Articles

Synthesis, Characterization, and Reactivity of Cationic Molecular Hydrogen Complexes of Manganese(I)

Gabriele Albertin,* Stefano Antoniutti, Massimo Bettiol, Emilio Bordignon, and Fabio Busatto

Dipartimento di Chimica, Università Ca' Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy

Received March 31, 1997®

Hydride complexes $MnH(CO)_3P_2$ (1), $MnH(CO)_2P_3$ (2), and $MnH(CO)P_4$ (3) (P = P(OEt)₃ (a), PPh(OEt)₂ (b), PPh₂OEt (c), PPh(OⁱPr)₂ (d) were prepared by allowing the MnH(CO)₅ species to react with an excess of phosphine upon UV irradiation or under reflux conditions. Their formulation and geometry in solution were established by IR and ¹H, ¹³C, and ³¹P NMR spectroscopy. Protonation reactions with $HBF_4 \cdot Et_2O$ of the monocarbonyls MnH(CO)- P_4 (3) afford isolable dihydrogen derivatives $[Mn(\eta^2-H_2)(CO)P_4]BPh_4$ (5), which were characterized by variable-temperature ¹H and ³¹P NMR spectra, T_1 measurements, and $J_{\rm HD}$ values. Thermally unstable (above 0 °C) $[Mn(\eta^2-H_2)(CO)_2P_3]^+$ (4) cations were also prepared by protonation of the dicarbonyl hydrides MnH(CO)₂P₃ (2) and fully characterized in solution. Evolution of H₂ from **4** and **5** results in the formation of the unsaturated complexes [Mn-(CO)₂P₃|BPh₄ (6) and [Mn(CO)P₄|BPh₄ (7), which are probably stabilized by an agostic interaction between the metal center and a C-H proton of the phosphite. Treatment of the unsaturated complexes **6** and **7** and of the triflate compounds $[Mn(\eta^1-OSO_2CF_3)(CO)_3P_2]$ (**8**) with Li⁺RC \equiv C⁻ gave the new acetylide derivatives [Mn(C \equiv CR)(CO)P₄] (9), [Mn(C \equiv CR)- $(CO)_2P_3$] (10), and $[Mn(C \equiv CR)(CO)_3P_2]$ (11) (R = Ph, p-tolyl). The new series of cationic manganese compounds $[Mn(CO)_2(p\text{-tolylCN})P_3]BPh_4$ (12), $[Mn(CO)(p\text{-tolylCN})P_4]BPh_4$ (13), $[Mn(CO)_2(p\text{-tolylNC})P_3]BPh_4$ (14), $[Mn(CO)(p\text{-tolylNC})P_4]BPh_4$ (15), $[Mn(CO)_3P_3]BPh_4$ (16), and [Mn(CO)₂P₄]BPh₄ (17) were also obtained by reacting the unsaturated compounds 6 and 7 with the appropriate ligands.

Introduction

Transition-metal dihydrogen complexes are an important class of compounds which have attracted considerable interest in recent years. $^{1.2}$ A large number of isolable H_2 complexes have been prepared, and the majority of them contain metals of the second and third row with a d^6 octahedral configuration. In contrast, although the initial focus of work in this field has been the synthesis of new dihydrogen complexes, relatively

Abstract published in Advance ACS Abstracts, October 1, 1997.
(1) (a) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120. (b) Jessop, P. G.;
Morris, R. H. Coord. Chem. Rev. 1992, 121, 155. (c) Crabtree, R. H. Angew. Chem., Int. Ed. Engl. 1993, 92, 789. (d) Heinekey, D. M.;
Oldham, W. J., Jr. Chem. Rev. 1993, 93, 913.

few examples have been described for the first-row transition metals and only recently have stable dihydrogen complexes of manganese been reported. 2b,3,4 These include the trihydride³ MnH₃(R₂PCH₂CH₂PR₂)₂ (R = Me, Et) which was proposed to contain a η^2 -H₂ ligand, the compound CpMn(\overline{CO})₂(η^2 - H_2),⁴ and the very recently reported derivative $[Mn(\eta^2-H_2)(CO)(dppe)_2]$ BAr'_{4} (dppe = $Ph_{2}PCH_{2}CH_{2}PPh_{2}$; $BAr'_{4} = B\{C_{6}H_{3}(3,5-4)\}$ $(CF_3)_2$ ₄). Furthermore, much work has been addressed to study the structure, the bonding, and the reactivity of these interesting complexes¹ in an attempt to provide insight into the catalytic and stoichiometric activation of H₂ by transition metals and now it seems certain that the stability and the chemical properties of the η^2 -H₂ compounds are a function not only of the central metal but also of the nature of the ancillary ligands and of the formal charge on the central metal.

We have previously reported⁵ the synthesis and some properties of molecular hydrogen derivatives of the iron

⁽²⁾ For recent papers see: (a) Heinekey, D. M.; Voges, M. H.; Barnhart, D. M. J. Am. Chem. Soc. 1996, 118, 10792. (b) King, W. A.; Luo, X.-L.; Scott, B. L.; Kubas, G. J.; Zilm, K. W. J. Am. Chem. Soc. 1996, 118, 6782. (c) Maltby, P. A.; Schlaf, M.; Steinbeck, M.; Lough, A. J.; Morris, R. H.; Klooster, W. T.; Koetzle, T. F.; Srivastava, R. C. J. Am. Chem. Soc. 1996, 118, 5396. (d) Kim, Y.; Deng, H.; Gallucci, J. C.; Wojcicki, A. Inorg. Chem. 1996, 35, 7166. (e) Gusev, D. G.; Kuhlman, R. L.; Renkema, K. B.; Eisenstein, O.; Caulton, K. G. Inorg. Chem. 1996, 35, 6775. (f) Bacskay, G. B.; Bytheway, I.; Hush, N. S. J. Am. Chem. Soc. 1996, 118, 3753. (g) Bullock, R. M.; Song, J.-S.; Szalda, D. J. Organometallics 1996, 15, 2504. (h) Eckert, J.; Albinati, A.; Bucher, U. E.; Venanzi, L. M. Inorg. Chem. 1996, 35, 1292. (i) Lee, Jr., J. C., Jr.; Yao, W.; Crabtree, R. H.; Rüegger, H. Inorg. Chem. 1996, 35, 695. (j) Ma, B.; Collins, C. L.; Schaefer, H. F., III. J. Am. Chem. Soc. 1996, 118, 870. (k) Li, J.; Dickson, R. M.; Ziegler, T. J. Am. Chem. Soc. 1995, 117, 11482. (l) Moreno, B.; Sabo-Etienne, S.; Chaudret, B.; Rodriguez, A.; Jalon, F.; Trofimenko, S. J. Am. Chem. Soc. 1995, 117, 7441.

⁽³⁾ Perthuisot, C.; Fan, M.; Jones, W. D. *Organometallics* **1992**, *11*, 3622.

⁽⁴⁾ Banister, J. A.; Lee, P. D.; Poliakoff, P. D. Organometallics 1995, 14, 3876.

^{(5) (}a) Albertin, G.; Antoniutti, S.; Bordignon, E. J. Am. Chem. Soc. 1989, 111, 2072. (b) Amendola, P.; Antoniutti, S.; Albertin, G.; Bordignon, E. Inorg. Chem. 1990, 29, 318. (c) Albertin, G.; Amendola, P.; Antoniutti, S.; Ianelli, S.; Pelizzi, G.; Bordignon, E. Organometallics 1991, 10, 2876. (d) Albertin, G.; Antoniutti, S.; Baldan, D.; Bordignon, E. Inorg. Chem. 1995, 34, 6205.

family of the type $[MH(\eta^2-H_2)P_4]^+$ containing monodentate phosphite ligands $PPh_2(OR)$, $PPh(OR)_2$, and $P(OR)_3$ as ancillary ligands. As these ligands have shown interesting properties in stabilizing the H_2 complexes, we have extended these studies to include the manganese as a central metal, and in this paper we report the synthesis and characterization of new *isolable* molecular hydrogen complexes of this metal along with some studies on the properties of these derivatives.

Experimental Section

All synthetic work was carried out under an appropriate atmosphere (H2, Ar) using standard Schlenk techniques or a Vacuum Atmospheres drybox. Once isolated, the complexes were found to be relatively stable in air but were stored under an inert atmosphere at -25 °C. All solvents were dried over appropriate drying agents, degassed on a vacuum line, and distilled into vacuumtight storage flasks. Triethyl phosphite was an Aldrich product, purified by distillation under nitrogen; the phosphines PPh(OEt)₂, PPh₂OEt, and PPh(OⁱPr)₂ were prepared by the method of Rabinowitz and Pellon.⁶ Mn₂(CO)₁₀, HBF₄·Et₂O (54% solution), triflic acid, and the alkynes were Aldrich products, used without any further purification. Lithium acetylides Li⁺RC \equiv C⁻ (R = Ph, *p*-tolyl) were prepared by reacting a slight excess of the appropriate acetylene (40 mmol) with lithium (35 mmol, 0.24 g) in 10 mL of THF. p-Tolyl isocyanide was obtained by the phosgene method of Ugi et al.7 Triethylamine was dried with CaH₂ and distilled before use. Other reagents were purchased from commercial sources in the highest available purity and used as received. The photolysis was carried out under an argon atmosphere with a standard 400 W medium-pressure mercury arc lamp using a Pyrex Schlenk flask. Infrared spectra were recorded on a Digilab Bio-Rad FTS-40 spectrophotometer. NMR spectra (1H, ¹³C, ³¹P) were obtained on a Bruker AC200 spectrometer at temperatures varying between +30 and -90 °C, unless otherwise noted. ¹H and ¹³C spectra are referred to internal tetramethylsilane, while ${}^{31}P\{{}^{1}\hat{H}\}$ chemical shifts are reported with respect to $85\%\ H_3PO_4$, with downfield shifts considered positive. Proton T_1 values were measured by the inversionrecovery method between +30 and -90 °C with a standard $180^{\circ} - \tau - 90^{\circ}$ pulse sequence. The conductivities of 10^{-3} M solutions of the complexes in CH_3NO_2 at 25 $^{\circ}C$ were measured with a Radiometer CDM 83 instrument.

Synthesis of Complexes. The hydride $MnH(CO)_5$ was prepared from $Mn_2(CO)_{10}$ according to the procedure previously reported.⁸

 $MnH(CO)_3P_2$ (1) (P = P(OEt)₃ (a), PPh(OEt)₂ (b), PPh_2OEt (c), $PPh(O^iPr)_2$ (d)). An excess of the appropriate phosphite (80 mmol) was added to a solution of MnH(CO)₅ (12.8 mmol, 2.5 g) in 30 mL of toluene and the reaction mixture was refluxed for about 2 h. The solvent was removed under reduced pressure, and the oil obtained was chromatographed on a silica gel column (length 70 cm, diameter 4 cm) using a mixture of petroleum ether (40-70 °C) and diethyl ether in a 10:1 ratio as eluent. The first eluted (300 mL) was evaporated to dryness, leaving an oil which was treated with ethanol (5-10 mL). A white solid slowly separated out from the resulting stirred solution, which was filtered and dried under vacuum; yield from 60 to 70%. Anal. Calcd for C₁₅H₃₁O₉P₂Mn (1a): C, 38.15; H, 6.62. Found: C, 38.24; H, 6.58. Mp: 38 °C dec. IR (KBr and (CH $_3$ C $_6$ H $_5$)): 2027 w (2015 w), 1941 s (1938 s), 1915 s (1921 s) $\nu_{\rm CO}$ cm $^{-1}$. ¹H NMR (CD₃C₆D₅, 25 °C): δ 3.99 (m, 12H, CH₂), 1.15 (t, 18H, CH₃), -8.13 (t, 1H, Mn-H, J_{PH} = 43 Hz). ${}^{31}P\{{}^{1}H\}$ NMR (CD₃C₆D₅, 25 °C): δ 191.0 s. Anal. Calcd for C₂₃H₃₁O₇P₂Mn (**1b**): C, 51.50; H, 5.83. Found: C,

Angew. Chem., Int. Ed. Engl. 1965, 4, 472.
(8) King, R. B.; Stone, F. G. A. Inorg. Synth. 1963, 7, 198.

