Oxidation Reactions of $[(Me_3Si)_2N]_2VX(THF)$ (X = Cl, Me, Ph) with CuCl, PhCH(O)CH₂, and Ph₂CN₂ and the Syntheses and Structures of the Vanadium(III) Anions $\{[(Me_3Si)_2N]_2VX_2\}^- (X = Cl, Me)$

Christopher P. Gerlach and John Arnold*

Department of Chemistry, University of California, Berkeley, California 94720-1460

Received June 2, 1997

One-electron oxidation of $[(Me_3Si)_2N]_2VX(THF)$ (X = Cl, Me, Ph) with CuCl afforded the V(IV), d^1 species $[(Me_3Si)_2N]_2VCl(X)$ in moderate yields after crystallization from acetonitrile. [(Me₃Si)₂N]₂VCl₂ has been characterized crystallographically. The methyl and phenyl derivatives were conveniently synthesized in one step from [(Me₃Si)₂N]₂VCl(THF) by first reacting first with LiMe or MgPh2, prior to treatment with CuCl. Reaction of [(Me3Si)2-N₂VCl(THF) with dilithioacetylide in the presence of tetramethylethylenediamine (TMEDA) proceeded with redistribution of the Cl ligands, as the anionic V(III) compound [Li(TMEDA)2]-{[(Me₃Si)₂N]₂VCl₂} was obtained in 44% yield as purple crystals. The analogous dimethyl anion [Li(TMEDA)₂]{[(Me₃Si)₂N]₂VMe₂} was synthesized in 66% yield as deep-blue, highly air-sensitive crystals on treatment of [(Me₃Si)₂N]₂VCl(THF) with 2 equiv of LiMe in the presence of TMEDA. X-ray crystallography showed that both salts crystallized as wellseparated cations and anions. The reaction between styrene oxide and [(Me₃Si)₂N]₂-VMe(THF) proceeded stepwise, first yielding the μ -O intermediate {[(Me₃Si)₂N]₂VMe}₂(μ -O) and then the V(V) terminal oxo $[(Me_3Si)_2V(O)(Me)]$. Styrene oxide also oxidized $[(Me_3Si)_2N]_2VPh(THF)$ to $[(Me_3Si)_2N]_2V(O)(Ph)$, however, in this case the putative μ -O intermediate could not be isolated as a stable material. Diphenyldiazomethane was reduced by two electrons to an alkylidenehydrazido(2^-) on displacing THF from $[(Me_3Si)_2N]_2VCl(THF)$ to form the V(V) complex [(Me₃Si)₂N]₂V(Cl)(N₂CPh₂). A crystal structure showed the diazoalkane to be coordinated in a doubly-bent fashion.

Introduction

The ability of amido ligands to support and promote unusual chemistry at metal centers has been known for many years. In this context, they complement the wellstudied Cp-based systems, with the major difference being the greater reactivity of the former complexes due to their relatively higher unsaturation and lower coordination numbers for a given L_nM (L = NR₂ or Cp). Recent work probing the electronic effects of the substituents on the amide nitrogen has lead to a number of interesting results, such as fixation² and scission³⁻⁵ of dinitrogen. Our focus here is on the more traditional bis(trimethylsilyl)amide ligand, developed extensively throughout the years by workers such as Bradley, Lappert, and Andersen, which is the prototypical bulky amide for stabilizing low-coordinate, electrophilic metal fragments.⁶ Although it was recognized early on⁷ that in some systems the use of $-N(SiMe_3)_2$ as an ancillary ligand could lead to intramolecular γ -hydrogen eliminaton across M-X bonds (X = Cl, H/D, Me, Et,

