ORGANOMETALLICS

Volume 16, Number 22, October 28, ¹⁹⁹⁷ © Copyright ¹⁹⁹⁷

American Chemical Society

Communications

r**,***ω***-Alkanediyldiindium**

Martin Tschinkl, Annette Schier, Jürgen Riede, Eva Schmidt, and François P. Gabbaï*

Anorganisch-Chemisches Institut der Technischen Universita¨*t Mu*¨*nchen, Lichtenbergstrasse 4, D-85747 Garching, Germany*

Received June 11, 1997^X

Summary: The reaction of indium(I) bromide with $α, ω$ *alkanediylbis(bromomercury) complexes (alkane = butane, pentane, and hexane) resulted in formation of the corresponding* α,ω-alkanediylbis(dibromoindium) com*pounds, which were isolated as THF adducts. The THF molecules of the complexes are easily displaced by bromide anions, thus affording the corresponding* α,*ωalkanediylbis(tribromoindate) dianions.*

While there exists a wide variety of α, ω -alkanediyldiamines or -diphosphines such as the commercially available tmeda (tetramethylethylenediamine) or diphos (1,2-bis(diphenylphosphino)ethane), the reverse-charge analogs in which the alkane chain is terminated by Lewis acidic group 13 elements are far less developed. In addition to the known methylene dialuminum¹ and diindium complexes,² the only other reports concern α,ω $diborylalkanes.³$ In principle, this type of compounds could serve as anion receptors $a^{3a,b,4}$ or as building blocks for the synthesis of Lewis acidic macrocycles.⁵ With this as an incentive, we have set out to prepare α , ω alkanediyldiindium complexes.

We chose to attempt the synthesis of the target compounds by reaction of α,ω-alkanediylbis(bromomercury) with InBr. These transmetalation reactions present the advantage of yielding mercury metal as a sole byproduct.6 Following a synthesis analogous to that of 1,5-pentanediylbis(bromomercury) (**2**),7 1,4-butanediylbis(bromomercury) (**1**) and 1,6-hexanediylbis(bromomercury) (**3**) were synthesized in moderate yield (Scheme 1). Both compounds **1** and **3** are high melting and virtually insoluble in any solvent including hot DMSO. In contrast, compound **2** melts at 150 °C and readily dissolves in DMSO, which allowed its ${}^{1}H$, ${}^{13}C$, and ${}^{199}Hg$ NMR spectroscopic characterization.8 Compounds **1**-**3** were analyzed by CI mass spectrometry. While the base peak of the mass spectrum of compound **3** corresponds to the molecular ion, only low-intensity molecular peaks were detected in the mass spectra of **1** and **2** and the base peaks in their mass spectra correspond to fragments generated by extrusion of two and one methylene units, respectively.

Compounds **1**-**3** react smoothly in THF with 2 equiv of InBr to afford 1,4-butanediyl- (**4**), 1,5-pentanediyl- (**5**), and 1,4-butanediyle (4), 1,5-peritanediyle (5), 8-hexanediyle in *Advance ACS Abstracts*, September 15, 1997.
(1) (a) Ort. M. O.: Mottus, E. H. *J. Organomet, Chem.* 1973, 50, 47. and 1,6-hexanediylbis[bis(tetrahydrofuran)

^{(1) (}a) Ort, M. O.; Mottus, E. H. *J. Organomet. Chem*. **1973**, *50*, 47. (b) Layh, M.; Uhl, W. *Polyhedron* **1990**, *9*, 277. (c) Uhl, W.; Layh, M.

Z. Anorg. Allg. Chem. **1994**, *620*, 856. (d) Uhl, W.; Koch, M.; Heckel, M.; Hiller, W.; Karsch, H. H. *Z. Anorg. Allg. Chem.* **1994**, *620*, 1427. (2) Khan, M. A.; Pepe, C.; Tuck, D. G. *Organometallics* **1986**, *5*, 52 W.; Shore, S. G. *J. Am. Chem. Soc.* **1975**, *97*, 6063. (c) Hunter, R.; Haueisen, R. H.; Irving, A. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 566.