51.67; H, 5.90. Mp: 67 °C dec. IR (KBr and (n-hexane)): 2019 w (2017 w), 1941 s (1943 s), 1918 s (1926 s) $\nu_{\rm CO}$ cm⁻¹. ¹H NMR $(C_6D_6, 25 \text{ °C})$: $\delta 8.00-7.00 \text{ (m, 10H, Ph)}, 3.95, 3.71 \text{ (m, 8H, 10H, Ph)}$ CH₂), 1.06 (t, 12H, CH₃), -7.65 (t, 1H, Mn-H, $J_{PH} = 40$ Hz). $^{31}P\{^{1}H\}$ NMR (C6D6, 25 °C): δ 205.3 s. Anal. Calcd for C₃₁H₃₁O₅P₂Mn (**1c**): C, 62.01; H, 5.20. Found: C, 62.17; H, 5.11. Mp: 138 °C dec. IR (KBr and (n-hexane)): 2002 w (2008 w), 1933 s (1933 s), 1919 (s) (1916 s) $\nu_{\rm CO}$ cm⁻¹. ¹H NMR (C₆D₆, 25 °C): δ 8.00-7.00 (m, 20H, Ph), 3.90 (qi, 4H, CH₂), 1.10 (t, 6H, CH₃), -7.36 (t, 1H, Mn-H, $J_{PH} = 33$ Hz). ${}^{31}P\{{}^{1}H\}$ NMR $(C_6D_6, 25 \text{ °C})$: δ 177.7 s. Anal. Calcd for $C_{27}H_{39}O_7P_2Mn$ (1d): C, 54.73; H, 6.63. Found: C, 54.58; H, 6.55. Mp: 132 °C. IR (KBr): 2023 m, 1937 s, 1901 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR (CD₃C₆D₅, 25 °C): δ 8.03-6.97 (m, 10H, Ph), 4.69 (m, 4H, CH), 1.22, 1.13 (d, 24H, CH₃), -7.71 (t, 1H, Mn-H, $J_{PH} = 38$ Hz). ${}^{31}P\{{}^{1}H\}$ NMR (CD₃C₆D₅, 25 °C): δ 197.1 s.

 $MnH(CO)_2P_3$ (2) and $MnH(CO)P_4$ (3) (P = P(OEt)₃ (a), PPh(OEt)₂ (b), PPh₂OEt (c), PPh(OiPr)₂ (d)). A solution of MnH(CO)₅ (12.8 mmol, 2.5 g) in 30 mL of toluene was treated under argon with 90 mmol of the appropriate phosphite and the mixture irradiated at room temperature for 48 h in a Pyrex Schlenk flask using a standard 400-W medium-pressure mercury arc lamp. The solvent was then evaporated under reduced pressure to give an oil which was triturated with ethanol until a white solid, containing a mixture of 2 and 3, separated out. Fractional crystallization from ethanol or chromatographic separation on silica gel using a mixture of petroleum ether (40-70 °C) and diethyl ether in a 10:2 ratio as eluent allowed us to obtain pure samples of both the hydrides 3 (25–35% yield, first eluted) and 2 (40–60% yield). Anal. Calcd for $C_{20}H_{46}O_{11}P_3Mn$ (2a): C, 39.35; H, 7.60. Found: C, 39.22; H, 7.67. Mp: 71 °C. IR (KBr): 1934 s, 1872 s ν_{CO} cm $^{-1}.~^{1}H$ NMR (C₆D₆, 25 °C): δ 4.10 (m, 18H, CH₂), 1.23 (t, 27H, CH₃), -8.02 (d of t, 1H, Mn-H, spin system A₂BX (X = H), J_{AX} = 49 Hz, J_{BX} = 61 Hz). ³¹P{¹H} NMR (C₆D₆, 25 °C): spin system A₂B, δ_A 194.2, δ_B 186.9, J_{AB} = 96 Hz. Anal. Calcd for $C_{32}H_{46}O_8P_3Mn$ (2b): C, 54.40; H, 6.56. Found: C, 54.55; H, 6.49. Mp: 78 °C. IR (KBr): 1933 s, 1869 s ν_{CO} cm⁻¹. ¹H NMR (C₆D₆, 25 °C): δ 7.90–7.00 (m, 15H, Ph), 4.10–3.70 (m, 12H, CH₂), 1.13, 1.09, 1.05 (t, 18H, CH₃), -7.45 (d of t, 1H, Mn–H, spin system A₂BX (X = H), J_{AX} = 45 Hz, J_{BX} = 61 Hz). $^{31}P\{^1H\}$ NMR (C_6D_6 , 25 °C): spin system A_2B , δ_A 206.6, δ_B 200.9, $J_{AB} = 70$ Hz. Anal. Calcd for $C_{44}H_{46}O_5P_3Mn$ (2c): C, 65.84; H, 5.78. Found: C, 65.78; H, 5.85. Mp: 137 °C. IR (KBr): 1922 s, 1864 s cm⁻¹. ¹H NMR (CD₃C₆D₅, -30 °C): δ 8.10-6.90 (m, 30H, Ph), 3.94, 3.68, 3.42 (br, 6H, CH₂), 1.01 (t, br, 9H, CH₃), −6.64 (d of t, 1H, Mn−H, spin system A₂BX (X = H), $J_{AX} = 40$ Hz, $J_{BX} = 61$ Hz). ${}^{31}P\{{}^{1}H\}$ NMR (CD₃C₆D₅, -30 °C): spin system A₂B, $\delta_A = 173.8$, $\delta_B = 169.6$, $J_{AB} = 60$ Hz. Anal. Calcd for C₃₈H₅₈O₈P₃Mn (2d): C, 57.72; H, 7.39. Found: C, 57.90; H, 7.45. Mp: 164 °C. IR (KBr): 1933 s, 1875 s cm⁻¹. ¹H NMR (C₆D₆, 25 °C): δ 8.20–7.00 (m, 15H, Ph), 4.78, 4.52 (m, 6H, CH), 1.33-1.11 (m, 36H, CH₃), -7.17 (q, 1H, Mn-H, spin system A_2BX (X = H), $J_{AX} = J_{BX} = 57$ Hz). ${}^{31}P\{{}^{1}H\}$ NMR (C₆D₆, 25 °C): spin system A₂B, δ_A 202.9, δ_B 196.0, $J_{AB} = 70$ Hz. Anal. Calcd for $C_{25}H_{61}O_{13}P_4Mn$ (3a): C, 40.11; H, 8.21. Found: C, 40.28; H, 8.17. Mp: 135 °C. IR (KBr): 1852 s cm^{-1} . ^1H NMR (C₆D₆, 25 °C): δ 4.20 (m, 24H, CH₂), 1.28 (t, 36H, CH₃), -8.13 (qi, 1H, Mn-H, $J_{PH} = 52$ Hz). $^{31}P\{^{1}H\}$ NMR (C₆D₆, 25 °C): δ 194.6 s. Anal. Calcd for $C_{41}H_{61}O_{9}P_{4}Mn$ (3b): C, 56.17; H, 7.01. Found: C, 56.27; H, 7.15. Mp: 169 °C. IR (KBr): 1853 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR (C₆D₆, 25 °C): δ 8.15–7.10 (m, 20H, Ph), 3.72, 3.45 (m, 16H, CH₂), 1.03 (t, 24H, CH₃), -7.07 (qi, 1H, Mn–H, $J_{PH} = 52$ Hz). ³¹P- $\{^1H\}$ NMR (C₆D₆, 25 °C): δ 208.0 s, br.

[Mn(η^2 -H₂)(CO)₂P₃]⁺BF₄⁻ (4) (P = P(OEt)₃ (a), PPh-(OEt)₂ (b), PPh₂OEt (c)). These complexes were prepared in solution (CD₂Cl₂) at low temperature (-78 °C) by protonation with HBF₄·Et₂O of the hydride compounds MnH(CO)₂P₃ (2), but they were not isolated as solids owing to the easy loss of hydrogen above 0 °C. A typical preparation involves the addition by microsyringe of HBF₄·Et₂O (0.02 mmol, 2.9 μ L) to

⁽⁶⁾ Rabinowitz, R.; Pellon, J. *J. Org. Chem.* **1961**, *26*, 4623. (7) Ugi, I.; Fetzer, U.; Eholzer, W.; Knupfer, H.; Offermann, K. *Angew Chem. Int. Ed. Engl.* **1965**, *4*, 472.

a solution of the appropriate hydride (0.2 mmol) in 0.5 mL of CD₂Cl₂ placed into a 5 mm NMR tube and cooled to −78 °C. The tube was brought to about -20 °C to complete the reaction and then, with the temperature kept below 0 °C, the NMR spectra (1H and 31P) were measured. The related isotopomer $[Mn(\eta^2-HD)(CO)_2\{P(OEt)_3\}_3]^+CF_3CO_2^-$ (**4a**₁) was prepared in a NMR tube exactly like 4a using CF₃COOD as the protonating agent. **4a**: ${}^{1}H$ NMR (CD₂Cl₂, -90 °C) δ 4.02 (m, 18H, CH₂), 1.36 (t, 27H, CH₃), -8.5 (br, 2H, η^2 -H₂); ³¹P{¹H} NMR (CD₂-Cl₂, -90 °C) spin system A₂B, δ_A 167.3, δ_B 159.3, J_{AB} = 89 Hz **4b**: 1 H NMR (CD₂Cl₂, -90 °C) δ 7.70-7.50 (m, 15H, Ph), 3.92 (br, 12H, CH₂), 1.40 (br, 18H, CH₃), -7.9 (br, 2H, η^2 -H₂); $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂, -90 °C) spin system A₂B, δ_{A} 191.7, δ_{B} 174.7, $J_{AB} = 72$ Hz. **4c**: ¹H NMR (CD₂Cl₂, -90 °C) δ 7.51 (m, 30H, Ph), 3.90, 3.41 (m, 6H, CH₂), 1.39, 1.12 (br, 9H, CH₃), -7.1 (br, 2H, η^2 -H₂); ³¹P{¹H} NMR (CD₂Cl₂, -90 °C) spin system A₂B, $\delta_{\rm A}$ 160.4, $\delta_{\rm B}$ 154.4, $J_{\rm AB}=52$ Hz.