 CH_2SiMe_3), $^{8-11}$ we recently showed that the {[(Me₃Si)₂-N]₂V}⁺ fragment¹² can stabilize three-coordinate V(III) selenolate and tellurolate complexes¹² and [(Me₃Si)₂N]₂-VMe(THF), 13 a rare "Cp-free" vanadium—hydrocarbyl. In this paper, we report the one-electron oxidation of this latter V-Me complex, the analogous V-Ph complex, and the parent V(III) chloride complex to yield the bis(amide) V(IV) methyl-chloride, phenyl-chloride, and dichloride derivatives, respectively. This last species completes the homologous series of group 5 [(Me₃Si)₂N]₂- MCl_2 compounds (M = V, Nb, Ta), as the niobium^{14,15} and tantalum^{16,17} analogs were recently reported by Hoffman. The syntheses and structures of related fourcoordinate V(III) anions, i.e., {[(Me₃Si)₂N]₂VCl₂}⁻ and {[(Me₃Si)₂N]₂VMe₂}⁻, are also reported. We have also explored the two-electron oxidation chemistry of these species, which yields V(V) terminal oxo species [(Me₃Si)₂-N₂NV(O)(R). In the case of the methyl derivative, the

[®] Abstract published in Advance ACS Abstracts, November 1, 1997.
(1) Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C.
Metal and Metalloid Amides, Ellis Horwood: Chichester, U.K., 1980.

⁽²⁾ Gambarotta, S. *J. Organomet. Chem.* **1995**, *500*, 117. (3) Laplaza, C. E.; Cummins, C. C. *Science* **1995**, *268*, 861.

⁽⁴⁾ Laplaza, C. E.; Johnson, A. R.; Cummins, C. C. *J. Am. Chem. Soc.* **1996**, *118*, 709.

⁽⁵⁾ Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J. J. Am. Chem. Soc. 1996, 118, 8623.

⁽⁶⁾ Cummins, C. C. Chem. Rev., in press.

⁽⁷⁾ Bennett, C. R.; Bradley, D. C. J. Chem. Soc., Chem. Commun. 1974. 29.

⁽⁸⁾ Simpson, S. J.; Turner, H. W.; Andersen, R. A. J. Am. Chem. Soc. 1979, 101, 7728.

⁽⁹⁾ Simpson, S. J.; Andersen, R. A. *Inorg. Chem.* **1981**, *20*, 3627.
(10) Simpson, S. J.; Turner, H. W.; Andersen, R. A. *Inorg. Chem.*

⁽¹¹⁾ Planalp, R. P.; Andersen, R. A.; Zalkin, A. Organometallics

⁽¹²⁾ Gerlach, C. P.; Arnold, J. Inorg. Chem. 1996, 35, 5770.
(13) Gerlach, C. P.; Arnold, J. Organometallics 1996, 15, 5260.

⁽¹⁴⁾ Bott, S. G.; Hoffman, D. N.; Rangarajan, S. P. Inorg. Chem.

⁽¹⁵⁾ Hoffman, D. M.; Rangarajan, S. P. *Polyhedron* **1993**, *12*, 2899.
(16) Hoffman, D. M.; Suh, S. *J. Chem. Soc., Chem. Commun.* **1993**,

⁽¹⁷⁾ Suh, S.; Hoffman, D. M. Inorg. Chem. 1996, 35, 5015.

reaction proceeds stepwise through an isolable μ -O intermediate $\{[(Me_3Si)_2N]_2VMe\}_2(\mu-O)$. The synthesis and structure of [(Me₃Si)₂N]₂VCl(N₂CPh₂), formed in what may also be viewed as an oxidation reaction, is also presented. Lastly, given the well-established ease of interconversion between Cp₂V, Cp₂VX, and Cp₂VX₂ species, 18 illustrative comparisons will be made between the chemistry of $\{Cp_2V\}$ versus $\{[(Me_3Si)_2N]_2V\}$ sys-