^{(4) (}a) Dietrich, B. *Pure Appl. Chem.* **1993**, *65*, 1457. (b) Kaufmann, D. E.; Otten, A. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 1832.

^{(5) (}a) Zheng, Z.; Knobler, C. B.; Mortimer, M. D.; Hawthorne, M. F. *Inorg. Chem.* **1996**, *35*, 1235. (b) Jung, M. E.; Xia, H. *Tetrahedron Lett*. **1988**, *29*, 297. (c) Newcomb, M.; Homer, J. H.; Blanda, M. T. *J. Am. Chem. Soc.* **1987**, *109*, 7878. (d) Jurkschat, K.; Kuivila, H. G.; Liu, S.; Zubieta, J. A. *Organometallics* **1989**, *8*, 2755.

^{(6) (}a) Gabbaı¨, F. P.; Schier, A.; Riede, J. *J. Chem. Soc., Chem. Commun.* **1996**, 1121. (b) Gabbaı¨, F. P.; Schier, A.; Riede, J.; Schichl, D. *Organometallics* **1996**, *15*, 4119.

⁽⁷⁾ Hilpert, S.; Grüttner, G. *Chem. Ber.* **1914**, 47, 177.

Scheme 1*^a*

BrMg(CH₂)_nMgBr
$$
\xrightarrow{(i)}
$$
 BrHg(CH₂)_nHgBr $\xrightarrow{(ii)}$
\n1 (n = 4)
\n2 (n = 5)
\n3 (n = 6)

 $Br_2In(CH_2)_nInBr_2$ ' 4(THF)

$$
4 (n = 4) 5 (n = 5) 6 (n = 6)
$$

^a Key: (i) 2 HgBr2, THF, 0 °C; (ii) 2 InBr, THF, 25 °C.

indium] (**6**), respectively (Scheme 1).9 After filtration of the metallic precipitate and concentration of the solutions, compounds **4**-**6** can be isolated as airsensitive, crystalline solids in 25-60% yield by slow cooling of the solutions. Compounds **4**-**6** are insoluble in $Et₂O$, toluene, and hexane. Single crystals could be easily obtained for compounds **4** and **6** which have an even number of methylene groups in the alkanediyl chain, whereas compound **5** was always obtained as a microcrystalline solid. The 1H and 13C NMR spectra of **4**-**6** were recorded in THF-*d*8. ⁸ The assignment of all methylene ¹H and ¹³C NMR signals could be easily derived from their respective multiplicity, intensity, and chemical shift. Due to the strong quadrupolar moment of indium $(I = \frac{9}{2})$, the α -methylene carbon signals are broad and extended accumulation was required for their detection. While a correct elemental analysis could be obtained for **4**, the analytical data for both **5** and **6** indicated loss of part of the THF component, which is in agreement with the observation that **5** and **6** slowly become brittle at room temperature.

Treatment of **4** and **6** with 2 equiv of tetraphenylphosphonium bromide led to the displacement of the coordinated THF molecules and formation of the tetraphenylphosphonium salts of the dianions 1,4-butanediyl- (**7**) and 1,6-hexanediylbis(tribromoindate) (**8**), respectively (Scheme 2).⁹ Both salts are moderately air

Figure 1. Crystal structure of **4**. ORTEP drawing with 50% probability ellipsoids; H atoms omitted for clarity. Selected bond lengths (Å), bond angles (deg), and torsional angles (deg): In-C(1) 2.145(4), In-Br(1) 2.544(1), In-Br- (2) 2.517(1), In-O(1) 2.357(3), In-O(2) 2.406(3), C(1)-C(2) 1.531(6), $C(2)-C(2')$ 1.51(1); $C(1)-In-Br(1)$ 119.3(2), $C(1)-$ In-Br(2) 131.1(2), Br(1)-In-Br(2) 109.24(2), C(1)-In-O(1) 98.4(2), C(1)-In-O(2) 89.0(2), O(2)-In-O(1) 172.6(1), In-C(1)-C(2) 117.9(3), C(1)-C(2)-C(2') 112.9(5); In-C(1)-C(2)-C(2') 63.6, C(1)-C(2)-C(2')-C(1') 180.0.

