Remarkably Robust Group 4 Metal Half-Sandwich Complexes Containing Two Higher Alkyl Ligands: X-ray Structure and Reactivity of the Di-*n*-butyl Complex $[Hf(\eta^5:\eta^1:\eta^1-C_5Me_4SiMe_2NCH_2CH_2OMe)^nBu_2]$

Francisco Amor, Thomas P. Spaniol, and Jun Okuda*

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, J.-J.-Becher-Weg 24, D-55099 Mainz, Germany

Received May 30, 1997[®]

Summary: The reaction of LiR with $M(\eta^5.\eta^1.\eta^1-C_5Me_4-SiMe_2NCH_2CH_2OMe)Cl_2$ (**1**, M = Zr (**a**), Hf (**b**)) gives the isolable, thermally stable complexes $M(\eta^5.\eta^1.\eta^1-C_5-Me_4SiMe_2NCH_2CH_2OMe)R_2$ (R = Et (**2**), ⁿPr (**3**), ⁿBu-(**4**)), which contain two alkyl ligands with β -hydrogen atoms.

Alkyl ligands with β -hydrogen atoms at d⁰ metal centers are of pivotal importance as models for the growing alkyl chain during oligo- and polymerization of ethylene at electrophilic metal centers.^{1,2} Depending subtly on the nature of the metal center and on the ancillary ligand set, stabilization by steric constraint, agostic bonding, or decomposition through β -hydrogen elimination may occur. For instance, zirconocene di-nbutyl [$Zr(\eta^5-C_5H_5)_2^nBu_2$], formed in situ by reacting [Zr- $(\eta^5-C_5H_5)_2Cl_2$ with LiⁿBu at low temperatures, is known to decompose to the 1-butene complex $[Zr(\eta^5-C_5H_5)_2 (H_2C=CHEt)]$, which serves as a versatile source for the $Zr(\eta^5-C_5H_5)_2$ fragment.³ More recently, the half-sandwich complex $[Zr(\eta^5-C_5H_5)^nBu_3(THF)_n]$ has been mentioned,⁴ but like some hafnocene complexes with two higher alkyl ligands,⁵⁻⁷ no full structural characterization has been undertaken. We report here the unexpectedly facile synthesis of thermally robust zirconium and hafnium complexes that contain two alkyl ligands with β -hydrogen atoms. The tridentate functionalized cyclopentadienyl ligand C₅Me₄SiMe₂NCH₂CH₂OMe⁸ is used as a supporting ligand that acts as a substitute for the familiar bridged bis(cyclopentadienyl) ligand.

Reaction of the dichloro complexes $M(\eta^{5}:\eta^{1}:\eta^{1}:c_{5}Me_{4}-SiMe_{2}NCH_{2}CH_{2}OMe)Cl_{2}$ (**1**, M = Zr (**a**), Hf (**b**)) with LiR gives dialkyl complexes of the type $M(\eta^{5}:\eta^{1}:\eta^{1}-C_{5}Me_{4}-SiMe_{2}NCH_{2}CH_{2}OMe)R_{2}$ (R = Et (**2**), ⁿPr (**3**), ⁿBu(**4**)) as pentane-soluble, colorless crystals in good, reproducible

yields (Scheme 1).⁹ Generally, the thermal stability follows the order $\mathbf{a} < \mathbf{b}$ and $\mathbf{2} < \mathbf{3} < \mathbf{4}$. The most stable

 [®] Abstract published in Advance ACS Abstracts, October 1, 1997.
 (1) Jordan, R. F.; Bradley, P. K.; Baenzinger, N. C.; LaPointe, R. E. J. Am. Chem. Soc. 1990, 112, 1289.

⁽²⁾ Burger, B. J.; Thompson, M. E.; Cotter, W. D.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 1566. Hessen, B.; van der Heijden, H. J. Am. Chem. Soc. 1996, 118, 11670.

⁽³⁾ Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum,
F. E.; Swanson, D. R.; Takahashi, T. J. Am. Chem. Soc. 1989, 111,
3336. Buchwald, S. L.; Watson, B. T. J. Am. Chem. Soc. 1987, 109,
2544. Binger, P.; Müller, P.; Benn, R.; Rufinska, A.; Gabur, B.; Krüger,
C.; Betz, P. Chem. Ber. 1989, 122, 1035. Alt, H. G.; Zenk, R. J.
Organomet. Chem. 1996, 522, 177. Dioumaev, V. K.; Harrod, J. F.
Organometallics 1997, 16, 1452. Soleil, F.; Choukroun, R. J. Am. Chem.
Soc. 1997, 119, 2938.