Experimental Section

General Considerations. Standard inert atmosphere glovebox and Schlenk-line techniques were employed for all manipulations. All solvents were predried over 4 Å molecular sieves, and in the case of benzene, hexanes, diethyl ether, and tetrahydrofuran (THF), the solvents were distilled from purple sodium/benzophenone ketyl under N2. Tetramethylethylenediamine (TMEDA) and hexamethyldisiloxane (HMDSO) were distilled from sodium, while acetonitrile was distilled from $CaH_2.~[(Me_3Si)_2N]_2VX(THF)~(X=Cl,^{19}~Me^{13}),~MgPh_2,^{20}~Ph_2CN_2,^{21}~and~(THF)_xLi_2C_2{}^{22}~were~prepared~according~to$ literature procedures. A diethyl ether solution of LiMe was purchased from Aldrich. Styrene oxide was distilled and degassed prior to use. CuCl was dried overnight under vacuum at 160 °C. Samples for IR spectroscopy were prepared as mineral oil mulls between KBr plates. Conductivity measurements were made in acetonitrile at ambient temperature. ¹H and ¹³C{¹H} NMR spectra were recorded on a 300 MHz spectrometer at ambient temperature, using C₆D₆ as the solvent unless otherwise noted. 51V NMR spectra were measured at 78.94 MHz and externally referenced to neat VOCl₃ at 0 ppm. Melting points were determined under N₂ in flame-sealed capillary tubes. Magnetic susceptibility measurements were made by the method of Evans^{23,24} and are uncorrected. C, H, N and EIMS analyses were performed at the analytical facilities within the College of Chemistry, University of California, Berkeley. X-ray data were collected and the structures solved at the University of California at Berkeley chemistry X-ray facility (CHEXRAY, Dr. F. J. Hollander, supervisor).

[(Me₃Si)₂N]₂VCl₂. [(Me₃Si)₂N]₂VCl(THF) (7.84 g, 16.4 mmol) and CuCl (1.62 g, 16.4 mmol) were mixed with THF (100 mL), giving a deep red solution and a precipitate of metallic Cu. After the mixture was stirred for 1 h, the volatile materials were removed under reduced pressure. The solid was extracted with hexanes (125 mL and 30 mL), and the filtrate was stripped dry under reduced pressure. The solid was then extracted with MeCN (125 mL and 50 mL), filtered, and then concentrated to ca. 100 mL and cooled to −25 °C. Red crystals (4.36 g, 60%) of the product were isolated in two crops by filtration. Mp: 95–105 °C (dec). ^{1}H NMR (0.10 M): δ 0.6 $(\Delta v_{1/2} \text{ ca. } 135 \text{ Hz})$. IR: 1406 (m), 1266 (s sh), 1263 (s), 1155 (w), 1096 (w), 847 (s), 790 (s), 711 (s), 677 (s), 642 (s) cm⁻¹. $\mu_{\rm eff}$ = 1.68 μ_B (C₆D₆). Anal. Calcd for C₁₂H₃₆Cl₂N₂Si₄V: C, 32.56; H, 8.20; N, 6.33. Found: C, 32.63; H, 8.33; N, 6.16.

 $[(Me_3Si)_2N]_2V(Cl)(Me)$. Method A. $[(Me_3Si)_2N]_2VMe(THF)$ (1.02 g, 2.23 mmol) and CuCl (222 mg, 2.24 mmol) were mixed with THF (30 mL). The mixture turned green, and over about 10 s it became red with metallic Cu apparent. After the mixture was stirred for 10 min, the volatile materials were removed under reduced pressure. The red solid was extracted

with hexanes (50 mL) and filtered. The filtrate was evaporated under reduced pressure to a red residue, which was extracted with MeCN (40 mL). The filtrate was concentrated to ca. 30 mL and cooled to -25 °C for 14 h. Red crystals of the product (735 mg, 78%) were isolated by filtration and dried under vacuum.