 $[Mn(\eta^2-H_2)(CO)P_4]BPh_4$ (5) $(P = P(OEt)_3$ (a), $PPh(OEt)_2$ **(b)).** HBF₄·Et₂O (0.2 mmol, 29 μ L of a 54% solution in Et₂O) was added to a solution of MnH(CO)P4 (3) (0.2 mmol) in 7 mL of ethanol under H_2 (1 atm) cooled to -78 °C. The reaction mixture was brought to about 0 °C and after 20 min, a solution of NaBPh4 (0.2 mmol, 0.068 g) in 3 mL of ethanol was added. A pale yellow solid slowly separated out which was filtered, washed with ethanol, and dried under vacuum: yield 65% (5a), 78% (**5b**). Anal. Calcd for C₄₉H₈₂BO₁₃P₄Mn (**5a**): C, 55.06; H, 7.73. Found: C, 54.91; H, 7.81. Λ_{M} (CH₃NO₂, 25 °C): 55.7 Ω^{-1} mol⁻¹ cm². IR (KBr): 1926 s ν_{CO} cm⁻¹. ¹H NMR (CD₂Cl₂, 25 °C): δ 7.30–6.70 (m, 20H, Ph), 4.10 (m, 24H, CH₂), 1.36 (t, 36H, CH₃), -8.28 (br, 2H, η^2 -H₂). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C): δ 175.7 s, br. Anal. Calcd for $C_{65}H_{82}BO_9P_4Mn$ (**5b**): C, 65.22; H, 6.90. Found: C, 65.13; H, 7.06. Λ_M (CH₃NO₂, 25 °C): 53.4 $\Omega^{-1}\,mol^{-1}\,cm^2.\,$ IR (KBr): 1926 s $\nu_{\rm CO}\,cm^{-1}.\,$ 1H NMR (CD₂Cl₂, 25 °C): δ 7.50–6.80 (m, 40H, Ph), 3.56 (m, 16H, CH₂), 1.56 (t, 24H, CH₃), -7.22 (br, 2H, η^2 -H₂). ³¹P{¹H} NMR (CD₂-Cl₂, 25 °C): δ 195.4 s.

[Mn(η^2 -HD)(CO)P₄]⁺CF₃CO₂⁻ (P = P(OEt)₃ (5a₁), PPh-(OEt)₂ (5b₁)). These isotopomers were prepared in solution (CD₂Cl₂) like the related η^2 -H₂ compounds 5 by adding an equimolar amount of CF₃COOD to the appropriate hydrides 3 in an NMR tube.

 $[Mn(CO)_2P_3]BPh_4$ (6) and $[Mn(CO)P_4]BPh_4$ (7) (P = $P(OEt)_3$ (a), $PPh(OEt)_2$ (b)). $HBF_4 \cdot Et_2O$ (0.2 mmol, 29 μL of a 54% solution in Et₂O) was added to a solution of MnH-(CO)₂P₃ (2) or MnH(CO)P₄ (3; 0.2 mmol) in 7 mL of ethanol cooled to -78 °C under argon. The reaction mixture was slowly brought to 30 °C and stirred for 2 h. The addition of NaBPh₄ (0.2 mmol, 0.068 g) in 3 mL of ethanol caused the precipitation of a yellow solid, which was filtered, washed with ethanol, and dried under vacuum. Yield between 84% and 68%. Anal. Calcd for C₄₄H₆₅BO₁₁P₃Mn (**6a**): C, 56.91; H, 7.06. Found: C, 56.77; H, 7.12. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 60.6 Ω^{-1} mol⁻¹ cm². IR (KBr): 1983 s, 1872 s ν_{CO} cm⁻¹. ¹H NMR (CD₂Cl₂, 25 °C): δ 7.30–6.80 (m, 20H, Ph), 4.09 (m, 18H, CH₂), 1.30 (t, 27H, CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (CD₂Cl₂): 25 °C, δ 170.7 s, br; -80 °C, δ 169.9 s, br. Anal. Calcd for $C_{56}H_{65}BO_8P_3Mn$ (**6b**): C, 65.63; H, 6.39. Found: C, 65.79; H, 6.26. Λ_M (CH₃NO₂, 25 °C): 57.4 Ω^{-1} mol⁻¹ cm². IR (KBr): 1970 s, 1894 s $\nu_{\rm CO}$ cm⁻¹. 1 H NMR (CD₂Cl₂): 25 °C, δ 7.60–6.80 (m, 35H, Ph), 3.93 (qi, 12H, CH₂), 1.35, 1.33, 1.26 (t, 18H, CH₃). ³¹P{¹H} NMR (CD₂-Cl₂, -90 °C): spin system A₂B, δ_A 187.9, δ_B 177.3, $J_{AB} = 80.0$ Hz. Anal. Calcd for C₄₉H₈₀BO₁₃P₄Mn (**7a**): C, 55.17; H, 7.56. Found: C, 55.03; H, 7.50. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 56.0 Ω^{-1} mol⁻¹ cm². IR (KBr): 1872 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR (CD₂Cl₂): 25 °C, δ 7.30-6.70 (m, 20H, Ph), 4.09 (m, br, 24H, CH₂), 1.30 (t, br, 36H, CH₃); -80 °C, δ 4.30, 4.09 (br, CH₂), 1.56, 1.30 (br, CH₃). ³¹P{¹H} NMR (CD₂Cl₂): 25 °C, δ 170.0 br; -80 °C, δ 170.2 br, 168.7 s, br. Anal. Calcd for C₆₅H₈₀BO₉P₄Mn (**7b**): C, 65.33; H, 6.75. Found: C, 65.52; H, 6.50. Λ_{M} (CH₃NO₂, 25 °C): 58.3 Ω^{-1} mol $^{-1}$ cm 2 . IR (KBr): 1915 s $\nu_{\rm CO}$ cm $^{-1}$. 1 H NMR (CD $_2$ Cl $_2$, 25 °C): δ 7.80-6.80 (m, 40H, Ph), 3.71, 3.59 (m, 16H, CH₂),

1.28, 1.22, 1.18 (m, 24H, CH₃). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂): 25 °C, δ 185.9 s, br; -80 °C, δ 188.8 s, br.

Mn(η¹-OSO₂CF₃)(CO)₃[PPh(OEt)₂]₂ (8). An equivalent amount of CF₃SO₃H (0.75 mmol, 66 μL) was added to a solution of MnH(CO)₃[PPh(OEt)₂]₂ (1b; 0.75 mmol, 0.5 g) in 5 mL of diethyl ether cooled to -78 °C. The reaction mixture was brought to room temperature, stirred for about 1 h, and then the solvent removed under reduced pressure. The oil obtained was triturated with *n*-hexane (4 mL) until a yellow solid began to separate out (about 1 h). After cooling to -25 °C to complete the precipitation, the solid was filtered and dried under vacuum; yield ≥80%. Anal. Calcd for C₂₄H₃₀F₃O₁₀P₂SMn: C, 42.12; H, 4.42. Found: C, 41.96; H, 4.50. IR (KBr): 2066 m, 1975 s, 1932 s ν_{CO} cm $^{-1}$. ¹H NMR (CD₂Cl₂, 25 °C): δ 7.70, 7.50 (m, 10H, Ph), 4.05 (m, 8H, CH₂), 1.36 (t, 12H, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C): δ 182.8 s.

 $[Mn(C \equiv CPh)(CO)_3P_2] (9) (P = P(OEt)_3 (a), PPh(OEt)_2$ (b), PPh_2OEt (c), $PPh(O^iPr)_2$ (d)) and $[Mn(C \equiv C - p - tolyl) - tolyl)$ $(CO)_3P_2$] (9) $(P = PPh(OEt)_2 (b_1), PPh_2OEt (c_1))$. To a solution of the appropriate hydride MnH(CO)₃P₂ (1; 1.5 mmol) in 8 mL of toluene cooled to -78 °C was added an equivalent amount of CF₃SO₃H (1.5 mmol, 133 µL), and the reaction mixture was then brought to room temperature and stirred for 1 h. An excess of Li⁺[RC≡C]⁻ (4.5 mmol, 1.8 mL of a 2.5 M solution in THF) was added to the resulting solution, which was then further stirred at room temperature for 2 h. The solvent was removed under reduced pressure, giving an oil which was triturated with ethanol (5 mL) at 0 °C for 2-3 h. In some cases a pale yellow solid separated out after 2-3 h of stirring, but often an oil remained. This oil was chromatographed on a silica gel column (70×4 cm) using a mixture of petroleum ether (40-60 °C), diethyl ether, and benzene in a 8:1:1 ratio as eluent. The first eluted band (about 400 mL) was evaporated to dryness, leaving an oil which was triturated with ethanol (5 mL) until a solid separated out (10-30 min). This solid was filtered and dried under vacuum; yield between 30 and 55%. Anal. Calcd for $C_{23}H_{35}O_9P_2Mn$ (9a): C, 48.26; H, 6.16. Found: C, 48.41; H, 6.24. IR (KBr): 2096 m $\nu_{C\equiv C}$; 2040 m, 1959 s, 1947 s $\nu_{\rm CO}$ cm $^{-1}$. ¹H NMR (CD₃C₆D₅, 25 °C): δ 7.42-6.95 (m, 5H, Ph), 4.18 (m, 12H, CH₂), 1.17 (t, 18H, CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (CD₃C₆D₅, 25 °C): δ 173.3 s. Anal. Calcd for C₃₁H₃₅O₇P₂Mn (**9b**): C, 58.50; H, 5.54. Found: C, 58.28; H, 5.65. Mp: 139 °C. IR (KBr and (CH2Cl2)): 2100 m (2094 m) $\nu_{C=C}$; 2027 m, 1940 s (2036 m, 1958 s, 1928 s) ν_{CO} cm⁻¹. ¹H NMR (C_6D_6 , 25 °C): δ 7.95–7.00 (m, 15H, Ph), 4.22, 3.85 (m, 8H, CH₂), 1.10 (t, 12H, CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (C₆D₆, 25 °C): δ 193.0 s. Anal. Calcd for $C_{39}H_{35}O_5P_2Mn$ (9c): C, 66.86; H, 5.04. Found: C, 66.71; H, 5.13. Mp: 179 °C. IR (KBr): 2094 m $\nu_{\rm C=C}$; 2022 m, 1943 s, 1927 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR (CD₂Cl₂, 25 °C): δ 8.00–6.90 (m, 25H, Ph), 3.85 (m, 4H, CH₂), 1.25 (t, 6H, CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (CD₂Cl₂, 25 °C): δ 161.7 s. Anal. Calcd for C₃₅H₄₃O₇P₂Mn (**9d**): C, 60.70; H, 6.26. Found: C, 60.58; H, 6.39. IR (KBr): 2090 m $\nu_{C=C}$; 2038 m, 1953 s, 1924 s ν_{CO} cm⁻¹. 1 H NMR (CD₃C₆D₅, 25 ${}^{\circ}$ C): δ 8.00–6.95 (m, 15H, Ph), 5.00 (m, 4H, CH), 1.27, 1.20 (d, 24H, CH₃). ³¹P{¹H} NMR (CD₃C₆D₅, 2 °C): δ 188.8 s. Anal. Calcd for C₃₂H₃₇O₇P₂Mn (9b₁): C, 59.08; H, 5.73. Found: C, 59.24; H, 5.66. Mp: 68 °C. IR (KBr): 2094 m $\nu_{C=C}$; 2038 m, 1958 s, 1929 s ν_{CO} cm⁻¹. ¹H NMR (C₆D₆, 25 °C): δ 8.00–6.90 (m, 14H, Ph), 4.25, 3.86 (m, 8H, CH₂), 2.13 (s, 3H, CH₃ p-tolyl), 1.12 (t, 12H, CH₃ phos). $^{31}P\{^{1}H\}$ NMR (C6D6, 25 °C): δ 192.9 s. Anal. Calcd for $C_{40}H_{37}O_5P_2Mn$ (9c₁): C, 64.47; H, 4.58. Found: C, 64.64; H, 4.51. Mp: 132 °C. IR (KBr): 2092 m $\nu_{C=C}$; 2032 m, 1945 s, 1924 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR (CD₂Cl₂, 25 °C): δ 7.95–6.80 (m, 24H, Ph), 3.86 (m, br, 4H, CH₂), 2.22 (s, 3H, CH₃ p-tolyl), 1.24 (t, 6H, CH $_3$ phos). $^{31}P\{^1H\}$ NMR (CD $_2Cl_2,$ 25 °C): δ 161.7 s.