⁽⁴⁾ Kondakov, D.; Negishi, E. J. Chem. Soc., Chem. Commun. 1996, 963.

⁽⁵⁾ Guo, Z.; Swenson, D. C.; Jordan, R. F. Organometallics 1994, 13, 1424.

⁽⁶⁾ Schock, L. E.; Marks, T. J. J. Am. Chem. Soc. 1988, 110, 7701.
(7) Takahashi, T.; Nishihara, Y.; Ishida, T. Chem. Lett. 1995, 159.
(8) du Plooy, K. E.; Moll, U.; Wocadlo, S.; Massa, W.; Okuda, J. Organometallics 1995, 14, 3129. Okuda, J.; du Plooy, K. E.; Kang, H.-C.; Massa, W.; Rose, U. Chem. Ber. 1996, 129, 275.

^{(9) [}Zr(η⁵:η¹:η¹-C₅Me₄SiMe₂NCH₂CH₂OMe)ⁿBu₂] (4a): LiⁿBu (1.0 mL of a 2.3 M solution in hexane) was added to a suspension of 1a (0.48 g, 1.16 mmol) in hexane (30 mL) at 0 °C. After the mixture was stirred for 16 h at room temperature, all volatiles were removed in vacuo. for 16 h at room temperature, all volatiles were removed *in vacuo*. The residue was extracted into pentane and filtered. Recrystallization from pentane at -78 °C afforded off-white crystals: yield 0.35 g (67%); mp 60 °C dec; ¹H NMR (400 MHz, C₆D₆, 298 K) δ -0.18 (m, 2 H, ZrCH₂), 0.41 (s, 6 H, SiCH₃), 0.54 (m, 2 H, ZrCH₂), 1.04 (t, 6 H, ³J(H,H) = 7 Hz, δ -CH₃), 1.20–1.50 (overlap. m, 8 H, β , γ -CH₂), 2.06, 2.14 (s, 6 H, C₅(CH₃), 1.20–1.50 (overlap. m, 8 H, β , γ -CH₂), 2.06, 2.14 (s, 6 H, C₅(CH₃), 1.20–1.50 (overlap. m, 8 H, β , γ -CH₂), 2.06, 2.14 (s, 6 H, C₅(CH₃), 1.20–1.50 (overlap. m, 8 H, β , γ -CH₂), 2.06, 2.14 (s, 6 H, C₅(CH₃), 1.20–1.50 (overlap. m, 8 H, β , γ -CH₂), 2.06, 2.14 (s, 6 H, C₅(CH₃), 1.20–1.50 (overlap. m, 8 H, β , γ -CH₂), 2.06, 2.14 (s, 6 H, C₅(CH₃), 1.20–1.50 (overlap. ¹J(C,H) = 125 Hz), 1.4.3 (q, δ -CH₃, ¹J(C,H) = 117 Hz), 11.3, 14.1 (q, C₅(CH₃), ¹J(C,H) = 125 Hz), 14.3 (q, δ -CH₃, ¹J(C,H) = 124 Hz), 30.1 (t, β -CH₂, ¹J(C,H) = 124 Hz), 30.7 (t, γ -CH₂, ¹J(C,H) = 112 Hz), 60.8 (q, OCH₃, ¹J(C,H) = 133 Hz), 51.0 (t, ZrCH₂, ¹J(C,H) = 112 Hz), 60.8 (q, OCH₃, ¹J(C,H) = 143 Hz), 79.4 (t, CH₂O, ¹J(C,H) = 142 Hz), 96.8 (s, ipso C₅(CH₃), 123.6, 125.4 (s, C₅-(CH₃),); EI MS m/z 398 (10%, [M - C₄H₉]⁺), 342 (100%, [M - C₄H₃]⁺), 340 (48%, [M - C₄H₉ - C₄H₁₀]⁺). Anal. Calcd for C₂₂H₄₃-NOSiZr: C, 57.86; H, 9.42; N, 3.06. Found: C, 57.60; H, 9.25; N, 3.16. The compounds **2**, **3**, and **4b** were synthesized and isolated following a procedure analogous to that described for **4a**. **2a**: brown oil at room temperature; ¹H NMR (400 MHz, C₆D₆, 298 K) δ –0.14 (m, 2 H, ZrCH₂), 0.22 (s, 6H, SiCH₃), 0.50 (m, 2 H, ZrCH₂). 101 (m, 6H, β -CH₃), 2.10 (s, 11, H, C₅(CH₃), 0.310 ("t", ³J(H,H) = 6 Hz, 2H, NCH₂), 33.0 (s, 3H, OCH₃), 3.40 ("t", ³J(H,H) = 6 Hz, 2H, CH₂O). **2b**: colorless crystals, 66% yield; ¹H NMR (400 MHz, C₆D₆, 298 K) δ –0 The residue was extracted into pentane and filtered. Recrystallization 11.6 (HfCH₂), 13.9 (C₅(CH₃)₄), 45.5 (NCH₂), 49.5 (β -CH₃), 1.5 (C₅(CH₃)₄), 11.6 (HfCH₂), 13.9 (C₅(CH₃)₄), 45.5 (NCH₂), 49.5 (β -CH₃), 60.6 (OCH₃), 79.5 (CH₂O), 97.5 (ipso