## ORGANOMETALLICS

Volume 16, Number 22, October 28, 1997

© Copyright 1997 American Chemical Society

## Communications

## α,*ω*-Alkanediyldiindium

Martin Tschinkl, Annette Schier, Jürgen Riede, Eva Schmidt, and François P. Gabbaï\*

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

Received June 11, 1997<sup>®</sup>

Summary: The reaction of indium(I) bromide with  $\alpha, \omega$ alkanediylbis(bromomercury) complexes (alkane = butane, pentane, and hexane) resulted in formation of the corresponding  $\alpha, \omega$ -alkanediylbis(dibromoindium) compounds, which were isolated as THF adducts. The THF molecules of the complexes are easily displaced by bromide anions, thus affording the corresponding  $\alpha, \omega$ alkanediylbis(tribromoindate) dianions.

While there exists a wide variety of  $\alpha, \omega$ -alkanediyldiamines or -diphosphines such as the commercially available tmeda (tetramethylethylenediamine) or diphos (1,2-bis(diphenylphosphino)ethane), the reverse-charge analogs in which the alkane chain is terminated by Lewis acidic group 13 elements are far less developed. In addition to the known methylene dialuminum<sup>1</sup> and diindium complexes,<sup>2</sup> the only other reports concern  $\alpha, \omega$ diborylalkanes.<sup>3</sup> In principle, this type of compounds could serve as anion receptors<sup>3a,b,4</sup> or as building blocks for the synthesis of Lewis acidic macrocycles.<sup>5</sup> With this as an incentive, we have set out to prepare  $\alpha, \omega$ alkanediyldiindium complexes.

We chose to attempt the synthesis of the target compounds by reaction of  $\alpha, \omega$ -alkanediylbis(bromomercury) with InBr. These transmetalation reactions present the advantage of yielding mercury metal as a sole byproduct.<sup>6</sup> Following a synthesis analogous to that of 1,5-pentanediylbis(bromomercury) (2),<sup>7</sup> 1,4-butanediylbis(bromomercury) (1) and 1,6-hexanediylbis(bromomercury) (3) were synthesized in moderate yield (Scheme 1). Both compounds **1** and **3** are high melting and virtually insoluble in any solvent including hot DMSO. In contrast, compound 2 melts at 150 °C and readily dissolves in DMSO, which allowed its <sup>1</sup>H, <sup>13</sup>C, and <sup>199</sup>Hg NMR spectroscopic characterization.<sup>8</sup> Compounds 1–3 were analyzed by CI mass spectrometry. While the base peak of the mass spectrum of compound 3 corresponds to the molecular ion, only low-intensity molecular peaks were detected in the mass spectra of 1 and 2 and the base peaks in their mass spectra correspond to fragments generated by extrusion of two and one methylene units, respectively.

Compounds **1**-**3** react smoothly in THF with 2 equiv of InBr to afford 1,4-butanediyl- (**4**), 1,5-pentanediyl- (**5**), and 1,6-hexanediylbis[bis(tetrahydrofuran)dibromo-

<sup>&</sup>lt;sup>®</sup> Abstract published in Advance ACS Abstracts, September 15, 1997.
(1) (a) Ort, M. O.; Mottus, E. H. J. Organomet. Chem. 1973, 50, 47.
(b) Layh, M.; Uhl, W. Polyhedron 1990, 9, 277. (c) Uhl, W.; Layh, M.
Z. Anorg. Allg. Chem. 1994, 620, 856. (d) Uhl, W.; Koch, M.; Heckel, M.; Hiller, W.; Karsch, H. H. Z. Anorg. Allg. Chem. 1994, 620, 1427.

