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Summary: Paramagnetic [K(crypt-222)][Mo,(C=CSiMe3)4-
(PMes)4] ([K(crypt-222)]1) is prepared by one-electron
reduction of Mo,(C=CSiMe3)4(PMes)s (1) by K(C1oHsg) in
the presence of crypt-222. The v(C=C) frequencies for 1
and [K(crypt-222)]1 in their ground states and 6 — 6*
electronic excited states are controlled by the occupancy
of the 6(M,) and 6*(My) orbitals, lying in the order 1
(0% > 1* (610™) > [K(crypt-222)]1 (6%26™) > [K(crypt-
222)]1* (616™2); this order indicates that M—C=CSiMes
m-back-bonding is of increasing importance across this
series.

A general description of the metal—carbon bond in
transition-metal—alkynyl compounds has not yet been
developed.}? This is despite the fact that understanding
the nature of this bond is a logical prerequisite for the
rational design of electronic materials composed of
metal—alkynyl building blocks®~7 and for interpreting
their physical properties. Particular uncertainty sur-
rounds the contribution of M—CCR z-back-bonding to
the metal—carbon interaction. Although the degree to
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which alkynyl ligands act as sw-acceptors has often been
inferred from comparisons among C=C stretching fre-
guencies of MLh(C=CR), compounds, such interpreta-
tions are problematic because v(C=C) typically varies
so little (a few tens of cm™?) as a function of oxidation
state and ancillary ligand that electronic effects other
than M—CCR & interactions cannot be excluded from
consideration.! Moreover, Lichtenberger and co-work-
ers have recently reported definitive evidence from
photoelectron-spectroscopic studies that alkynyl ligands
are s-donors in FeCp(C=CR)(CO), complexes and that
their m-acceptor character is negligible,28 although, as
they noted, more electron-rich compounds might exhibit
M—CCR m-back-bonding. Herein, we report the syn-
thesis of an electron-rich compound, [Mo,(C=CSiMe3),-
(PMe3s)4]~, that together with its one-electron-oxidized
congener Mo,(C=CSiMes)4(PMe3z), (1)%1° possess unique
electronic attributes for testing this hypothesis: their
o(Mz) and 6*(My) orbitals are of m-symmetry with
respect to the 7*(C=CR) orbitals, so changing the 6,0*
occupancy chemically and photochemically allows broad
and systematic variation of the M—CCR m-electron
configuration. The ground-state and 6(My) — 6*(My)
excited-state C=C stretching frequencies of these com-
pounds provide the first unambiguous evidence for
M—CCR z-back-bonding.

The cyclic voltammogram of Mo,(C=CSiMe3)4(PMe3),
exhibits a reversible, one-electron reduction wave at
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—2.13 V (vs FeCp,/FeCp;") in tetrahydrofuran (THF),11
which suggested that [Mo,(C=CSiMe3)4(PMes)4]~ could
be synthesized and isolated. Accordingly, addition of a
THF solution of K(CyoHs) (1 equiv) to an equimolar
mixture of royal blue, diamagnetic 1 and 4,7,13,16,21,-
24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (crypt-
222) in THF at —78 °C results in a red-brown solution,
from which paramagnetic, orange-brown [K(crypt-222)]-
[Mo,(C=CSiMe3z)s(PMes)4] ([K(crypt-222)]1) can be iso-
lated in ca. 65% yield upon removal of solvent and
extraction of naphthalene with pentane.’? [K(crypt-
222)]1 reacts instantly with air in both the solid state
and solution to form a dark blue product that consists
primarily of 1, as indicated by UV—vis and infrared
spectroscopy. The infrared spectrum of [K(crypt-222)]-
1 exhibits a single, strong band in the v(C=C) region
at 1954 cm™?; for 1, the corresponding band appears at
1991 cm~11013 We expect that the structure of 1~
possesses idealized D,g symmetry, like that of 1, based
on the fact that the D,q symmetry of related compounds
of the type [Re;Cl4(PR3)4]?" is maintained upon both
one- and two-electron reduction.*