C₅(CH₃)₄), 123.1, 124.1 (C₅(CH₃)₄); EI MS: m/z460 (10%, [M - C₂H₆]⁺), 431 (80%, [M - 2C₂H₆]⁺). Anal. Calcd for C₁₈H₃₅NOSiHf: C, 44.31; H, 7.17; N, 2.87. Found: C, 44.19; H, 7.07; N, 2.76. **3a**: brown oil at room temperature, 77%. ¹H NMR (400 MHz, C₆D₆, 298 K) δ -0.14 (td, ³*J*(H,H) = 12 Hz, ²*J*(H,H) = 5 Hz, 2 H, ZrCH₂), 0.40 (s, 6H, SiCH₃), 0.60 (td, ³*J*(H,H) = 12 Hz, ²*J*(H,H) = 5 Hz, 2H ZrCH₂) 1.4 (t³ *J*(H H) = 7 Hz 6H γ -CH₂) 1.3-15 (m 4 H Let CH₂), Orac (3, 6H, 5HCH₃), Orac (4H, 5(HH) = 12 Hz, 5(HH) = 12 Hz, 14(H) = 12 Hz, 14(H) = 12 Hz, 13(H) = 12 Hz, 14(H) = 12 Hz, 14(H) = 12 Hz, 12(H) = 12 Hz, 12(Hz, 12 46.0 (NCH₂), 54.8 (β -CH₂, γ -CH₃), 60.9 (OCH₃), 79.4 (CH₂O), 96.8 (C-ipso $C_5(CH_3)_4$), 123.7, 125.4 ($C_5(CH_3)_4$). **3b:** pale yellow needles, melting at room temperature, 63%; ¹H NMR (400 MHz, C₆D₆, 298 K) $\delta - 0.37$ $(td, {}^{2}J(H,H) = 12 Hz, {}^{3}J(H,H) = 5 Hz, 2H, HfCH_{2}, 0.40 (s, 6 H, SiCH_{3}),$ (td, ${}^{\circ}$ /(H,H) = 12 Hz, ${}^{\circ}$ /(H,H) = 5 Hz, 2H, HIC H_2), 0.40 (s, 6 H, SIC H_3), 0.49 (td, ${}^{\circ}$ /(H,H) = 12 Hz, ${}^{\circ}$ /(H,H) = 5 Hz, 2H, HfC H_2), 1.16 (t, ${}^{\circ}$ /(H,H) = 6Hz, 6H, ${}^{\circ}$ -C H_3), 1.2–1.5 (m, 4H, ${}^{\circ}$ -C H_2), 2.04, 2.13 (s, 6H, C₅(C H_3)), 3.1 ('t', ${}^{\circ}$ /(H,H) = 6 Hz, 2H, NC H_2), 3.33 (s, 3H, OC H_3), 3.42 ('t', ${}^{\circ}$ /(H,H) = 6 Hz, 2H, C H_2), 3.33 (s, 3H, OC H_3), 3.42 ('t', ${}^{\circ}$ /(H,H) = 6 Hz, 2H, C H_2 O); 13 C{¹H} NMR (101 MHz, C₆D₆, 298 K) ${}^{\circ}$ 2.8 (SiCH₃), 11.2, 14.0 (C₅(CH₃)₄), 22.5 (${}^{\circ}$ -C H_3), 23.0 (${}^{\circ}$ -C H_2), 45.5 (NCH₂), 60.7 (OCH₃), 64.7 (HfCH₂), 79.5 (CH₂O), 98.0 (ipso C₅(CH₃)₄), 122.2 124.2 (C(CH₃)) + 12 MS mar(474.(198)) (M = C_{11} H) + 422.(289) (NCH₂), 60.7 (OCH₃), 64.7 (HfCH₂), 79.5 (CH₂O), 98.0 (ipso C₅(CH₃)₄), 123.3, 124.2 (C₅(CH₃)₄); EI MS m/z 474 (18%, [M − C₃H₇]⁺), 432 (28%, [M − C₃H₇ − C₃H₆]⁻), 431 (16%, [M − 2C₃H₇]⁺), 430 (29%, [M − C₃H₇ − C₃H₆]⁺), 4b: colorless crystals, 55% yield; mp 90 °C dec; ¹H NMR (400 MHz, C₆D₆, 298 K) δ − 0.47 (m, 2 H, HfCH₂), 0.42 (s, 6 H, SiCH₃), 0.49 (m, 2 H, HfCH₂), 1.06 (t, 6 H, ³J(H,H) = 7 Hz, δ-CH₃), 1.20 (m, 2 H, β-CH₂), 1.50 (overlapping m, 6 H, β-, γ-CH₂), 2.06, 2.14 (s, 6 H, C₃(CH₃)₄), 3.13 ("t", 2 H, NCH₂), 3.39 (s, 3 H, OCH₃), 3.45 ("t", 2 H, CH₂O); ¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K) δ 2.8 (g, SiCH₃, ¹J(C,H) 117 Hz), 11.3, 13.9 (q, C₅(CH₃)₄, ¹J(C,H) = 125 Hz), 14.3 (q, δ-CH₃, ¹J(C,H) = 124 Hz), 45.9 (t, NCH₂, ¹J(C,H) = 124 Hz), 31.2 (t, γ-CH₂, ¹J(C,H) = 110 Hz), 60.8 (q, OCH₃, ¹J(C,H) = 134 Hz), 79.6 (t, CH₂O, ¹J(C,H) = 141 Hz), 97.4 (s, ipso C₅(CH₃)₄), 123.4, 124.2 (s, C₅(CH₃)₄); EI MS m/z 488 (26%, [M − C₄H₉]⁺), 432 (83%, [M − C₄H₈, − C₄H₉]⁺), 430 (100%, [M − C₄H₉, − C₄H₁₀]⁺). Anal. Calcd for C₂₂H₄₃NOSiHf: C, 48.57; H, 7.91; N, 2.57. Found: C, 48.30; H, 7.75; N, 2.43.