<sup>(</sup>d) Layii, M., Olii, W. Polyneiton 1990, 5, 217. (C) Olii, W., Layii, M.,
Z. Anorg. Allg. Chem. 1994, 620, 856. (d) Uhl, W.; Koch, M.; Heckel,
M.; Hiller, W.; Karsch, H. H. Z. Anorg. Allg. Chem. 1994, 620, 1427.
(2) Khan, M. A.; Pepe, C.; Tuck, D. G. Organometallics 1986, 5, 525.
(3) (a) Shriver, D. F.; Biallas, M. J. J. Am. Chem. Soc. 1967, 89,
1078. (b) Saturnino, D. J.; Yamauchi, M.; Clayton, W. R.; Nelson, R.
W.; Shore, S. G. J. Am. Chem. Soc. 1975, 97, 6063. (c) Hunter, R.;
Haueisen, R. H.; Irving, A. Angew. Chem., Int. Ed. Engl. 1994, 33, 566.

<sup>(4) (</sup>a) Dietrich, B. Pure Appl. Chem. **1993**, 65, 1457. (b) Kaufmann, D. E.; Otten, A. Angew. Chem., Int. Ed. Engl. **1994**, 33, 1832.

<sup>(5) (</sup>a) Zheng, Z.; Knobler, C. B.; Mortimer, M. D.; Hawthorne, M. F. Inorg. Chem. **1996**, *35*, 1235. (b) Jung, M. E.; Xia, H. Tetrahedron Lett. **1988**, *29*, 297. (c) Newcomb, M.; Homer, J. H.; Blanda, M. T. J. Am. Chem. Soc. **1987**, *109*, 7878. (d) Jurkschat, K.; Kuivila, H. G.; Liu, S.; Zubieta, J. A. Organometallics **1989**, *8*, 2755.

<sup>(6) (</sup>a) Gabbaï, F. P.; Schier, A.; Riede, J. *J. Chem. Soc., Chem. Commun.* **1996**, 1121. (b) Gabbaï, F. P.; Schier, A.; Riede, J.; Schichl, D. *Organometallics* **1996**, *15*, 4119.

<sup>(7)</sup> Hilpert, S.; Grüttner, G. Chem. Ber. 1914, 47, 177.

Scheme 1<sup>a</sup>

BrMg(CH<sub>2</sub>)<sub>n</sub>MgBr 
$$(i)$$
 BrHg(CH<sub>2</sub>)<sub>n</sub>HgBr  $(ii)$   
1 (n = 4)  
2 (n = 5)  
3 (n = 6)  
Br In((i))

 $Br_2In(CH_2)_nInBr_2$  · 4(THF)

$$4 (n = 4)$$
  
 $5 (n = 5)$   
 $6 (n = 6)$ 

<sup>a</sup> Key: (i) 2 HgBr<sub>2</sub>, THF, 0 °C; (ii) 2 InBr, THF, 25 °C.

indium] (6), respectively (Scheme 1).<sup>9</sup> After filtration of the metallic precipitate and concentration of the solutions, compounds 4-6 can be isolated as airsensitive, crystalline solids in 25-60% yield by slow cooling of the solutions. Compounds **4-6** are insoluble in Et<sub>2</sub>O, toluene, and hexane. Single crystals could be easily obtained for compounds **4** and **6** which have an even number of methylene groups in the alkanediyl chain, whereas compound 5 was always obtained as a microcrystalline solid. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of **4–6** were recorded in THF- $d_8$ .<sup>8</sup> The assignment of all methylene <sup>1</sup>H and <sup>13</sup>C NMR signals could be easily derived from their respective multiplicity, intensity, and chemical shift. Due to the strong quadrupolar moment of indium  $(I = \frac{9}{2})$ , the  $\alpha$ -methylene carbon signals are broad and extended accumulation was required for their detection. While a correct elemental analysis could be obtained for 4, the analytical data for both 5 and 6 indicated loss of part of the THF component, which is in agreement with the observation that 5 and 6 slowly become brittle at room temperature.