Scheme 2

 $7(n = 4)$ $8(n=6)$

sensitive. In comparison to **7** which dissolves only in MeCN and CH_2Cl_2 , compound **8**, with its longer hydrocarbon chain, exhibits, as expected, an increased solubility in organic solvents of medium polarity such as THF. The 1 H and 13 C NMR spectroscopic data of compounds **7** and **8** are very similar to those of **4** and **6**. 8

Single crystals suitable for X-ray analyses were obtained for compounds **4**, **7**, and **8**. ¹⁰ The crystal lattices of **7** and **8** are composed of independent tetraphenylphosphonium cations and bis(tribromoindate) dianions with no unusually close interionic contacts.

⁽⁸⁾ NMR data are as follows. 1H NMR (400 MHz): **2** (DMSO-*d*6) *δ* 1.35 (p, 3 J = 6.7 Hz, 2 H, γ-CH₂), 1.73 (tt, ³ J = 6.7 Hz, ³ J = 7.3 Hz, 4
H, β-CH₂), 1.82 (t, ³ J = 7.3 Hz, 4 H, α-CH₂); **4** (THF-d₈) δ 1.17 (br, 4 H, R-C*H*2), 1.76 (br, 4 H, *â*-C*H*2), 1.77 (m, 16 H, OCH2C*H*2), 3.61 (m, 16 H, OC*H*2); **5** (THF*-d*8) *δ* 1.15 (t, ³*J*) 7.3 Hz, 4 H, R-C*H*2), 1.55 (br, 2 H, *γ*-C*H*₂), 1.76 (br, 4 H, *β*-C*H*₂), 1.77 (m, 16 H, OCH₂C*H*₂), 3.61 (m, 16 H, OC*H*₂); **6** (THF*-d*₈) *δ* 1.16 (t, ³*J* = 7.8 Hz, 4 H, α-C*H*₂), 1.45 (br, 4 H, *γ*-C*H*2), 1.76 (br, 4 H, *â*-C*H*2), 1.77 (m, 16 H, OCH2C*H*2), 3.61 (m, 16 H, OC*H*2); **7** (MeCN*-d*3) *δ* 1.09 (br, 4 H, R-C*H*2), 1.68 (br, 4 H, *â*-C*H*2), 7.66-7.94 (m, 40 H, P(C_6H_5)); **8** (MeCN-d₃) δ 1.08 (t, ${}^3J = 8.1$ Hz, 4 H, R-C*H*2), 1.36 (br, 4 H, *γ*-C*H*2), 1.60 (br, 4 H, *â*-C*H*2), 7.66-7.94 (m, 40 H, P(C6*H5*)). 13C{1H} NMR (100.5 MHz): **2** (DMSO*-d*6) *δ* 27.9 (*γ*-C), 34.3 (β -C), 39.0 (α -C); **4** (THF- d_8) δ 20.8 (br, α -*C*), 26.4 (OCH₂*C*H₂), 32.6 (β -*C*), 68.2 ($\overline{OCH_2}$); 5 (THF- d_8) δ 20.9 (br, α -*C*), 26.4 ($\overline{OCH_2CH_2O_1}$)
27.4 (γ -*C*), 39.6 (β -*C*), 68.2 ($\overline{OCH_2}$); 6 (THF- d_8) 21.0 (br, α -*C*), 26.4 (OCH2*C*H2), 27.7 (*γ*-*C*), 34.7 (*â*-*C*), 68.2 (O*C*H2); **7** (MeCN*-d*3) *δ* 21.7 (br, α -*C*), 31.3 (β -*C*); [Ph₄P⁺] δ 118.4 (*C-ipso*), 130.3 (d, ²*J*_{CP} = 13.0 Hz, *C-meta*), 134.6 (d, ³*J*_{CP} = 10.7 Hz, *C-ortho*), 135.4 (*C-para*); **8** (MeCN-*d*₃) δ 21.7 (br, α -*C*), 27.0 135.4 (C-*para*). ¹⁹⁹Hg^{{1}H} NMR (71.56 MHz, DMSO-*d*₆): **2** δ -1089.