member of the series, $[Hf(\eta^5:\eta^1:\eta^1-C_5Me_4SiMe_2NCH_2-CH_2OMe)^nBu_2]$ (**4b**), decomposes in the solid state only above 90 °C, giving 1-butene as the sole volatile product detectable by GC-MS. Solutions of **2**-**4**, however, appear more thermally sensitive, although no transparent decomposition pathway has been identified so far by NMR spectroscopy. Iodinolysis of **4b** affords quantitative yields of 1-iodobutane along with the dark yellow diiodo homologue of **1b**.

A crystal structure determination of 4b was performed.¹⁰ The molecular structure of **4b** is depicted in Figure 1. The compound adopts a distorted-pseudotrigonal-bipyramidal structure with the tetramethylcyclopentadienyl and methoxy groups occupying the apical positions. The two *n*-butyl groups are slightly turned away from the bulky ring ligand, one (C11-C14) exhibiting an antiperiplanar and the other (C15-C18) a synperiplanar conformation. The two *n*-butyl groups in the only other crystallographically authenticated di*n*-butyl transition-metal complex, $[Mo(\eta^5-C_5H_5)_2^nBu_2]$, both show the energetically favored antiperiplanar conformation.¹¹ The two alkyl groups form an angle at the hafnium atom of $110.0(2)^{\circ}$. The hafnium $-\alpha$ -carbon bond lengths are 2.256(5) and 2.261(4) Å and are in the expected region for Hf-C(sp³) bond distances.¹² The angles at the chemically equivalent α -carbons are 113.4-(3) and 117.1(3)°. The average carbon-carbon distance found for the *n*-butyl groups is 1.51 Å. The tetramethylcyclopentadienyl ligand is bonded in a η^5 fashion, as judged by the sum of the angles at the ring (540°) , and the hafnium-ring-carbon distances range from 2.445-(4) to 2.606(4) Å. The hafnium-nitrogen bond length