Treatment of **4** and **6** with 2 equiv of tetraphenylphosphonium bromide led to the displacement of the coordinated THF molecules and formation of the tetraphenylphosphonium salts of the dianions 1,4-butanediyl- (**7**) and 1,6-hexanediylbis(tribromoindate) (**8**), respectively (Scheme 2).<sup>9</sup> Both salts are moderately air



**Figure 1.** Crystal structure of **4**. ORTEP drawing with 50% probability ellipsoids; H atoms omitted for clarity. Selected bond lengths (Å), bond angles (deg), and torsional angles (deg): In-C(1) 2.145(4), In-Br(1) 2.544(1), In-Br(2) 2.517(1), In-O(1) 2.357(3), In-O(2) 2.406(3), C(1)-C(2) 1.531(6), C(2)-C(2') 1.51(1); C(1)-In-Br(1) 119.3(2), C(1)-In-Br(2) 131.1(2), Br(1)-In-Br(2) 109.24(2), C(1)-In-O(1) 98.4(2), C(1)-In-O(2) 89.0(2), O(2)-In-O(1) 172.6(1), In-C(1)-C(2) 117.9(3), C(1)-C(2') -C(2') 112.9(5); In-C(1)-C(2)-C(2') 63.6, C(1)-C(2)-C(2')-C(1') 180.0.

## Scheme 2

 $Br_2In(CH_2)_nInBr_2 \cdot 4(THF) + 2[Ph_4P]Br \longrightarrow$  4 (n = 4)

**6** (n = 6)

 $[Br_3In(CH_2)_nInBr_3]^2 2[Ph_4P]^+$ 

7 (n = 4)8 (n = 6)

sensitive. In comparison to **7** which dissolves only in MeCN and  $CH_2Cl_2$ , compound **8**, with its longer hydrocarbon chain, exhibits, as expected, an increased solubility in organic solvents of medium polarity such as THF. The <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data of compounds **7** and **8** are very similar to those of **4** and **6**.<sup>8</sup>

Single crystals suitable for X-ray analyses were obtained for compounds **4**, **7**, and **8**.<sup>10</sup> The crystal lattices of **7** and **8** are composed of independent tetraphenylphosphonium cations and bis(tribromoindate) dianions with no unusually close interionic contacts.