⁽⁹⁾ Synthesis of **4**: InBr (0.215 g, 1.1 mmol) and **1** (0.310 g, 0.5 mmol) were stirred together at room temperature in THF (5 mL) for 3 h, after which time the reaction mixture was filtered to remove the metallic grey precipitate. Concentration of the filtrate followed by cooling to -25 °C afforded a 60% yield (0.27 g) of crystalline **4**, mp 147 °C. Anal. Calcd for C₂₀H₄₀Br₄In₂O₄: C, 26.87; H, 4.48. Found: C, 26.80; H, 4.49. Compounds 5 and 6 were prepared in 25 and 46% yield (respectively) following a similar procedure. Synthesis of 7: Compound 4 (0.05 mmol, 44.7 mg) and tetraphenylphosphonium bromide (0.1 mmol, 42 mg) were dissolved in THF (1 mL). Compound 7 precipitated inmediatly as a white powder in 90% was prepared in a 85% yield following a similar procedure, mp 155
°C. Anal. Calcd for C₅₄H₅₂Br₆In₂P₂: C, 44.05; H, 3.54. Found C, 43.87; H, 3.58.

⁽¹⁰⁾ Crystal structure determination data for **4**, **7**, and **8**. **4**: $M =$ 893.80; monoclinic space group $P2_1/c$; $a = 9.325(1)$ Å, $b = 13.721(1)$ Å, $c = 12.125(1)$ Å, $\beta = 109.16(1)$ °, $V = 1465.4(2)$ Å³; $Z = 2$; $D_c = 2.$ g/cm³; *F(000)* = **860. 7**: $M = 1443.94$; monoclinic space group *P*2₁/*c*, *a* = 12.466(2) Å, *b* = 7.576(1) Å, *c* = 28.846(4) Å, β = 98.89(1)°, *V* = 2691.6(7) Å³; $Z = 2$; $D_c = 1.782$ g/cm³; $F(000) = 1396$. **8**: $M = 1472.00$; monoclinic space group $P2_1/c$; $a = 7.689(1)$ Å, $b = 14.585(1)$ Å, $c = 25.014(3)$ Å, $\beta = 96.59(1)$ °, $V = 2786.6(5)$ Å³; $Z = 2$; $D_c = 1.754$ $F(000) = 1428$. Enraf-Nonius CAD4 diffractometer; Mo K α radiation $(\lambda = 0.710 \, 73 \, \text{\AA})$; $T = -74 \, \text{°C}$. The structures were solved by direct methods (SHELXS-86) and refined by full-matrix least-squares techniques against F^2 (SHELXL-93). The thermal motion of all nonhydrogen atoms was treated anisotropically. All H atoms of compounds **7** and **8** were calculated in idealized geometry and allowed to ride on their corresponding carbon atoms with fixed isotropic contributions $(U_{\text{Isoffay}} = 1.5 U_{\text{eq}}$ of the attached C atom), whereas the methylene hydrogen tions. The structure of **4** converged for 152 refined parameters to R1 (wR2) = 0.0351 (0.0885) for 3250 reflections with $F > 4\sigma(F)$. The structure of **7** converged for 280 refined parameters to R1 (wR2) = 0.0417 (0.0728) for 5205 reflections with $F > 4\sigma(F)$. The structure of **8** converged for 289 refined parameters to R1 (wR2) = 0.0315 (0.0588) for 5283 reflections with $F > 4\sigma(F)$.