Figure 1. ORTEP diagram of the molecular structure of $[Hf(\eta^{5}:\eta^{1}:\eta^{1}:\eta^{1}-C_{5}Me_{4}SiMe_{2}NCH_{2}CH_{2}OMe)^{n}Bu_{2}]$ (**4b**). Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for the sake of clarity. Selected bond lengths (Å) and bond angles (deg): Hf-C11, 2.256(5); Hf-C15, 2.261(4); Hf-N, 2.090(3); Hf-O, 2.380(3); Hf-Cp, 2.222(4) (Cp denotes the centroid of the ring C1-C5); C11-Hf-C15, 110.0(2); N-Hf-O, 70.11(12); Hf-C11-C12; 113.4(3); C16-C15-Hf, 117.1(3); C11-C12-C13, 114.5(5); C15-C16-C17, 116.2(5).

of 2.090(3) Å is in the typical range for an amido ligand bound at a d⁰ hafnium center such as [Hf{N(SiMe₃)₂}₃-Cl] (2.04(1) Å) and [Hf(η^{5} -C₅Me₅)₂(H)NHMe] (2.027(8) Å).¹³ The sum of the angles at the nitrogen atom amounts to 359°, implying that the nitrogen atom adopts a trigonal-planar configuration and that the amido ligand functions as a three-electron donor. The hafnium–oxygen bond length of 2.380(3) Å is slightly larger than those found in hafnium complexes with THF, such as in [Hf(η^{5} -C₅Me₅)₂CH₂CHMe₂(THF)]⁺ (2.221(6) Å).⁵

In the ¹³C NMR spectrum of **4b**, the carbon attached to Hf is detected at δ 60.4 with ¹*J*(C,H) = 110 Hz, whereas the resonance due to the β -carbon is found at δ 31.1 with ¹*J*(C,H) = 124 Hz, indicating the absence of any agostic bonding.^{1,2} The diastereotopic protons on the the α -carbon appear as a pair of multiplets at δ -0.47 and +0.49, whereas those on the β -carbon appear at δ +1.20 and +1.50 in the ¹H NMR spectrum. Initial experiments show that **4a** and **4b** do not react with hydrogen or ethylene under ambient conditions. Carbon monoxide, however, reacts with **4b** over a period of 20 h to give the monoacyl complex, characterized by the loss of the symmetry plane in the molecule and a ¹³C NMR signal at δ 343.2, assigned to the η^2 -acyl carbon.¹⁴

In the complexes described above, the tridentate ligand $C_5Me_4SiMe_2NCH_2CH_2OMe$ acts as a 10-electron ligand, involving a 3-electron amido and a 2-electron methoxy group. This electronic situation obviously

⁽¹⁰⁾ Crystal data for **4b**: C₂₂H₄₃NOSiHf, M_r = 544.15, triclinic, space group $P\overline{1}$ (No. 2), a = 10.165(6) Å, b = 10.984(4) Å, c = 12.826(5) Å, $\alpha = 71.05(3)^\circ$, $\beta = 73.61(4)^\circ$, $\gamma = 65.80(4)^\circ$, V = 1217(1) Å³, Z = 2, $D_c = 1.485$ g cm⁻³, F(000) = 552, Mo K α radiation ($\lambda = 0.710$ 71 Å), μ (Mo K α) = 4.346 mm⁻¹, empirical absorption correction. The structure was solved by heavy-atom methods and refined on F^2 using all data by a full-matrix least-squares procedure (SHELXL-93). H atoms at the α -carbon atom were refined in their position; all other H atoms were included in calculated positions with fixed isotropic parameters. Refinement details: crystal dimensions $0.5 \times 0.5 \times 0.4$ mm, T = 193-(2) K, 5897 independent reflections for $3.0 \le \theta \le 28.0^\circ$, R = 0.0319, $R_w = 0.0756$ for 5340 reflections with $I > 2\sigma(I)$, largest difference peak and hole 1.786 and -1.980 e Å⁻³. Atomic coordinates, bond lengths and angles, and thermal parameters. How been deposited at the Cambridge Crystallographic Data Center.