[Mn(C \equiv CPh)(CO)₂P₃] (10) and [Mn(C \equiv CPh)(CO)P₄] (11) (P = P(OEt)₃ (a), PPh(OEt)₂ (b)). An equivalent amount of HBF₄·Et₂O (0.75 mmol, 108 μ L of a 54% solution in Et₂O) was added to a cooled (-78 °C) solution of the appropriate hydride MnH(CO)₂P₃ (2) or MnH(CO)P₄ (3) in 5 mL of toluene. The reaction mixture was slowly brought to

30 °C and stirred for 2 h. An excess of Li⁺[PhC≡C]⁻ (3 mmol, 0.83 mL of a 2.5 M solution in THF) was added to the resulting solution containing the [Mn(CO)₂P₃]⁺ and [Mn(CO)P₄]⁺ cations, and the stirring was continued for 2 h. Evaporation of the solvent under reduced pressure gave an oil which was chromatographed on a silica gel column (70 \times 4 cm) using as eluent a mixture of petroleum ether (40-60 °C), diethyl ether, and benzene in a 8:1:1 ratio. The first eluted band (about 400 mL) was evaporated under reduced pressure, giving an oil which was triturated with ethanol until a pale yellow solid separated out. After filtration, the solid was dried under vacuum: vield \geq 45%. Anal. Calcd for C₄₀H₅₀O₈P₃Mn (**10b**): C, 59.56; H, 6.25. Found: C, 59.71; H, 6.31. IR (KBr): 2083 m $\nu_{C=C}$; 1960 s, 1885 s ν_{CO} cm $^{-1}$. 1 H NMR (CD $_{3}$ C $_{6}$ D $_{5}$, 25 $^{\circ}$ C): δ 7.90-6.80(m, 20H, Ph), 4.30-3.70 (m, 12H, CH₂), 1.14, 1.13, 1.09 (t, 18H, CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (CD₃C₆D₅, 25 °C): spin system A₂B, δ_A 195.2, δ_B 188.7, $J_{AB} = 70.0$ Hz. Anal. Calcd for $C_{33}H_{65}O_{13}P_{4}$ Mn (11a): C, 46.70; H, 7.72. Found: C, 46.88; H, 7.60. Mp: 127 °C. IR (KBr and (CH₂Cl₂)): 2079 m (2075 m) $\nu_{C=C}$; 1852 s (1862 s, 1843 s) $\nu_{\rm CO}$ cm $^{-1}$. 1 H NMR ((CD₃)₂CO, 25 $^{\circ}$ C): δ 7.07 m, 6.89 br (5H, Ph), 4.20 (m, 24H, CH₂), 1.20 (t, 36H, CH₃). ${}^{31}P{}^{1}H}$ NMR ((CD₃)₂CO, 25 °C): δ 184.5 s.

 $[Mn(4-CH_3C_6H_4CN)(CO)_2P_3]BPh_4$ (12) and $[Mn(4-CH_3C_6H_4CN)(CO)_2P_3]BPh_4$ (12) $CH_3C_6H_4CN)(CO)P_4]BPh_4$ (13) (P = P(OEt)₃ (a), PPh-(OEt)₂ (b)). To a suspension of the appropriate hydride $MnH(CO)_2P_3$ (2) or $MnH(CO)P_4$ (3) (0.4 mmol) in 4 mL of ethanol cooled to -78 °C was added an equivalent amount of HBF₄·Et₂O (0.4 mmol, 58 μL of a 54% solution). The reaction mixture was slowly brought to about 30 °C and stirred for 2 h, and then a slight excess of p-toluonitrile (0.6 mmol, 70 μ L) was added. After 1 h of stirring an excess of NaBPh4 (0.8 mmol, 0.27 g) in 3 mL of ethanol was added and the reaction mixture stirred until a yellow solid separated out. The compound was filtered and crystallized from CH₂Cl₂ (2 mL) and ethanol (6 mL); yield \geq 80%. Anal. Calcd for C₅₂H₇₂-NBO₁₁P₃Mn (**12a**): C, 59.72; H, 6.94; N, 1.34. Found: C, 59.88; H, 7.03; N, 1.29. Mp: 94 °C. Λ_M (CH₃NO₂, 25 °C): 53.6 Ω^{-1} mol $^{-1}$ cm². IR (KBr): 2261 w ν_{CN} ; 1976 s, 1916 s ν_{CO} cm $^{-1}$. ¹H NMR ((CD₃)₂CO, 25 °C): δ 7.80–6.70 (m, 24H, Ph), 4.23 (m, 18H, CH₂), 2.45 (s, 3H, CH₃ p-tolyl), 1.35, 1.31 (t, 27H, CH₃ phos). ${}^{31}P\{{}^{1}H\}$ NMR ((CD₃) ${}_{2}CO$, -90 °C): spin system A_2B , δ_A 167.7, δ_B 157.4, $J_{AB} = 99$ Hz. Anal. Calcd for $C_{64}H_{72}$ -NBO₈P₃Mn (**12b**): C, 67.32; H, 6.36; N, 1.23. Found: C, 67.15; H, 6.23; N, 1.18. Mp: 157 °C. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 49.7 Ω^{-1} mol⁻¹ cm². IR (KBr): 2250 w $\nu_{\rm CN}$; 1979 s, 1917 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR ((CD₃)₂CO, 25 °C): δ 7.70–6.70 (m, 39H, Ph), 4.05 (m, 12H, CH₂), 2.36 (s, 3H, CH₃ p-tolyl), 1.40, 1.37 (t, 18H, CH₃ phos). ${}^{31}P{}^{1}H}$ NMR ((CD₃)₂CO, -90 °C): spin system A₂B, $\delta_{\rm A}$ 197.1, $\delta_{\rm B}$ 181.0, $J_{\rm AB} = 62$ Hz. Anal. Calcd for $C_{57}H_{87}$ NBO₁₃P₄Mn (13a): C, 57.83; H, 7.41; N, 1.18. Found: C, 57.80; H, 7.57; N, 1.10. Mp: 145 °C. Λ_{M} (CH₃NO₂, 25 °C): 55.3 Ω^{-1} mol⁻¹ cm². IR (KBr): 2239 w $\nu_{\rm CN}$; 1894 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR ((CD₃)₂CO, 25 °C): δ 7.70–6.70 (m, 24H, Ph), 4.20 (m, 24H, CH₂), 2.43 (s, 3H, CH₃ p-tolyl), 1.31 (t, 36H, CH₃ phos). ${}^{31}P\{{}^{1}H\}$ NMR ((CD₃)₂CO, -90 °C): δ 173.9 s. Anal. Calcd for C₇₃H₈₇NBO₉P₄Mn (**13b**): C, 66.82; H, 6.68; N, 1.07. Found: C, 66.70; H, 6.57; N, 1.11. Mp: 147 °C. Λ_M (CH₃-NO₂, 25 °C): 57.2 Ω^{-1} mol⁻¹ cm². IR (KBr): 1886 s ν_{CO} cm⁻¹. ^{1}H NMR ((CD₃)₂CO, 20 °C): δ 7.80–6.70 (m, 44H, Ph), 3.75 (m, 16H, CH₂), 2.44 (s, 3H, CH₃ p-tolyl), 1.23 (t, 24H, CH₃ phos). ${}^{31}P\{{}^{1}H\}$ NMR ((CD₃)₂CO, -90 °C): δ 199.9 s.

[Mn(4-CH₃C₆H₄NC)(CO)₂P₃]BPh₄ (14) and [Mn(4-CH₃C₆H₄NC)(CO)P₄]BPh₄ (15) (P = P(OEt)₃ (a), PPh-(OEt)₂ (b)). These complexes were prepared exactly like the related nitrile compounds 12 and 13 by adding a slight excess of *p*-tolyl isocyanide to a solution containing [Mn(CO)₂P₃]⁺ and [Mn(CO)P₄]⁺ cations in ethanol; yield ≥80%. Anal. Calcd for C₅₂H₇₂NBO₁₁P₃Mn (14a): C, 59.72; H, 6.94; N, 1.34. Found: C, 59.58; H, 6.82; N, 1.36. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 52.9 Ω^{-1} mol⁻¹ cm². IR (KBr): 2141 s $\nu_{\rm CN}$; 1993 s, 1947 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR ((CD₃)₂CO, 25 °C): δ 7.45−6.70 (m, 24H, Ph), 4.23 (m, 18H, CH₂), 2.40 (s, 3H, CH₃ *p*-tolyl), 1.35 (t, br, 27H, CH₃ phos).

 $^{31}P\{^{1}H\}$ NMR ((CD₃)₂CO, 25 °C): spin system A₂B, δ_{A} 168.7, δ_B 159.9, $J_{AB} = 87$ Hz. Anal. Calcd for $C_{64}H_{72}NBO_8P_3Mn$ (14b): C, 67.32; H, 6.36; N, 1.23. Found: C, 67.50; H, 6.42; N, 1.19. Mp: 189 °C. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 61.7 Ω^{-1} mol⁻¹ cm². IR (KBr): 2137 s ν_{CN} ; 1981 s, 1931 s ν_{CO} cm⁻¹. ¹H NMR ((CD₃)₂CO, 25 °C): δ 7.70–6.60 (m, 39H, Ph), 4.01 (m, 12H, CH₂), 2.33 (s, 3H, CH₃ p-tolyl), 1.37, 1.34 (t, 18H, CH₃ phos). $^{31}P\{^{1}H\}$ NMR ((CD₃)₂CO, 25 °C): spin system A₂B, δ_{A} 192.6, $\delta_{\rm B}$ 183.6, $J_{\rm AB}=61$ Hz. Anal. Calcd for $C_{57}H_{87}NBO_{13}P_4Mn$ (15a): C, 57.83; H, 7.41; N, 1.18. Found: C, 57.55; H, 7.30; N, 1.20. Mp: 183 °C. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 53.2 Ω^{-1} mol⁻¹ cm². IR (KBr): 2116 s $\nu_{\rm CN}$; 1922 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR ((CD₃)₂-CO, 25 °C): δ 7.33–6.70 (m, 24H, Ph), 4.19 (m, 24H, CH₂), 2.36 (s, 3H, CH₃ p-tolyl), 1.31 (t, 36H, CH₃ phos). ³¹P{¹H} NMR $((CD_3)_2CO, -90 \,^{\circ}C): \delta 175.2 \text{ s. Anal. Calcd for } C_{73}H_{87}NBO_9P_4$ Mn (15b): C, 66.82; H, 6.68; N, 1.07. Found: C, 66.75; H, 6.59; N, 1.07. Mp: 167 °C. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 54.3 Ω^{-1} mol^{-1} cm². IR (KBr): 2109 s ν_{CN} ; 1915 s ν_{CO} cm⁻¹. ¹H NMR ((CD₃)₂CO, 25 °C): δ 7.75–6.70 (m, 44H, Ph), 3.68 (m, 16H, CH₂), 2.37 (s, 3H, CH₃ p-tolyl), 1.21 (t, 24H, CH₃ phos). ³¹P{¹H} NMR ((CD₃)₂CO, 25 °C): δ 204.7 s.