<sup>(8)</sup> NMR data are as follows. <sup>1</sup>H NMR (400 MHz): **2** (DMSO- $d_6$ )  $\delta$  1.35 (p, <sup>3</sup>J = 6.7 Hz, 2 H,  $\gamma$ -CH<sub>2</sub>), 1.73 (tt, <sup>3</sup>J = 6.7 Hz, <sup>3</sup>J = 7.3 Hz, 4 H,  $\beta$ -CH<sub>2</sub>), 1.82 (t, <sup>3</sup>J = 7.3 Hz, 4 H,  $\alpha$ -CH<sub>2</sub>); **4** (THF- $d_8$ )  $\delta$  1.17 (br, 4 H,  $\alpha$ -CH<sub>2</sub>); **1**, 76 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 1.77 (m, 16 H, OCH<sub>2</sub>CH<sub>2</sub>), 3.61 (m, 16 H, OCH<sub>2</sub>); **1**, 76 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 1.77 (m, 16 H, OCH<sub>2</sub>CH<sub>2</sub>), 3.61 (m, 16 H, OCH<sub>2</sub>); **1**, 76 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 1.77 (m, 16 H, OCH<sub>2</sub>CH<sub>2</sub>), 3.61 (m, 16 H, OCH<sub>2</sub>); **6** (THF- $d_8$ )  $\delta$  1.16 (t, <sup>3</sup>J = 7.3 Hz, 4 H,  $\alpha$ -CH<sub>2</sub>), 1.55 (br, 2 H,  $\gamma$ -CH<sub>2</sub>), 1.76 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 1.77 (m, 16 H, OCH<sub>2</sub>CH<sub>2</sub>), 3.61 (m, 16 H, OCH<sub>2</sub>); **7** (MeCN- $d_8$ )  $\delta$  1.09 (br, 4 H,  $\alpha$ -CH<sub>2</sub>), 1.45 (br, 4 H,  $\gamma$ -CH<sub>2</sub>), 1.76 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 1.77 (m, 16 H, OCH<sub>2</sub>CH<sub>2</sub>), 3.61 (m, 16 H, OCH<sub>2</sub>); **7** (MeCN- $d_8$ )  $\delta$  1.09 (br, 4 H,  $\alpha$ -CH<sub>2</sub>), 1.68 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 1.76 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 1.76 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 1.60 (br, 4 H,  $\alpha$ -CH<sub>2</sub>), 1.66 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 1.66 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 3.61 (m, 16 H, OCH<sub>2</sub>); **3** (br, 4 H,  $\gamma$ -CH<sub>2</sub>), 1.60 (br, 4 H,  $\alpha$ -CH<sub>2</sub>), 1.66 -7.94 (m, 40 H, P(C<sub>6</sub>H<sub>3</sub>)); **8** (MeCN- $d_3$ )  $\delta$  1.08 (t, <sup>3</sup>J = **8**.1 Hz, 4 H,  $\alpha$ -CH<sub>2</sub>), 1.36 (br, 4 H,  $\gamma$ -CH<sub>2</sub>), 1.60 (br, 4 H,  $\beta$ -CH<sub>2</sub>), 7.66-7.94 (m, 40 H, P(C<sub>6</sub>H<sub>3</sub>)); **8** (MeCN- $d_3$ )  $\delta$  20.8 (br,  $\alpha$ -C), 26.4 (OCH<sub>2</sub>CH<sub>2</sub>), 27.4 ( $\gamma$ -C), 39.6 ( $\beta$ -C), 68.2 (OCH<sub>2</sub>); **5** (THF- $d_8$ )  $\delta$  20.9 (br,  $\alpha$ -C), 26.4 (OCH<sub>2</sub>CH<sub>2</sub>), 27.7 ( $\gamma$ -C), 34.7 ( $\beta$ -C), 68.2 (OCH<sub>2</sub>); **7** (MeCN- $d_3$ )  $\delta$  21.7 (br,  $\alpha$ -C), 27.0 ( $\gamma$ -C), 33.3 ( $\alpha$ -C); [Ph<sub>4</sub>P<sup>+</sup>]  $\delta$  118.4 (*C*-*ipso*), 130.3 (d, <sup>2</sup> $_{CP}$  = 13.0 Hz, C-*meta*), 134.6 (d, <sup>3</sup> $_{CP}$  = 10.7 Hz, C-*ortho*), 135.4 (C-*para*); **8** (MeCN- $d_3$ )  $\delta$  21.7 (br,  $\alpha$ -C), 27.0 ( $\gamma$ -C), 33.3 ( $\alpha$ -C); [Ph<sub>4</sub>P<sup>+</sup>]  $\delta$  118.4 (*C*-*ipso*), 130.3 (d, <sup>2</sup> $_{CP}$  = 13.0 Hz, C-*meta*), 134.7 (d, <sup>3</sup> $_{SP}$  = 10.0 Hz, C-*ortho*), 135.4 (C-*para*); **8** (MeCN- $d_3$ )  $\delta$  21.7 (br,  $\alpha$ -C), 27.0 ( $\gamma$ -C), 33.3 ( $\alpha$ -C); [Ph<sub>4</sub>P<sup>+</sup>]  $\delta$  118.4 (*C*-*ipso*), 130

