C6D6, *δ*): 2.13 (s, p-Me), 2.32 (s, *o*-Me), 5.17 (d, ¹J_{PH} = 216 Hz, -PH), 6.73 (s, *m*-H), 6.9-7.4 (m, Ph). ¹H NMR (0.138 m, C6D6, *δ*): 2.13 (s, *p*-Me), 2.32 (s, *o*-Me), 5.17 (d, ¹*J*PH) 216 Hz, -PH), 6.73 (s, *m*-H), 6.9-7.4 (m, Ph). 31P NMR (0.0689 M, C_6D_6 , δ): -40.40 (dp, ¹J_{PH} = 217 Hz, ³J_{PCCH} $= 6.9$ Hz). ³¹P NMR (0.138 M, C₆D₆, δ): -40.40 (dp, ¹J_{PH} = 217 Hz, ${}^{3}J_{\text{PCCH}}$ = 7.6 Hz). Cryoscopic molecular weight (formula weight 613.46; calcd mol wt, obsd mol wt, α or percent dissociation): 0.0415, 0.0832, 100%; 0.0371, 0.0739, 99.2%.

Acknowledgment. This work was supported in part by the Office of Naval Research. We thank Matthew J. Noble for preparing the $Ga(CH_2CMe_2Ph)_3$ which was used in this study.

OM970296Q