 $[Mn(CO)_3P_3]BPh_4$ (16) and $[Mn(CO)_2P_4]BPh_4$ (17) (P = P(OEt)₃ (a), PPh(OEt)₂ (b)). An equivalent amount of HBF₄·Et₂O (0.4 mmol, 58 µL of a 54% solution) was added to a suspension of the appropriate hydride MnH(CO)₂P₃ (2) and $MnH(CO)P_4$ (3) (0.4 mmol) in 4 mL of ethanol cooled to -78°C. The reaction mixture was slowly brought to +30 °C, stirred for 2 h, and then placed under a CO atmosphere (1 atm) for 1 h. The addition of an excess of NaBPh₄ (0.8 mmol, 0.27 g) in 3 mL of ethanol caused the precipitation of a pale yellow solid, which was filtered and crystallized from CH₂Cl₂ (2 mL) and ethanol (5 mL); yield ≥70%. Anal. Calcd for $C_{45}H_{65}BO_{12}P_3Mn$ (16a): C, 56.50; H, 6.85. Found: C, 56.43; H, 6.88. Mp: 136 °C. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 51.7 Ω^{-1} mol⁻¹ cm². IR (KBr): 2062 m, 1980 s, 1972 s ν_{CO} cm⁻¹. ¹H NMR ((CD₃)₂CO, 25 °C): δ 7.35-6.00 (m, 20H, Ph), 4.25 (m, br, 18H, CH₂), 1.37 (t, br, 27H, CH₃). ${}^{31}P\{{}^{1}H\}$ NMR ((CD₃)₂CO, -90 °C): δ 160 br. Anal. Calcd for $C_{57}H_{65}BO_9P_3Mn$ (**16b**): C, 65.03; H, 6.22. Found: C, 64.98; H, 6.25. Mp: 202 °C. Λ_M (CH₃-NO₂, 25 °C): 56.9 Ω^{-1} mol⁻¹ cm². IR (KBr): 2051 m, 1980 s, 1968 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR ((CD₃)₂CO, 25 °C): δ 7.61–6.70 (m, 35H, Ph), 4.01, 3.90 (m, 12H, CH₂), 1.36, 1.35 (t, 18H, CH₃). $^{31}P\{^{1}H\}$ NMR ((CD₃)₂CO, -90 °C): δ 186, 180 br. Anal. Calcd for C₅₀H₈₀BO₁₄P₄Mn (**17a**): C, 54.85; H, 7.37. Found: C, 54.81; H, 7.39. Mp: 193 °C. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 50.7 Ω^{-1} mol⁻¹ cm². IR (KBr): 1991 s, 1932 s ν_{CO} cm⁻¹. ¹H NMR ((CD₃)₂CO, 25 °C): δ 7.30–6.70 (m, 20H, Ph), 4.18 (m, 24H, CH₂), 1.34 (t, br, 36H, CH₃). ${}^{31}P{}^{1}H}$ NMR ((CD₃)₂CO, -90 °C): δ 170.1 s; 167.8, 160.3 t (spin system A_2B_2 , δ_A 167.8, δ_B 160.3, $J_{AB} = 84$ Hz). Anal. Calcd for C₆₆H₈₀BO₁₀P₄Mn (**17b**): C, 64.82; H, 6.59. Found: C, 64.76; H, 6.57. Mp: 190 °C. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 52.5 Ω^{-1} mol⁻¹ cm². IR (KBr): 1985 s, 1922 s, br ν_{CO} cm⁻¹. 1 H NMR ((CD₃)₂CO, 25 ${}^{\circ}$ C): δ 7.90–6.70 (m, 40H, Ph), 3.87, 3.68 (m, 16H, CH₂), 1.35, 1.24 (t, 24H, CH₃). ${}^{31}P\{{}^{1}H\}$ NMR ((CD₃)₂CO, -90 °C): δ 194.9 s, 192 m, br.

 $[Mn(OH_2)(CO)_3P_2]BF_4$ (18) $(P = PPh(OEt)_2$ (b), PPh_2OEt (c)). To a suspension of the appropriate hydride MnH(CO)₃P₂ (1) (0.4 mmol) in 3 mL of ethanol cooled to -78 °C was added an equivalent amount of aqueous HBF₄ (0.4 mmol, 52 µL of a 48% solution in water), and the reaction mixture was brought to room temperature. After 1 h of stirring the solvent was removed under reduced pressure, giving a yellow oil which was triturated with diethyl ether (5 mL). A yellow solid began to separate out after 1-2 h, which was filtered and crystallized from ethanol (2 mL) and diethyl ether (7 mL): yield \geq 70%. Anal. Calcd for C₂₃H₃₂BF₄O₈P₂Mn (**18b**): C, 43.15; H, 5.04. Found: C, 43.12; H, 6.09. Mp: 120 °C. Λ_M (CH₃NO₂, 25 °C): 87.6 Ω^{-1} mol⁻¹ cm². IR (KBr): 2064 m, 1978 s, 1936 s ν_{CO} cm⁻¹. ¹H NMR (CD₂Cl₂, 25 °C): δ 7.80–7.50 (m, 10H, Ph), 4.10 (m, 8H, CH₂), 2.53 (t, 2H, OH₂, $J_{PH} = 2.1$ Hz), 1.40 (t, 12H, CH₃). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂): 25 °C, δ 182.1 s, br; -90°C, δ 183.5 s. Anal. Calcd for $C_{31}H_{32}BF_4O_6P_2Mn$ (18c): C,

MnH(CO)₅
$$\frac{\text{excess P}}{\text{toluene, } \Delta} \qquad \text{MnH(CO)}_{3}P_{2}$$

 a P = P(OEt)₃ (**a**), PPh(OEt)₂ (**b**), PPh₂OEt (**c**), PPh(OⁱPr)₂ (**d**).

52.87; H, 4.58. Found: C, 52.93; H, 4.50. $\Lambda_{\rm M}$ (CH₃NO₂, 25 °C): 90.2 Ω^{-1} mol⁻¹ cm². IR (Nujol): 2051 m, 1971 s, 1925 s $\nu_{\rm CO}$ cm⁻¹. ¹H NMR (CD₂Cl₂, 25 °C): δ 7.80–7.70 (m, 20H, Ph), 3.66 (m, 4H, CH₂), 2.48 (t, 2H, OH₂), 1.22 (t, 6H, CH₃). ³¹P{¹H} NMR (CD₂Cl₂): 25 °C, δ 158.4 s; -90 °C, 156.9 s.

Results and Discussion

Preparation and Characterization of Hydride Species. The manganese complexes $MnH(CO)_3P_2$ (1), $MnH(CO)_2P_3$ (2), and $MnH(CO)P_4$ (3) were prepared by substituting carbonyl ligands in the hydride pentacarbonyl complex $MnH(CO)_5$ with the appropriate phosphite, as shown in Scheme 1.

The reaction of MnH(CO)₅ with an excess of phosphine proceeds in refluxing toluene to give exclusively the tricarbonyl complexes 1, which were isolated as white solids in high yield. Irradiation of MnH(CO)₅ solutions containing an excess of P, instead, gives rise to the sequential substitution of the carbonyl ligands affording the MnH(CO)₃P₂ (1), MnH(CO)₂P₃ (2), and MnH(CO)P₄ (3) derivatives, which were isolated after chromatographic separation and characterized. Also, the formation of the first substitution product, the tetracarbonyl MnH(CO)₄P species was detected (IR) by working in a low phosphite to pentacarbonyl ratio, but the compound was not separated. Furthermore, the substitution of all the carbonyl groups in MnH(CO)₅ to give MnHP₅ species was not observed, and the protracted irradiation led only to decomposition products. Finally, the monocarbonyls MnH(CO)P₄ with PPh₂OEt (3c) and with PPh(OⁱPr)₂ (3d) were formed in small amounts owing to the low substitution rates and were not isolated.

Good analytical data were obtained for all the hydride complexes, which are white or pale yellow solids, airstable both as solids and in solution of polar and nonpolar organic solvents, where they behave as non-electrolytes. The infrared spectra of tricarbonyl compounds $MnH(CO)_3P_2$ (1) show in the ν_{CO} region three bands (one weak and two of strong intensity), suggesting a *mer* arrangement⁹ of the three carbonyl ligands. In the temperature range between +20 and -90 °C the ³¹P-{¹H} NMR spectra consist of only one sharp singlet at 205.3-173.3 ppm, indicating the magnetic equivalent of the two phosphorus *nuclei*. In the ¹H NMR spectra the hydride appears as a sharp triplet between -8.13 and -7.36 ppm. On these bases a *mer-trans* geometry of type I can be proposed in solution for complexes 1.

Two ν_{CO} bands at 1934-1864 cm⁻¹ are instead present in the spectra of the compounds MnH(CO)₂P₃ (**2**), in agreement with two carbonyl ligands in mutually *cis* positions. The ³¹P{¹H} NMR spectra appear as an A₂B spin system (one doublet and one triplet), indicating that two phosphorus *nuclei* are magnetically equivalent and are different from the third. In the ¹H NMR spectra the hydride signal appears as a multiplet which can be easily simulated as the X part of a A₂BX spin system with the parameters reported in the Experimental Section. Finally, the ¹³C{¹H} NMR spectra of complex **2b** (Table 1) show only one multiplet, formed by a doublet of triplets, at 225.5 ppm for the carbonyl carbon atom, suggesting the magnetic equivalence of the two CO ligands as in *fac-cis* structure **II**.

The two monocarbonyls complexes MnH(CO)P₄ (**3a,b**) show similar IR spectra, with only one ν_{CO} band at 1852 (**3a**) and 1853 (**3b**) cm⁻¹, but slightly different ¹H and ³¹P NMR spectra. In the temperature range between +30 and -90 °C the ³¹P{¹H} spectrum of MnH(CO)-[P(OEt)₃]₄ (**3a**) consists of only one sharp singlet at 194.6 ppm, in agreement with a *trans* geometry (**III**). In the ¹H NMR spectrum the hydride signal appears as a quintet at -8.13 ppm with a coupling constant J_{HP} of 52 Hz.

The 1H and ^{31}P NMR spectra of the related complex MnH(CO)[PPh(OEt)₂]₄ (**3b**), in contrast, are temperature dependent and the broad singlet at 208.5 ppm that appears at room temperature in the phosphorus spectra changes as the temperature is lowered and resolves into a complicated multiplet at -80 °C. Also, the hydride signal changes from a quintet (at -7.07 ppm) at room temperature to a slightly broad multiplet at -80 °C.

These results implicate the presence of inequivalent phosphorus *nuclei* and may suggest the presence of a geometry with the hydride and the CO ligands in *cis* positions. However, the ³¹P spectra may also be interpreted on the basis of the presence of a *trans* geometry (**III**), in which the four PPh(OEt)₂ phosphite ligands are

⁽⁹⁾ Adams, D. M. *Metal-Ligand and Related Vibrations*, St. Martin's Press: New York, 1968.