Frequencies for »(C=C) in the 6 — J* electronic
excited states of 1 and [K(crypt-222)]1 were determined
from electronic absorption spectra of the compounds at
10 K. These spectra exhibit vibronically structured
bands attributable to the (6 — 6*) and 2(60 — &%)
transitions of 1 (Figure 1) and [K(crypt-222)]1 (Figure
2), respectively, as the lowest-energy features. Aside
from the fact that the 2(6 — 6*) transition of [K(crypt-
222)]1 is red shifted by ca. 7000 cm~?! from the (6 —
0%*) transition of 1, as a result of the larger spin-pairing
energy contributions to the latter,® the two bands are
qualitatively similar: both are dominated by a 350—
370 cm~1 vibronic progression that is attributable to
nominal v(Mo—Mo)/v(Mo—C) modes'® and, additionally,
exhibit weaker, lower frequency vibronic origins (ca.
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Figure 1. Electronic absorption spectrum of a polycrys-
talline film of 1 at ca. 10 K. Vibronic spacings are given in

cm~1. The trace in the upper right corner is an expansion
of the v(C=C) origin and associated features.
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Figure 2. Electronic absorption spectrum of a polycrys-
talline film of [K(crypt-222)]1 at ca. 10 K. Vibronic spacings
are given in cm~1. The trace in the upper right corner is
an expansion of the v(C=C) origin and associated features.
The dip in intensity at 7850 cm~1, marked by an asterisk,
is an instrumental artifact.

160/170, 240 cm~1). Near the high-energy edge of each
band—beyond the point at which features attributable
to combinations of the lower-frequency fundamentals
are still clearly resolved—an additional, weak vibronic
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origin is observed, the spacing of which relative to the
0—0band is 1970 cm~1 for 1 and 1890 cm™1 for [K(crypt-
222)]1. Progressions built on these origins arising from
the 350/370 cm~! mode are resolved, as are features
attributable to the lower-frequency modes. Isotopic
labeling of the alkynyl ligands of 1 with 3C allows the
1970 cm~1 origin of this compound to be unambiguously
assigned to one quantum of the v(C=C) stretching mode,
as this origin is shifted to 1900 cm™1 in the spectrum of
Mo, (BBC=13CSiMes)4(PMes),; this frequency is in close
agreement with what is expected from the diatomic-
oscillator approximation (1890 cm~1). By analogy, the
1890 cm™? origin observed in the spectrum of [K(crypt-
222)]1 is also assigned to v(C=C).

The relationship between the frequency of »(C=C) and
the [6,0*(M_)] electron configuration of 1 and [K(crypt-
222)]1 provides direct evidence for M—CCR x-back-
bonding. The ground states and 0 — 6* excited states
(1*, [K(crypt-222)]1*) of the two compounds are de-
scribed by four different configurations of the é and 6*
orbitals: 1, [6%7%0?]; 1*, [027*0%0™]; [K(crypt-222)]1,
[627%020™]; [K(crypt-222)]1*, [027*0%0™?]. The b;-sym-
metry 6 and a;-symmetry 6* orbitals are of 7 symmetry
with respect to the ligands and, hence, are capable of
interacting with the 7(CCR) and #*(CCR) orbitals (a,
+ b; + e), with the 6* orbital being closer in energy to
the 7*(CCR) levels than is the ¢ orbital. Importantly,
increasing the occupancy of the 6* orbital and raising
the energy of 6 and 6* by reduction of Mox** to Moy3"
results in a significant, systematic reduction in the
frequency of v»(C=C), indicating that M—CCSiMe;
m-back-bonding increases concomitantly. Context for

m>

=—— n*(C=CR)

A

1 1* 1- 1=
as: 1999 1970 — 1890 cm—1
e: 1991 — 1954 -

these frequencies and the differences among them is
provided by the ca. 80 previously reported v(C=C)
frequencies for [ML,(C=CSiMes)n]** complexes (M =
group 4 to group 10, d°—d8; z = +1 to —2; Figure 3), all
but three of which lie in a narrow 80 cm~! range (1990—
2070 cm™1). In contrast, the v(C=C) frequencies of 1
and [K(crypt-222)]1* differ by >100 cm™1, with that for
[K(crypt-222)]1* being, by >50 cm~1, the lowest yet
reported; the latter frequency is suggestive of significant
double-bond character in the alkynyl C—C linkages.
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Figure 3. Distribution of v(C=C) stretching frequencies
for ML (C=CSiMej3), complexes. A listing of compounds,
frequencies, and references is available as Supporting
Information. Ground-state and excited-state frequencies for
1 and [K(crypt-222)]1 are shown by unshaded bars.

In summary, we have demonstrated that M—CCR
m-back-bonding can contribute substantially to the
metal—carbon interaction in metal—alkynyl compounds.
It is important to note that the present data do not rule
out contributions from M<—CCR z-bonding in these
compounds; unfortunately, attempts to prepare [Mo,-
(C=CSiMe3)4(PMe3)4]", for which such interactions could
be particularly important, have not been successful. The
observation that the extent of M—CCR z-back-bonding
is markedly different in the ground and excited states
of 1 and 1~ has important implications for metal—
alkynyl electronic materials, as this opens the possibility
of photochemically switching those properties that are
electronically governed by the M—CCR & interactions.
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