<sup>(9)</sup> Synthesis of 4: InBr (0.215 g, 1.1 mmol) and 1 (0.310 g, 0.5 mmol) were stirred together at room temperature in THF (5 mL) for 3 h, after which time the reaction mixture was filtered to remove the metallic grey precipitate. Concentration of the filtrate followed by cooling to -25 °C afforded a 60% yield (0.27 g) of crystalline 4, mp 147 °C. Anal. Calcd for C<sub>20</sub>H<sub>40</sub>Br<sub>4</sub>In<sub>2</sub>O<sub>4</sub>: C, 26.87; H, 4.48. Found: C, 26.80; H, 4.49. Compounds 5 and 6 were prepared in 25 and 46% yield (respectively) following a similar procedure. Synthesis of 7: Compound 4 (0.05 mmol), 44.7 mg) and tetraphenylphosphonium bromide (0.1 mmol, 42 mg) were dissolved in THF (1 mL). Compound 7 precipitated immediatly as a white powder in 90% yield (65 mg), mp 136 °C. Anal. Calcd for C<sub>52</sub>H<sub>48</sub>·Br<sub>6</sub>In<sub>2</sub>P<sub>2</sub>: C, 43.24; H, 3.33. Found: C, 42.92; H, 3.47. Compound 8 was prepared in a 85% yield following a similar procedure, mp 155 °C. Anal. Calcd for C<sub>54</sub>H<sub>52</sub>Br<sub>6</sub>In<sub>2</sub>P<sub>2</sub>: C, 44.05; H, 3.54. Found C, 43.87; H, 3.58.

<sup>(10)</sup> Crystal structure determination data for **4**, **7**, and **8**. **4**: M = 893.80; monoclinic space group  $P2_1/c$ , a = 9.325(1) Å, b = 13.721(1) Å, c = 12.125(1) Å,  $\beta = 109.16(1)^\circ$ , V = 1465.4(2) Å<sup>3</sup>; Z = 2;  $D_c = 2.026$  g/cm<sup>3</sup>; F(000) = 860. **7**: M = 1443.94; monoclinic space group  $P2_1/c$ , a = 12.466(2) Å, b = 7.576(1) Å, c = 28.846(4) Å,  $\beta = 98.89(1)^\circ$ , V = 2691.6(7) Å<sup>3</sup>; Z = 2;  $D_c = 1.782$  g/cm<sup>3</sup>; F(000) = 1396. **8**: M = 1472.00; monoclinic space group  $P2_1/c$ ; a = 7.689(1) Å, b = 14.585(1) Å, c = 25.014(3) Å,  $\beta = 96.59(1)^\circ$ , V = 2786.6(5) Å<sup>3</sup>; Z = 2;  $D_c = 1.754$  g/cm<sup>3</sup>; F(000) = 1428. Erraf-Nonius CAD4 diffractometer; Mo K\alpha radiation ( $\lambda = 0.710$  73 Å); T = -74 °C. The structures were solved by direct methods (SHELXS-86) and refined by full-matrix least-squares techniques against  $F^2$  (SHELXL-93). The thermal motion of all non-hydrogen atoms was treated anisotropically. All H atoms of compounds **7** and **8** were calculated in idealized geometry and allowed to ride on their corresponding carbon atoms with fixed isotropic contributions ( $U_{\rm iso(fix)} = 1.5U_{\rm eq}$  of the attached C atom), whereas the methylene hydrogen atoms of **4** were found and refined with isotropic contributions ( $U_{\rm iso(fix)} = 1.5U_{\rm eq}$  of the attached C atom), whereas the methylene hydrogen atoms of **4** were found and refined parameters to R1 (wR2) = 0.0315 (0.0885) for 3250 reflections with  $F > 4\sigma(F)$ . The structure of **7** converged for 280 reflections with  $F > 4\sigma(F)$ . The structure of **8** converged for 289 reflections with  $F > 4\sigma(F)$ .