Table 1. ¹³C{¹H} NMR Data for Selected Manganese Compounds

Table 1. "C{'H} NMR Data for Selected Manganese Compounds							
compd	$\delta^{a,b}$	assignt					
$MnH(CO)_2[PPh(OEt)_2]_3$ (2b)	$225.5 \text{ d of t } (^2J_{CP} = 20 \text{ Hz})$	CO					
	61.4, 61.2 s, br	CH_2					
	16.5 s, br	CH_3					
$Mn(C \equiv CPh)(CO)_3[P(OEt)_3]_2$ (9a)	216.3 m	CO					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	117.0 s, br	\mathbf{C}_{eta}					
	$111.7 \text{ t} (^2 J_{\text{CP}} = 37 \text{ Hz})$	C_{α}^{r}					
	61.9 s	CH ₂					
	16.3 s	CH_3					
$Mn(C \equiv CPh)(CO)_3[PPh(OEt)_2]_2$ (9b)	$217.0 \text{ t} (^2J_{CP} = 26 \text{ Hz})$	CO					
	140-124 m	Ph					
	116.8 s, br	\mathbf{C}_{eta}					
	113.7 t (${}^2J_{\rm CP} = 32 \; {\rm Hz}$)	C_{α}^{ρ}					
	62.8 t	CH ₂					
	16.5 t	CH_3					
$Mn(C \equiv CPh)(CO)_3(PPh_2OEt)_2$ (9c)	217.8 t (${}^{2}J_{CP} = 22 \text{ Hz}$), 217.3 t (${}^{2}J_{CP} = 16 \text{ Hz}$)	CO					
	121.8 t, br	C_{eta}					
	$116.4 \text{ t} (^2 J_{\rm CP} = 32 \text{ Hz})$	C_{α}^{ρ}					
	62.6 t	CH ₂					
$Mn(C \equiv C-p\text{-tolyl})(CO)_3[PPh(OEt)_2]_2$ (9b ₁)	16.5 t	$\tilde{\text{CH}_3}$					
	$217.0 \text{ t} (^2 J_{\text{CP}} = 25 \text{ Hz})$	CO					
	116.6 s, br	\mathbf{C}_{eta}					
	$111.4 \text{ t} (^2J_{\text{CP}} = 32 \text{ Hz})$	C_{α}^{ρ}					
	62.8 t	CH ₂					
	21.4 s	$CH_3^{\tilde{p}}$ p-tolyl					
	16.5 t	CH ₃ phos					
$Mn(C = C - p - tolyl)(CO)_3(PPh_2OEt)_2$ (9c ₁)	$217.8 \text{ t} (^2J_{CP} = 22 \text{ Hz})$	CO					
, , , , , , , , , , , , , , , , , , ,	121.7 s, br	\mathbf{C}_{eta}					
	114.1 t (${}^{2}J_{CP} = 32 \text{ Hz}$)	$\mathbf{C}_{\mathbf{\alpha}}^{'}$					
	62.6 s, br	CH_2					
	21.4 s	CH ₃ p-tolyl					
	16.5 s, br	CH ₃ phos					
$Mn(C \equiv CPh)(CO)_2[PPh(OEt)_2]_3$ (10b)	222.9 d of t ($^2J_{CP} = 24$ Hz), 220.8 d of t ($^2J_{CP} = 24$ Hz)	CO					
	119.6 qi, br	\mathbf{C}_{eta}					
	62.4, 62.2 t	$\acute{\mathrm{CH}}_{2}$					
	16.7, 16.5 t	CH_3					
$Mn(C \equiv CPh)(CO)[P(OEt)_3]_4$ (11a)	$221.1 \text{ qi } (^2J_{\text{CP}} = 28 \text{ Hz})$	CO					
	119.4 qi, br	C_{eta}					
	61.0 s, br	$\acute{\mathrm{CH}}_{2}$					
	16.4 s, br	CH_3					
$[Mn(4-CH_3C_6H_4NC)(CO)_2\{PPh(OEt)_2\}_3]BPh_4$ (14b)	218.1 m, br	CO					
	66.7, 64.1 t	CH_2					
	21.4 s	CH ₃ p-tolyl					
	16.5, 16.3 t	CH ₃ phos					
$Mn(OH_2)(CO)_3(PPh_2OEt)_2]BF_4$ (18c)	219.9 t (${}^{2}J_{CP} = 18 \text{ Hz}$), 213.4 t (${}^{2}J_{CP} = 22 \text{ Hz}$)	CO					
	65.3 t	CH_2					
	15.9 t	CH_3					

^a At 25 °C in CD₂Cl₂; coupling constants in Hz. ^b Phenyl group signals are omitted.

made inequivalent by the different arrangement of the phenyl and ethoxy groups of one phosphite with respect to the other. Examples of inequivalent phosphorus nuclei in octahedral complexes containing four PPhMe₂ or PPh(OEt)₂ ligands in a plane have recently been reported for [IrCl₂(PPhMe₂)₄]ClO₄¹⁰ and FeHCl[PPh-(OEt)₂]₄¹¹ derivatives. Taking into account these precedents and the fact that the related MnH(CO)-[P(OEt)₃]₄ (**3a**) complex containing the P(OEt)₃ ligands shows, in solution, a trans geometry, we find that a similar trans octahedral geometry can also be proposed for the MnH(CO)[PPh(OEt)₂]₄ (**3b**) species.

Hydrido-carbonyl complexes of manganese have been reported $^{12-14} \mathrm{in}$ the past years, and the majority are tricarbonyls of the type MnH(CO) $_3P_2$ containing tertiary phosphine as coligands. 12

Relatively few dicarbonyls MnH(CO)₂P₃ have been described, ^{12d,13} and only one example, ¹⁴ MnH(CO)-[P(OMe)₃]₄, to our knowledge, has been reported of

monocarbonyl derivatives. Furthermore, the use of phosphite ligands to stabilize these manganese—hydride compounds has been restricted to $P(OR)_3$ and $P(OCH_2)_3$ -CR, and there are no examples of phosphonite PPh_2OEt_3 or phosphinite PPh_2OEt_3 as ancillary ligands. The photochemical substitution of CO groups in $MnH(CO)_5$ allows the synthesis of a rare example of manganese hydride such as the monocarbonyl $MnH(CO)P_4$ com-

⁽¹¹⁾ Albertin, G.; Antoniutti, S.; Bordignon, E. *J. Organomet. Chem.* **1996**, *513*, 147.

^{(12) (}a) Nietlispach, D.; Bosch, H. W.; Berke, H. Chem. Ber. 1994, 127, 2403. (b) Narayanan, B. A.; Amatore, C.; Kochi, J. K. Organometallics 1987, 6, 129. (c) Onaka, S.; Kondo, Y.; Furuichi, N. Bull. Chem. Soc. Jpn. 1983, 56, 2296. (d) Booth, B. L.; Haszeldine, R. N.; Reynolds, D. M. J. Chem. Soc., Dalton Trans. 1980, 412, 407. (e) Kidd, D. R.; Cheng, C. P.; Brown, T. L. J. Am. Chem. Soc. 1978, 100, 4103. (f) Hayakawa, H.; Nakayama, N.; Kobayashi, A.; Sasaki, Y. Bull. Chem. Soc. Jpn. 1978, 51, 2041. (g) Onaka, S.; Yoshikawa, Y.; Yamatera, H. J. Organomet. Chem. 1978, 157, 187. (h) Darensbourg, D. J.; Froelich, J. A. Inorg. Chem. 1978, 17, 3300. (i) Reimann, R. H.; Singleton, E. J. Chem. Soc., Dalton Trans. 1976, 2109. (j) Colton, C.; Commons, C. J. Aust. J. Chem. 1975, 28, 1663. (k) Miles, W. J., Jr.; Clark, R. J. Inorg. Chem. 1968, 7, 1801. (l) Ugo, R.; Bonati, F. J. Organomet. Chem. 1967, 8, 189. (m) Hieber, W.; Hofler, M.; Muschi, J. Chem. Ber. 1965, 98, 311.

⁽¹³⁾ Ellermann, J.; Lindner, H. *Z. Naturforsch., B* **1979**, *34*, 799. (14) Stuhl, L. S.; Muetterties, E. L. *Inorg. Chem.* **1978**, *17*, 2148.

⁽¹⁰⁾ Deeming, A. J.; Doherty, S.; Marshall, J. E.; Powell, N. I. *J. Chem. Soc., Chem. Commun.* **1989**, 1351.

Table 2. ¹H NMR Data (200 MHz) in the Hydride Region for Selected Manganese Complexes

compd	<i>T</i> , K	$\delta (M-H_2)^a$	δ (M-H) ^a	T_1 (min), ms	J_{HD} , Hz	<i>r</i> (H−H), Å ^b
MnH(CO) ₂ [PPh(OEt) ₂] ₃ (2b)	195		−7.91 d of t	85		_
$MnH(CO)[PPh(OEt)_{2 4}$ (3b)	202		-7.34 m, br	68		
	293		-7.36 qi			
$[Mn(\eta^2-H_2)(CO)_2\{P(OEt)_3\}_3]^+$ (4a)	205	-8.5 br	•	5		0.79
$[Mn(\eta^2-HD)(CO)_2\{P(OEt)_3\}_3]^+$ (4a ₁)	223	−8.56 t			33	
$[Mn(\eta^2-H_2)(CO)_2\{PPh(OEt)_2\}_3]^+$ (4b)	198	-7.9 br		5.5		0.80
$[Mn(\eta^2-H_2)(CO)_2(PPh_2OEt)_3]^+$ (4c)	210	$-7.0 \mathrm{\ br}$		5		0.79
$[Mn(\eta^2-H_2)(CO)\{P(OEt)_3\}_4]^+$ (5a)	195	-8.3 br		7		0.83
	293	-8.3 br				
$[Mn(\eta^2-HD)(CO)\{P(OEt)_3\}_4]^+$ (5 a ₁)	224	−8.41 t			32.0	
$[Mn(\eta^2-H_2)(CO)\{PPh(OEt)_2\}_4]^+$ (5b)	204	-7.4 br		6		0.81
	293	-7.22 br				
$[Mn(\eta^2\text{-HD})(CO)\{PPh(OEt)_2\}_4]^+\ (\mathbf{5b_1})$	234	−7.41 t			32.5	

^a In CD₂Cl₂. ^b Fast rotation; for calculations see refs 15c and 16.

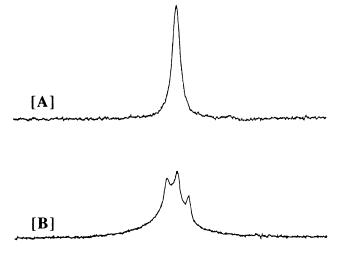
Scheme 2^a

MnH(CO)P₄

$$\frac{\text{HBF}_4 \cdot \text{Et}_2\text{O}, -78 \, ^{\circ}\text{C}}{\text{EtOH, BPh}_4}$$

$$\longrightarrow [Mn(\eta^2 - \text{H}_2)(\text{CO})\text{P}_4]\text{BPh}_4$$
5
$$^a \text{P} = \text{P(OEt)}_3 \, (\textbf{a}), \, \text{PPh(OEt)}_2 \, (\textbf{b}).$$

pounds together with a systematic investigation using P(OEt)₃, PPh(OR)₂, or PPh₂OR as a ligand.


Preparation and Characterization of Dihydrogen Complexes. The new hydrides trans-MnH(CO)- P_4 (3) (P = P(OEt)₃ (a), PPh(OEt)₂ (b)) react under an hydrogen atmosphere at −78 °C with HBF₄•Et₂O to give the $[Mn(\eta^2-H_2)(CO)P_4]^+$ (**5a,b**) derivatives which can be isolated as BPh₄⁻ salts and characterized (Scheme 2).

The compounds are pale yellow solids, diamagnetic and 1:1 electrolytes. Under an argon atmosphere they are relatively stable as solids, whereas in solutions of polar organic solvents the loss of H₂ at room temperature is easy for 5a, but slow for 5b, whose solution can be handled unchanged for 1-2 h.