⁽¹¹⁾ Calhorda, M. J.; Carrondo, M. A. A. F. de C. T.; Dias, A. R.; Galvao, A. M.; Garcia, M. H.; Martins, A. M.; da Piedade, M. E. M.; Pinheiro, C. J.; Romao, C. C.; Simoes, J. A. M.; Veiros, L. F. *Organometallics* **1991**, *10*, 483.

⁽¹²⁾ Bristow, G. S.; Lappert, M. F.; Martin, T. R.; Atwood, J. L.; Hunter, W. F. J. Chem. Soc., Dalton Trans. **1984**, 399.

⁽¹³⁾ Airoldi, C.; Bradley, D. C.; Chudzynska, H.; Hursthouse, M. B.; Abdul-Malik, K. M.; Raithby, P. R. *J. Chem. Soc., Dalton Trans.* **1980**, 2010. Hillhouse, G. L.; Bulls, A. R.; Santarsiero, B. D.; Bercaw, J. E. *Organometallics* **1988**, *7*, 1309.

^{(14) [}Hf($\eta^5; \eta^{1:}; \eta^{1-}C_5$ Me4SiMe₂NCH₂CH₂OMe)(COⁿBu)ⁿBu]: ¹H NMR (C₆D₆) δ 0.35 (m, 2 H, HfCH₂), 0.53, 0.55 (s, 3 H, SiCH₃), 0.55–1.2 (overlapping m, 12 H, HfCH₂, β -, γ -CH₂), 0.89, 1.23 (t, ³J(H,H) = 7 Hz, 3 H, δ -CH₃), 1.32, 1.99, 2.26, 2.48 (s, 3 H, C₅(CH₃)₄), 2.5 (m, 2H, NCH₂), 2.69 (s, 3H, OCH₃), 2.7 (m, 2 H, CH₂O); ¹³C NMR (C₆D₆) δ 2.8, 3.3 (SiCH₃), 10.6, 11.1, 14.2, 14.4 (C₅(CH₃)₄), 14.5, 14.6 (CH₃), 23.3, 26.2, 32.1, 33.4 (β - and γ -CH₂), 43.2 (COCH₂), 45.1 (NCH₂), 49.1 (HfCH₂), 58.8 (OCH₃), 79.1 (CH₂O), 98.6 (ipso C₅(CH₃)₄), 12.1.1, 121.2, 123.7, 125.3 (C₅(CH₃)₄), 343.2 (CO).

leads to the unusually effective blocking of β -hydrogenelimination pathways within the sterically fairly open mono(cyclopentadienyl) coordination sphere.¹⁵ In view of the technological importance of group 4 metal complexes with the linked amido-cyclopentadienyl ligand as a novel family of copolymerization catalysts of ethylene with α -olefins,¹⁶ we are currently studying

polymerization and activation mechanisms involving the afore mentioned derivatives.

Acknowledgment. We thank the Fonds der Chemischen Industrie and the Volkswagen Foundation for financial support. F.A. is indebted to the European Community for a postdoctoral fellowship (TMR program).

Supporting Information Available: Listings of all crystal data and refinement parameters, atomic parameters, including those of the hydrogen atoms, thermal parameters, and bond lengths and angles for **4b** (6 pages). Ordering information is given on any current masthead page.

OM970446X

⁽¹⁵⁾ If the additional chelation is absent as in the prototypal [Zr- $(\eta^5:\eta^1-C_5Me_4SiMe_2N^tBu)Cl_2$], the reaction with LiⁿBu does not result in the formation of thermally stable dialkyl derivatives. Amor, F.; Okuda, J., unpublished results.

<sup>In the formation of thermally stable dialkyl derivatives. Amor, F.;
Okuda, J., unpublished results.
(16) Shapiro, P. J.; Cotter, W. D.; Schaefer, W. P.; Labinger, J. A.;
Bercaw, J. E. J. Am. Chem. Soc. 1994, 116, 4632. Canich, J. A. (Exxon Chemical Co.) U.S. Patent 5,026,798, 1991. Stevens, J. C.; Timmers, F. J.; Rosen, G. W.; Knight, G. W.; Lai, S. Y. (Dow Chemical Co.) European Patent Application, EP 0 416 815 A2, 1991.</sup>