**Figure 2.** Crystal structure of the dianion of **7**. ORTEP drawing with 50% probability ellipsoids; H atoms omitted for clarity. Selected bond lengths (Å), bond angles (deg) and torsional angles (deg):  $In-C(1) \ 2.146(5)$ ,  $In-Br(1) \ 2.543$ -(1),  $In-Br(2) \ 2.548(1)$ ,  $In-Br(3) \ 2.539(1)$ ,  $C(1)-C(2) \ 1.520$ -(7),  $C(2)-C(2') \ 1.52(1)$ ;  $Br(1)-In-Br(2) \ 105.44(2)$ ,  $Br(1)-In-Br(3) \ 102.15(3)$ ,  $Br(2)-In-Br(3) \ 106.91(3)$ ,  $C(1)-In-Br(3) \ 114.7(1)$ ,  $In-C(1)-C(2) \ 113.1(3)$ ,  $C(1)-C(2)-C(2') \ 113.0-(5)$ ;  $In-C(1)-C(2)-C(2') \ 173.7$ ,  $C(1)-C(2)-C(2')-C(1') \ 180.0$ .

Molecules of neutral 4 (Figure 1), as well as the dianionic components of 7 (Figure 2) and 8 (Figure 3), are centrosymmetric with an inversion center located at the midpoint of the C2-C2' (4 and 7) and C3-C3' (8) vectors, respectively. Examination of the torsional angles along the alkanedivldiindium chains indicates that 4, the dianion of 7, and the dianion of 8 adopt a G(+)AG(-), AAA, and G(+)AAAG(-) conformation, respectively (G = gauche, A = anti). The indium centers of **4** are pentacoordinated in a trigonal bipyramidal manner with the  $\alpha$ -methylene group and the two bromine atoms at the equatorial positions while two THF molecules occupy the axial sites. Altogether, the coordination sphere of the indium center in 4 is very similar to that encountered in the structure of PhCH<sub>2</sub>-InBr<sub>2</sub>(THF)<sub>2</sub><sup>11</sup> and all bond lengths and angles are comparable. The indium centers of 7 and 8 are tetracoordinated in a tetragonal fashion which does not exhibit any strong distortion.



**Figure 3.** Crystal structure of the dianion of **8**. ORTEP drawing with 50% probability ellipsoids; H atoms omitted for clarity. Selected bond lengths (Å), bond angles (deg), and torsional angles (deg): In–C(1) 2.151(4), In–Br(1) 2.555(1), In–Br(2) 2.560(1), In–Br(3) 2.540(1), C(1)–C(2) 1.519(5), C(2)–C(3) 1.515(6); C(3)–C(3') 1.537(7); Br(1)–In–Br(2) 100.35(2), Br(1)–In–Br(3) 104.00(2), Br(2)–In–Br(3) 104.13(2), C(1)–In–Br(1) 115.1(1), C(1)–In–Br(2) 118.8(1), C(1)–In–Br(3) 112.6(1), In–C(1)–C(2) 116.6(3), C(1)–C(2)–C(3) 114.4(3), C(2)–C(3)–C(3') 171.7, C(2)–C(3)–C(3') -C(2') 180.0.

The present results indicate that bifunctional Lewis acids with flexible backbones can be easily synthesized. Although the indium centers of compounds 4-6 are coordinated by THF molecules, the isolation of compounds 7 and 8 indicates that the THF molecules are labile and can be displaced by stronger nucleophiles. Present investigations are focused on the reactions of compounds 4 and 6 with polyfunctional bases for the synthesis of coordination polymers and dendrimers.

**Acknowledgment.** We thank Prof. H. Schmidbaur who made this work possible. Financial support from the European Commission (Training and Mobility of Researcher Program) and the Deutsche Forschungsgemeinschaft is thankfully acknowledged.

**Supporting Information Available:** Text giving the experimental procedure and NMR and elemental analysis data for **1–8** and tables of atomic coordinates and isotropic thermal parameters, complete bond lengths and angles, anisotropic thermal parameters, and hydrogen atom coordinates and thermal parameters for **4**, **7**, and **8** (23 pages). Ordering information is given on any current masthead page.

OM970498M

<sup>(11)</sup> Werner, B.; Kräuter, T.; Neumüller, B. Z. Anorg. Allg. Chem. 1995, 621, 346.