Spectroscopic data (Table 2) confirm the formulation of 5 as a dihydrogen complex. The ¹H NMR spectrum of each compound shows, in fact, a broad resonance in the hydride region at δ -8.3 (5a) and at δ -7.22 (5b) ppm. Variable-temperature T_1 measurements carried out at 200 MHz on this signal give a T_1 (min) value of 7 ms at 195 K for 5a and 6 ms at 204 K for 5b, in agreement with the presence of an η^2 -H₂ ligand.¹⁵ The hydride precursor **3b** gives a T_1 (min) value of 68 ms at 202 K.

In order to further support these assignments, we prepared the isotopomers $[Mn(\eta^2-HD)(CO)P_4]^+$ (5a₁, $5b_1$) by protonation of 3 with an equivalent amount of CF₃COOD in CD₂Cl₂ and found by ¹H NMR spectra a $^{1}J_{\mathrm{HD}}$ value of 32.0 Hz for $\mathbf{5a_{1}}$ and of 32.5 Hz for $\mathbf{5b_{1}}$ (Figure 1). These results strongly suggest for 5 the presence of a true η^2 -H₂ ligand with an estimated H–H distance of about 0.83 (5a) and 0.81 (5b) Å as can be calculated 15c,16 from the T_1 (min) value.

The infrared spectra of both **5a** and **5b** show only one $v_{\rm CO}$ band at 1926 cm⁻¹. In the temperature range

Figure 1. ¹H NMR spectra of the cations (**A**) [Mn(η^2 -H₂)- $(CO){PPh(OEt)_2}_4]^+$ (**5b**) and (**B**) $[Mn(\eta^2-HD)(CO){PPh (OEt)_2$ ₄]⁺ (**5b**₁) in CD_2Cl_2 at 234 K in the high-field

-8.00

-9.00

-7.00 PPM

-6.00

between +20 and -90 °C the ³¹P{¹H} NMR spectra of **5a** appear as only one singlet, suggesting the presence in solution of a *trans* geometry (**IV**) with the H₂ ligand trans to the CO moiety.

The related $[Mn(\eta^2-H_2)(CO)\{PPh(OEt)_2\}_4]BPh_4$ (**5b**) derivative, instead, shows a broad multiplet at −90 °C in the ³¹P spectra, indicating the magnetic inequivalence of the phosphorus nuclei. However, a trans geometry (IV) can also be proposed for this compound, as we have proposed for the parent hydride MnH(CO)[PPh(OEt)2]4 (3b) and observed in the related 3a, attributing the magnetic inequivalence of the P nuclei to a different arrangement of the Ph and the OEt groups of each of the PPh(OEt)₂ ligands. A similar geometry, with the CO and the H₂ ligands in trans positions, has previously been observed in the related $[Mn(\eta^2-H_2)(CO)(dppe)_2]$ -

^{(15) (}a) Hamilton, D. G.; Crabtree, R. H. J. Am. Chem. Soc. 1988, 110, 4126. (b) Bautista, M. T.; Earl, K. A.; Maltby, P. A.; Morris, R. H.; Schweitzer, C. T.; Sella, A. J. Am. Chem. Soc. 1988, 110, 7031. (c) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 4173.

⁽¹⁶⁾ Earl, K. A.; Jia, G.; Maltby, P. A.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 3027.

Scheme 3^a

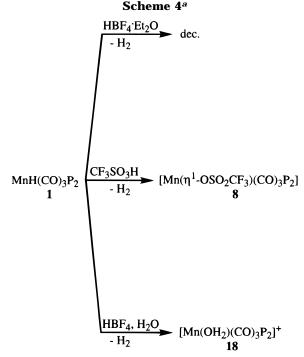
MnH(CO)₂P₃
$$\xrightarrow{\text{HBF}_4 \cdot \text{Et}_2\text{O}, -78 \, ^{\circ}\text{C}}$$

2

[Mn(η^2 -H₂)(CO)₂P₃]⁺

4

^a P = P(OEt)₃ (a) PPh(OEt)₂ (b), PPh₂OEt (c).


BAr'₄ complexes, ^{2b} while for the comparable [Re(η^2 -H₂)-(CO){P(Me)₃}₄]⁺ cation¹⁷ a *cis* geometry was proposed.

A comparison of the spectroscopic data of our η^2 -H₂ complexes with the recently reported manganese analogues^{2b} [Mn(η^2 -H₂)(CO)(dppe)₂]BAr'₄ shows an identical value for the HD coupling constant of 32 Hz. However, a shorter H–H distance of 0.83 or 0.81 Å was estimated in our case from solution NMR T_1 data as compared to the 0.89(2) Å value determined by solid-state NMR measurements in [Mn(η^2 -H₂)(CO)(dppe)₂]-BAr'₄, and these results may be attributed to the greater π -acceptor properties of our P(OEt)₃ and PPh(OEt)₂ ligands as compared to that of dppe; the former ligands in complexes 5 lower the donation of electron density to the σ^* H₂ orbital. Accordingly, in the neutral MnH₃(R₂PCH₂CH₂PR₂)₂ compound a H–H distance of 0.90 Å (fast H₂ rotation) was calculated from T_1 values.

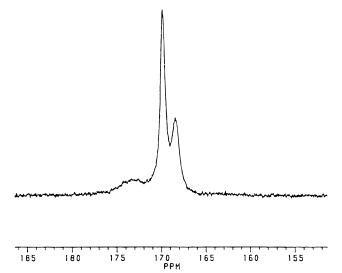
Protonation reactions with HBF₄·Et₂O at -78 °C of the dicarbonyls fac, cis-MnH(CO)₂P₃ (**2**) also afforded dihydrogen cations [Mn(η^2 -H₂)(CO)₂P₃]⁺ (**4**) (Scheme 3), which were fairly stable below 0 °C in solution but were not isolated as solids owing to the easy loss of hydrogen. However, the ¹H NMR spectra of solutions containing **4** exhibit a single broad resonance in the hydride region at δ –8.5 (**4a**), –7.9 (**4b**), and –7.0 (**4c**) ppm with T_1 -(min) values of 5 ms for **4a** and **4c** and 5.5 ms for **4b** (Table 2), in agreement with the proposed formulation, which is further confirmed by the ¹ J_{HD} value of 33 Hz found in the isotopomer **4a**₁.

The protonation reaction with HBF₄·Et₂O at low temperature (-78 °C) of the tricarbonyl MnH(CO)₃P₂ (1) complexes (Scheme 4) proceeds with the evolution of H₂ (by ¹H NMR) and formation of a yellow solution from which no stable compound was isolated. The progress of the reaction was also studied by ¹H NMR spectra, but the presence of an η^2 -H₂ complex was never observed. However, using triflic acid (CF₃SO₃H) instead of HBF4. Et2O, the protonation of 1 proceeds with evolution of H₂ and formation of the triflate complexes $[Mn(\eta^1-OSO_2CF_3)(CO)_3P_2]$, which, in the case P = PPh-(OEt)₂ (8), was isolated as a solid and characterized. Furthermore, the water complex [Mn(OH₂)(CO)₃P₂]BF₄ (18) $(P = PPh(OEt)_2 (b), PPh_2OEt (c))$ can also be obtained as a yellow solid by the protonation reaction of 1 with aqueous HBF₄ (Scheme 4).

The analytical and spectroscopic data of the triflate (**8**) and the water (**18**) complexes confirm their formulation. In particular, the IR spectra of the triflate complexes [Mn(η^1 -OSO₂CF₃)(CO)₃(PPh(OEt)₂)₂] (**8**) show three ν_{CO} bands, two of which are strong at 1975 and 1932 cm⁻¹ and one is of medium intensity at 2066 cm⁻¹, suggesting a *mer* arrangement of the CO ligands. At 1323 cm⁻¹ the diagnostic band¹⁸ of the η^1 -(O)-coordina-

^a $P = P(OEt)_3$ (a), $PPh(OEt)_2$ (b), PPh_2OEt (c).

tion of the triflate ion is also observed. Furthermore, in the temperature range from +30 to -90 °C the ^{31}P NMR spectrum appears as a sharp singlet near 182 ppm, in agreement with a *mer-cis* geometry of type **V** for the compound.


$$OC_{M_{1}}$$
 P
 $OC \sim P$
 $OSO_{2}CF_{3}$

A *mer* arrangement of the CO groups in the water complexes [Mn(OH₂)(CO)₃P₂]BF₄ (**18**) is also suggested by the three characteristic $\nu_{\rm CO}$ bands observed in the IR spectra. Furthermore, the presence of coordinated H₂O in **18** is confirmed by its ¹H NMR resonance observed as a triplet with $J_{\rm PH}=2.1$ Hz at 2.53 ppm (**18b**) and at 2.48 ppm (**18c**). Finally, a *mer-trans* geometry (**VI**) is confirmed by the ³¹P spectra, which always show, between +30 and -90 °C, a sharp singlet.

A comparison of the protonation reactions on the three hydrides $MnH(CO)_3P_2$ (1), $MnH(CO)_2P_3$ (2), and $MnH(CO)_4$ (3) shows that only the dicarbonyls 2 and monocarbonyls 3 give stable dihydrogen complexes (4, 5). Furthermore, a comparison among these η^2 - H_2 complexes 4 and 5 shows that, although the spectroscopic properties (T_1 (min) and $^1J_{HD}$) are very similar, the stability to the loss of H_2 changes widely, according to the carbonyl-phosphine ratio in the complexes and to the nature of the phosphite ligands. Only the

⁽¹⁷⁾ Gusev, D. G.; Nietlispach, D.; Eremenko, I. L.; Berke, H. *Inorg. Chem.* **1993**, *32*, 3628.

⁽¹⁸⁾ Lawrance, G. A. *Chem. Rev.* **1986**, *86*, 17.

Figure 2. $^{31}P\{^{1}H\}$ NMR spectrum (200 MHz) of the [Mn-(CO){ $P(OEt)_3\}_4$ |+ (**7a**) cation in CD_2Cl_2 at 183 K.

monocarbonyl fragment $[Mn(CO)P_4]$ can in fact bind the H_2 molecule to give *isolable* complexes, and between them, the $PPh(OEt)_2$ derivative (**5b**) is the most stable both in the solid state and in solution, thereby confirming the known properties of the phosphonite $PPh(OEt)_2$ in stabilizing dihydrogen complexes. 5a,b,d

It is worth noting that all the η^2 -H₂ derivatives **4** and **5** can be deprotonated with triethylamine to give the MnH(CO)P₄ (**3**) and MnH(CO)₂P₃ (**2**) hydride precursors.

Evolution of H_2 from **4** and **5** results in the disappearance of the η^2 - H_2 resonance at $\delta - 8.5$ to -7.22 ppm in the 1H NMR spectra and formation of the formally 16-electron complexes [Mn(CO) $_2P_3$]BPh $_4$ (**6**) and [Mn-(CO) $_4$]BPh $_4$ (**7**). The compounds are yellow solids moderately stable in air, diamagnetic, and 1:1 electrolytes. The diamagnetism and the reluctance of Mn(I) to give unsaturated compounds 19 seem to exclude a pentacoordinate complex for **6** and **7** and suggest the existence of an octahedral geometry in which an agostic interaction 20 between the electron-deficient manganese center and a C-H bond of the ethyl (or phenyl) group of one P(OEt) $_3$ or PPh(OEt) $_2$ ligand provides electronic stabilization of the complexes.

Support for the existence of an agostic bond in **6** and **7** comes from the ${}^{31}P\{{}^{1}H\}$ NMR spectra of [Mn(CO)-{P(OEt)_3}_4]BPh_4 (**7a**), which show the broad resonance that appears at room temperature (at 170 ppm) to resolve, at -90 °C, into two signals at δ 170.2 and 168.7 ppm and one hump as shown in Figure 2. Although even at this temperature the spectrum is too broad to give a fine structure, the inequivalence of the four phosphite ligands is clear and the profile of the spectra at -90 °C suggests that the low-exchange spectrum is approaching an AB_2C spin system. On this basis an agostic interaction of the type shown in **VII**, in which the agostic C-H interaction is interchanged from one of the P(OEt)_3 ligands to the other, may be reasonably proposed.

