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Summary: Paramagnetic [K(crypt-222)][Mo2(CtCSiMe3)4-
(PMe3)4] ([K(crypt-222)]1) is prepared by one-electron
reduction of Mo2(CtCSiMe3)4(PMe3)4 (1) by K(C10H8) in
the presence of crypt-222. The ν(CtC) frequencies for 1
and [K(crypt-222)]1 in their ground states and δ f δ*
electronic excited states are controlled by the occupancy
of the δ(M2) and δ*(M2) orbitals, lying in the order 1
(δ2) > 1* (δ1δ*1) > [K(crypt-222)]1 (δ2δ*1) > [K(crypt-
222)]1* (δ1δ*2); this order indicates that MfCtCSiMe3
π-back-bonding is of increasing importance across this
series.

A general description of the metal-carbon bond in
transition-metal-alkynyl compounds has not yet been
developed.1,2 This is despite the fact that understanding
the nature of this bond is a logical prerequisite for the
rational design of electronic materials composed of
metal-alkynyl building blocks3-7 and for interpreting
their physical properties. Particular uncertainty sur-
rounds the contribution of MfCCR π-back-bonding to
the metal-carbon interaction. Although the degree to

which alkynyl ligands act as π-acceptors has often been
inferred from comparisons among CtC stretching fre-
quencies of MLm(CtCR)n compounds, such interpreta-
tions are problematic because ν(CtC) typically varies
so little (a few tens of cm-1) as a function of oxidation
state and ancillary ligand that electronic effects other
than M-CCR π interactions cannot be excluded from
consideration.1 Moreover, Lichtenberger and co-work-
ers have recently reported definitive evidence from
photoelectron-spectroscopic studies that alkynyl ligands
are π-donors in FeCp(CtCR)(CO)2 complexes and that
their π-acceptor character is negligible,2,8 although, as
they noted, more electron-rich compounds might exhibit
MfCCR π-back-bonding. Herein, we report the syn-
thesis of an electron-rich compound, [Mo2(CtCSiMe3)4-
(PMe3)4]-, that together with its one-electron-oxidized
congener Mo2(CtCSiMe3)4(PMe3)4 (1)9,10 possess unique
electronic attributes for testing this hypothesis: their
δ(M2) and δ*(M2) orbitals are of π-symmetry with
respect to the π*(CtCR) orbitals, so changing the δ,δ*
occupancy chemically and photochemically allows broad
and systematic variation of the M-CCR π-electron
configuration. The ground-state and δ(M2) f δ*(M2)
excited-state CtC stretching frequencies of these com-
pounds provide the first unambiguous evidence for
MfCCR π-back-bonding.
The cyclic voltammogram of Mo2(CtCSiMe3)4(PMe3)4

exhibits a reversible, one-electron reduction wave at
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-2.13 V (vs FeCp2/FeCp2+) in tetrahydrofuran (THF),11
which suggested that [Mo2(CtCSiMe3)4(PMe3)4]- could
be synthesized and isolated. Accordingly, addition of a
THF solution of K(C10H8) (1 equiv) to an equimolar
mixture of royal blue, diamagnetic 1 and 4,7,13,16,21,-
24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (crypt-
222) in THF at -78 °C results in a red-brown solution,
from which paramagnetic, orange-brown [K(crypt-222)]-
[Mo2(CtCSiMe3)4(PMe3)4] ([K(crypt-222)]1) can be iso-
lated in ca. 65% yield upon removal of solvent and
extraction of naphthalene with pentane.12 [K(crypt-
222)]1 reacts instantly with air in both the solid state
and solution to form a dark blue product that consists
primarily of 1, as indicated by UV-vis and infrared
spectroscopy. The infrared spectrum of [K(crypt-222)]-
1 exhibits a single, strong band in the ν(CtC) region
at 1954 cm-1; for 1, the corresponding band appears at
1991 cm-1.10,13 We expect that the structure of 1-

possesses idealized D2d symmetry, like that of 1, based
on the fact that the D2d symmetry of related compounds
of the type [Re2Cl4(PR3)4]2+ is maintained upon both
one- and two-electron reduction.14

Frequencies for ν(CtC) in the δ f δ* electronic
excited states of 1 and [K(crypt-222)]1 were determined
from electronic absorption spectra of the compounds at
10 K. These spectra exhibit vibronically structured
bands attributable to the 1(δ f δ*) and 2(δ f δ*)
transitions of 1 (Figure 1) and [K(crypt-222)]1 (Figure
2), respectively, as the lowest-energy features. Aside
from the fact that the 2(δ f δ*) transition of [K(crypt-
222)]1 is red shifted by ca. 7000 cm-1 from the 1(δ f
δ*) transition of 1, as a result of the larger spin-pairing
energy contributions to the latter,15 the two bands are
qualitatively similar: both are dominated by a 350-
370 cm-1 vibronic progression that is attributable to
nominal ν(Mo-Mo)/ν(Mo-C) modes16 and, additionally,
exhibit weaker, lower frequency vibronic origins (ca.