Figure 2. Crystal structure of the dianion of **7**. ORTEP drawing with 50% probability ellipsoids; H atoms omitted for clarity. Selected bond lengths (Å), bond angles (deg) and torsional angles (deg): $In- $\bar{C}(1)$ 2.146(5), In- $\bar{Br}(1)$ 2.543 (1)$, In-Br (2) 2.548 (1) , In-Br (3) 2.539 (1) , C (1) -C (2) 1.520-(7), $C(2)-C(2')$ 1.52(1); $Br(1)-In-Br(2)$ 105.44(2), $Br(1)-$ In-Br(3) 102.15(3), Br(2)-In-Br(3) 106.91(3), C(1)-In-Br(1) 117.0(1), $C(1)$ -In-Br(2) 109.8(1), $C(1)$ -In-Br(3) 114.7(1), In-C(1)-C(2) 113.1(3), C(1)-C(2)-C(2') 113.0-(5); In-C(1)-C(2)-C(2') 173.7, C(1)-C(2)-C(2')-C(1') 180.0.

Molecules of neutral **4** (Figure 1), as well as the dianionic components of **7** (Figure 2) and **8** (Figure 3), are centrosymmetric with an inversion center located at the midpoint of the C2-C2′ (**4** and **7**) and C3-C3′ (**8**) vectors, respectively. Examination of the torsional angles along the alkanediyldiindium chains indicates that **4**, the dianion of **7**, and the dianion of **8** adopt a $G(+)AG(-)$, AAA, and $G(+)AAG(-)$ conformation, respectively $(G = gauche, A = anti)$. The indium centers of **4** are pentacoordinated in a trigonal bipyramidal manner with the α -methylene group and the two bromine atoms at the equatorial positions while two THF molecules occupy the axial sites. Altogether, the coordination sphere of the indium center in **4** is very similar to that encountered in the structure of PhCH₂- $InBr_2(THF)_2^{11}$ and all bond lengths and angles are comparable. The indium centers of **7** and **8** are tetracoordinated in a tetragonal fashion which does not exhibit any strong distortion.

Figure 3. Crystal structure of the dianion of **8**. ORTEP drawing with 50% probability ellipsoids; H atoms omitted for clarity. Selected bond lengths (Å), bond angles (deg), and torsional angles (deg): $\overline{In}-C(1)$ 2.151(4), $\overline{In}-Br(1)$ 2.555(1), In-Br(2) 2.560(1), In-Br(3) 2.540(1), C(1)-C(2) 1.519(5), $C(2) - C(3)$ 1.515(6); $C(3) - C(3)$ 1.537(7); Br(1)-In-Br(2) 100.35(2), Br(1)-In-Br(3) 104.00(2), Br(2)-In-Br(3) 104.13(2), C(1)-In-Br(1) 115.1(1), C(1)-In-Br(2) 118.8(1), C(1)-In-Br(3) 112.6(1), In-C(1)-C(2) 116.6(3), C(1)-C(2)-C(3) 114.4(3), C(2)-C(3)-C(3') 114.0(4); In-C(1)-C(2)-C(2') 62.4, C(1)-C(2)-C(3)-C(3') 171.7, C(2)- $C(3)-C(3')-C(2')$ 180.0.

The present results indicate that bifunctional Lewis acids with flexible backbones can be easily synthesized. Although the indium centers of compounds **4**-**6** are coordinated by THF molecules, the isolation of compounds **7** and **8** indicates that the THF molecules are labile and can be displaced by stronger nucleophiles. Present investigations are focused on the reactions of compounds **4** and **6** with polyfunctional bases for the synthesis of coordination polymers and dendrimers.

Acknowledgment. We thank Prof. H. Schmidbaur who made this work possible. Financial support from the European Commission (Training and Mobility of Researcher Program) and the Deutsche Forschungsgemeinschaft is thankfully acknowledged.

Supporting Information Available: Text giving the experimental procedure and NMR and elemental analysis data for **1**-**8** and tables of atomic coordinates and isotropic thermal parameters, complete bond lengths and angles, anisotropic thermal parameters, and hydrogen atom coordinates and thermal parameters for **4**, **7**, and **8** (23 pages). Ordering information is given on any current masthead page.

OM970498M

⁽¹¹⁾ Werner, B.; Kräuter, T.; Neumüller, B. Z. *Anorg. Allg. Chem.* **1995**, *621*, 346.