In the related dicarbonyl cations $[Mn(CO)_2P_3]^+$ (6) this dynamic process, in which the agostic hydrogen exchanges with the other methyl (or phenyl) protons of the other phosphines, seems still very fast also at -90 °C, resulting in the ^{31}P spectra at -90 °C being unchanged with respect to those observed at room temperature.

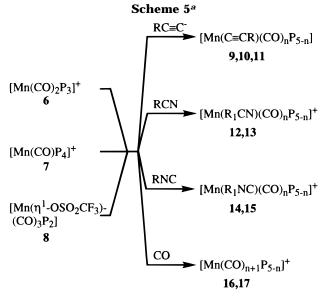
An example of an agostic bond in manganese complexes has recently been demonstrated, by X-ray crystallography, in the strictly comparable [Mn(CO)(dppe)]-BAr' $_4$ complex, 2b which contains two agostic interactions from H atoms of separate phenyl rings. Other examples of such an interaction have been reported in related Mo-(CO)(dppe), 21 Cr(CO) $_3$ (PCy $_3$) $_2$, 22 [Re(PR $_3$) $_2$ (CO) $_3$]BAr' $_4$, 23 and [{MeC(CH $_2$ PPh $_2$) $_3$ }Re(CO) $_2$]BF $_4$ ²⁴ unsaturated complexes and these precedents give further support for the presence of an agostic interaction in our unsaturated complexes $\bf 6$ and $\bf 7$.

Reactivity: New Manganese Complexes. The unsaturated complexes **6** and **7** and the triflate compounds [Mn(η^1 -OSO₂CF₃)(CO)₃P₂] (**8**) react quickly with a variety of ligands to give a large series of new manganese complexes which can be isolated and characterized (Scheme 5).

The acetylide derivatives **9–11** are air-stable yellow or orange solids that are diamagnetic and nonelectrolytes. The presence of the acetylide ligand is confirmed by the IR spectra, which show the characteristic mediumintensity $\nu(C\equiv C)$ band at 2100–2079 cm⁻¹, and by the ¹³C NMR spectra (Table 2), which exhibit the C_α of the acetylide as a well-resolved multiplet with an appreciable $^2J_{CP}$ value and C_β as a rather broad signal due to the low value of $^3J_{CP}$. The infrared and the NMR spectra also allow us to assign a geometry in solution for the complexes **9–11** as reported for the related hydrides **1–3**.

The infrared spectra of the tricarbonyls $Mn(C \equiv CR)$ - $(CO)_3P_2$ (9) show, in fact, two strong bands and one band of medium intensity for ν_{CO} , while the ^{31}P spectra, between +30 and -90 °C, appear as a sharp singlet, in agreement with a *mer,trans* geometry (**VIII**). The ^{13}C NMR spectra confirm such a structure, showing, for the carbonyl carbon atom, two triplets of intensity ratio 2:1 with a $^2J_{CP}$ value of about 25 Hz due to the coupling of the CO carbon atoms with the two equivalent phosphorus *nuclei* of the phosphite.

^{(19) (}a) Treichel, P. M. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, England, 1982; Vol. 4. (b) Chiswell, B.; McKenzie, D.; Lindoy, L. F. In *Comprehensive Coordination Chemistry*; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, England, 1987; Vol. 4.


⁽²⁰⁾ Brookhart, M.; Green, M. L. H.; Wong, L.-L. *Prog. Inorg. Chem.* **1988**. *36*. 1.

⁽²¹⁾ Sato, M.; Tatsumi, T.; Kodama, T.; Hidai, M.; Uchida, T.; Uchida, Y. *J. Am. Chem. Soc.* **1978**, *100*, 447. (22) Zhang, K.; Gonzalez, A. A.; Mukerjee, S. L.; Chou, S.-J.; Hoff,

⁽²²⁾ Zhang, K.; Gonzalez, A. A.; Mukerjee, S. L.; Chou, S.-J.; Hoff, C. D.; Kubat-Martin, K. A.; Barnhart, D.; Kubas, G. J. *J. Am. Chem. Soc.* **1991**, *113*, 9170.

⁽²³⁾ Heinekey, D. M.; Schomber, B. M.; Radzewich, C. E. *J. Am. Chem. Soc.* **1994**, *116*, 4515.

⁽²⁴⁾ Bianchini, C.; Marchi, A.; Marvelli, L.; Peruzzini, M.; Romerosa, A.; Rossi, R.; Vacca, A. *Organometallics* **1995**, *14*, 3203.

 a n = 3 (9), 2 (10, 12, 14, 16), 1 (11, 13, 15, 17). $P = P(OEt)_{3}$ (a), $PPh(OEt)_2$ (b), PPh_2OEt (c), $PPh(O^iPr)_2$ (d), R = Ph (a **d**), p-tolyl (**b**₁, **c**₁). $R_1 = p$ -tolyl.

VIII

In the temperature range between +30 and −90 °C the ³¹P spectrum of the dicarbonyl Mn(C≡CPh)(CO)₂- $[PPh(OEt)_2]_3$ (10b) is an A_2B multiplet, while the IR spectra show two $v_{\rm CO}$ bands at 1960 s and 1885 s cm⁻¹ beside the $\nu_{C=C}$ band at 2083 cm⁻¹, indicating the *cis* positions of the CO ligands. Furthermore, in the carbonyl carbon region the ¹³C NMR spectra display two doublets of triplets at 220.8 and 222.9 ppm (Table 2), respectively. The presence of the two multiplets seems to indicate the magnetic inequivalence of the two CO groups, as in a cis-mer structure of the type IX. Finally, the ¹³C{¹H} NMR spectra of the monocarbonyl compound Mn(C≡CPh)(CO){P(OEt)₃}₄ (11a) show only one well-resolved quintet for the carbonyl carbon atoms at 221.1 ppm due to the coupling with four equivalent P nuclei. The magnetic equivalence of the four phosphite ligands is confirmed by the sharp singlet observed in the 31 P spectra, as expected for the *trans* geometry **X**.

$$\begin{array}{c|c}
OC & P & CO \\
OC & Mn & P & P & Mn & P
\end{array}$$

$$\begin{array}{c|c}
P & Mn & P & CO \\
P & Mn & Mn & P
\end{array}$$

$$\begin{array}{c|c}
CO & P & Mn & P & P & Mn & P
\end{array}$$

$$\begin{array}{c|c}
C & C & C & P & C & C & P & Mn
\end{array}$$

$$\begin{array}{c|c}
C & C & C & C & C & C & C & C
\end{array}$$

$$\begin{array}{c|c}
C & C & C & C & C & C
\end{array}$$

$$\begin{array}{c|c}
C & C & C & C & C
\end{array}$$

$$\begin{array}{c|c}
C & C & C & C
\end{array}$$

$$\begin{array}{c|c}
C & C & C & C
\end{array}$$

$$\begin{array}{c|c}
C & C & C
\end{array}$$

Relatively few manganese-alkynyl complexes have been reported 25 in comparison to other transition-metal centers, and the use of the unsaturated complexes 6 and

7 or of the triflate 8 allows the easy synthesis of new series of acetylide derivatives.

The alkynyl complexes **9–11** were treated with HBF₄·Et₂O or CF₃SO₃H in an attempt to prepare vinylidene Mn=C=C(H)R or η^2 -alkyne Mn(η^2 -HC=CR) complexes through protonation reactions of the C≡CR moiety.²⁶ Unfortunately, no stable complexes could be isolated, only intractable oils or mixtures of products whose ¹H and ¹³C NMR spectra did not reveal the presence of any vinylidene or η^2 -alkyne derivative. Studies on the progress of the reaction by IR and NMR spectra showed that, although the protonation reaction proceeds easily at room temperature, no evidence of a =C=C(H)R or a η^2 -HC≡CR complex was detected. However, the presence of free alkyne in the reaction mixture may suggest that the protonation reaction takes place at the C≡CR group, probably affording a vinylidene²⁷ complex, which is unstable, preventing the isolation of stable derivatives.

New mononitrile (12, 13) and monoisocyanide (14,-**15**) complexes were also prepared from the unsaturated complexes which were isolated as air-stable pale yellow solids that are diamagnetic and 1:1 electrolytes. The infrared spectra show only one $\nu_{\rm CN}$ band at 2261–2239 cm^{-1} for the nitrile and at 2141-2109 cm^{-1} for the isocyanide. Furthermore, in the carbonyl stretching region only one strong v_{CO} band is present in the case of the monocarbonyl compounds [MnL(CO)P₄]BPh₄ (13, **15**; L = p-tolylCN, p-tolylNC), whose 31 P spectra appear as a sharp singlet, suggesting the magnetic equivalence of the four phosphite ligands as in the *trans* geometry

The infrared spectra of the dicarbonyl cations [MnL- $(CO)_2P_3$]⁺ (**12, 14**; L = *p*-tolylCN, *p*-tolylNC) show two $\nu_{\rm CO}$ bands, in agreement with a mutually cis arrangement of the two CO groups. The ³¹P{¹H} NMR spectra are A₂B multiplets, while the ¹³C spectrum of [Mn(p $tolyINC)(CO)_2\{PPh(OEt)_2\}_3]BPh_4$ (14b) shows, in the carbonyl carbon region, only one broad multiplet at 218.1 ppm, which seems to indicate the magnetic equivalence of the two CO ligands. On this basis a faccis geometry of type XII can be reasonably proposed for the dicarbonyl compounds 12 and 14.

The carbonyl complexes [Mn(CO)₃P₃]BPh₄ (16) and [Mn(CO)₂P₄]BPh₄ (17) are air-stable pale yellow solids whose formulation is confirmed by the elemental analy-

⁽²⁵⁾ Manna, J.; John, K. D.; Hopkins, M. D. Adv. Organomet. Chem. **1995**, 36, 79.

ses and IR and NMR spectra. In the v_{CO} region the tricarbonyls 16 show three bands between 2062 and 1968 cm⁻¹, two of which are strong and the third of which has medium intensity, in agreement with a mer arrangement of the three CO ligands as in a type XIII

geometry. The ¹H and ³¹P NMR spectra indicate that the complexes are fluxional and also at -90 °C the spectra are still rather broad and result of difficult simulation. However, the presence of two broad signals of intensity ratio 2:1 seem to suggest that two phosphites are magnetically equivalent and are different from the third, in agreement with the *mer* geometry **XIII**.

The IR spectra of the dicarbonyl derivatives [Mn- $(CO)_2P_4]BPh_4$ (17) show two ν_{CO} bands at 1991–1922 cm⁻¹ of different intensity, *i.e.* one medium and sharp and the other strong and rather broad. At room temperature the ³¹P spectra show a broad signal, which resolves at -90 °C into a sharp singlet and an A₂B₂ multiplet. These results may be interpreted on the basis of the presence of both the trans (XIV) (singlet in the ^{31}P spectra) and the cis (XV) (A₂B₂ in the ^{31}P spectra) isomers, whose $\nu_{\rm CO}$ bands are in part overlapping in the IR spectra.

Acknowledgment. This work was supported by the Ministero della Ricerca Scientifica e Tecnologica (MURST) and by the Consiglio Nazionale delle Ricerche (CNR), Rome. We thank Daniela Baldan for technical assistance.

OM970226J