160/170, 240 cm-1). Near the high-energy edge of each
bandsbeyond the point at which features attributable
to combinations of the lower-frequency fundamentals
are still clearly resolvedsan additional, weak vibronic
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Figure 1. Electronic absorption spectrum of a polycrys-
talline film of 1 at ca. 10 K. Vibronic spacings are given in
cm-1. The trace in the upper right corner is an expansion
of the ν(CtC) origin and associated features.

Figure 2. Electronic absorption spectrum of a polycrys-
talline film of [K(crypt-222)]1 at ca. 10 K. Vibronic spacings
are given in cm-1. The trace in the upper right corner is
an expansion of the ν(CtC) origin and associated features.
The dip in intensity at 7850 cm-1, marked by an asterisk,
is an instrumental artifact.
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origin is observed, the spacing of which relative to the
0-0 band is 1970 cm-1 for 1 and 1890 cm-1 for [K(crypt-
222)]1. Progressions built on these origins arising from
the 350/370 cm-1 mode are resolved, as are features
attributable to the lower-frequency modes. Isotopic
labeling of the alkynyl ligands of 1 with 13C allows the
1970 cm-1 origin of this compound to be unambiguously
assigned to one quantum of the ν(CtC) stretching mode,
as this origin is shifted to 1900 cm-1 in the spectrum of
Mo2(13Ct13CSiMe3)4(PMe3)4; this frequency is in close
agreement with what is expected from the diatomic-
oscillator approximation (1890 cm-1). By analogy, the
1890 cm-1 origin observed in the spectrum of [K(crypt-
222)]1 is also assigned to ν(CtC).
The relationship between the frequency of ν(CtC) and

the [δ,δ*(M2)] electron configuration of 1 and [K(crypt-
222)]1 provides direct evidence for MfCCR π-back-
bonding. The ground states and δ f δ* excited states
(1*, [K(crypt-222)]1*) of the two compounds are de-
scribed by four different configurations of the δ and δ*
orbitals: 1, [σ2π4δ2]; 1*, [σ2π4δ1δ*1]; [K(crypt-222)]1,
[σ2π4δ2δ*1]; [K(crypt-222)]1*, [σ2π4δ1δ*2]. The b1-sym-
metry δ and a2-symmetry δ* orbitals are of π symmetry
with respect to the ligands and, hence, are capable of
interacting with the π(CCR) and π*(CCR) orbitals (a2
+ b1 + e), with the δ* orbital being closer in energy to
the π*(CCR) levels than is the δ orbital. Importantly,
increasing the occupancy of the δ* orbital and raising
the energy of δ and δ* by reduction of Mo24+ to Mo23+

results in a significant, systematic reduction in the
frequency of ν(CtC), indicating that MfCCSiMe3
π-back-bonding increases concomitantly. Context for

these frequencies and the differences among them is
provided by the ca. 80 previously reported ν(CtC)
frequencies for [MLm(CtCSiMe3)n]z+ complexes (M )
group 4 to group 10, d0-d8; z ) +1 to -2; Figure 3), all
but three of which lie in a narrow 80 cm-1 range (1990-
2070 cm-1). In contrast, the ν(CtC) frequencies of 1
and [K(crypt-222)]1* differ by >100 cm-1, with that for
[K(crypt-222)]1* being, by >50 cm-1, the lowest yet
reported; the latter frequency is suggestive of significant
double-bond character in the alkynyl C-C linkages.

In summary, we have demonstrated that MfCCR
π-back-bonding can contribute substantially to the
metal-carbon interaction in metal-alkynyl compounds.
It is important to note that the present data do not rule
out contributions from MrCCR π-bonding in these
compounds; unfortunately, attempts to prepare [Mo2-
(CtCSiMe3)4(PMe3)4]+, for which such interactions could
be particularly important, have not been successful. The
observation that the extent of MfCCR π-back-bonding
is markedly different in the ground and excited states
of 1 and 1- has important implications for metal-
alkynyl electronic materials, as this opens the possibility
of photochemically switching those properties that are
electronically governed by the Μ-CCR π interactions.
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Figure 3. Distribution of ν(CtC) stretching frequencies
for MLm(CtCSiMe3)n complexes. A listing of compounds,
frequencies, and references is available as Supporting
Information. Ground-state and excited-state frequencies for
1 and [K(crypt-222)]1 are shown by unshaded bars.
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