Method B. $[(Me_3Si)_2N]_2VCl(THF)$ (3.98 g, 8.30 mmol) was dissolved in THF (40 mL) and treated with LiMe (5.6 mL, 1.48 M in Et₂O). After the mixture was stirred for 1 h, it was added to CuCl (822 mg, 8.30 mmol), giving a deep red mixture along with metallic Cu. After the mixture was stirred for 6 h, the volatile materials were removed under reduced pressure. Extraction with MeCN (2 × 75 mL) and then Et₂O (30 mL) was followed by filtration and concentration of the combined filtrates. Cooling to −25 °C for 24 h yielded 2.15 g (61%) of brick-red product, which was isolated by filtration and dried under vacuum. Mp: 51–55 °C (dec). 1 H NMR (0.11 M): δ 1.1 ($\Delta v_{1/2}$ ca. 150 Hz). IR: 1404 (w), 1299 (w), 1261 (m sh), 1252 (s), 877 (vs), 856 (vs), 845 (vs), 791 (s), 765 (m), 715 (s), 676 (m), 656 (w), 646 (m), 618 (w), 575 (w), 542 (w), 508 (m), 440 (m) cm $^{-1}$. $\mu_{eff} = 1.69 \ \mu_{B}$ (C₆D₆). EIMS: 421 (M $^{+}$, correct isotope pattern). Anal. Calcd for C₁₃H₃₉ClN₂Si₄V: C, 36.98; H, 9.31; N, 6.64. Found: C, 36.85; H, 9.27; N, 6.63.

 $[(Me_3Si)_2N]_2V(Cl)(Ph)$. $[(Me_3Si)_2N]_2VCl(THF)$ (1.03 g, 2.15 mmol) and MgPh2 (192 mg, 1.08 mmol) were mixed with THF (30 mL), giving a deep blue solution. After 1.5 h, the mixture was added to CuCl (213 mg, 2.15 mmol), giving a dark orangered mixture. After the mixture was stirred overnight, the volatile materials were removed under reduced pressure. The residue was extracted with hexanes (50 mL), and the filtrate was stripped dry under reduced pressure, leaving an oily residue that was redissolved in 20 mL of MeCN. Concentration, followed by cooling to -25 °C, afforded 440 mg (42%) of brick-red crystals, which were isolated by filtration and dried under vacuum. Mp: 82–86 °C (dec). ^{1}H NMR (0.08 M): δ 1.1 ($\Delta v_{1/2}$ ca. 325 Hz). IR: 1301 (w), 1265 (m sh), 1252 (s), 1053 (w), 993 (w), 879 (s), 850 (vs), 790 (s), 767 (m), 710 (s), 693 (m), 676 (m), 658 (w), 646 (m), 589 (w), 453 (w), 439 (m), 426 (m), 405 (m) cm $^{-1}$. $\mu_{eff} = 1.69 \,\mu_{B}$ (C₆D₆). Anal. Calcd for C₁₈H₄₁ClN₂Si₄V: C, 44.64; H, 8.53; N, 5.78. Found: C, 44.27; H. 8.64; N, 5.81.

 $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VCl_2\}.$ $[(Me_3Si)_2N]_2VCl(THF)$ (1.53 g, 3.20 mmol) and Li₂C₂·0.17(THF) (165 mg, 3.29 mmol) were mixed with Et₂O (30 mL). The blue-green mixture gradually darkened to black, and after 15 min TMEDA (1.5 mL, 9.9 mmol) was added. After 24 h, the volatile materials were removed under reduced pressure. The black solid was extracted with Et₂O (25 mL), and the solution was filtered from some pyrophoric black solid. Concentration of the filtrate to ca. 10 mL followed by slow-cooling to -25 °C for 24 h afforded 965 mg (44% on V) of purple needles, which were isolated by filtration and dried under vacuum. Hydrocarbon solutions of the salt have a blue appearance. Large, purple, tabular crystals may be grown by slowly recrystallizing the material from diethyl ether. Mp: 97-99 °C (dec). ¹H NMR (CD3CN, 300 MHz): δ 2.8 (Si Me_3 , $\Delta v_{1/2}$ ca. 200 Hz), 2.32 (s, 8H, TMEDA-CH₂), 2.17 (s, 24H, TMEDA-CH₃). IR: 1359 (m), 1292 (m), 1242 (s), 1186 (w), 1163 (m), 1132 (m), 1101 (w), 1070 (w), 1036 (m), 1017 (m), 948 (s), 924 (vs), 886 (s), 852 (s), 837 (s), 783 (s), 762 (m), 722 (w), 692 (m), 669 (m), 635 (m), 615 (w) cm⁻¹ $\mu_{\rm eff} = 2.64 \ \mu_{\rm B} \ ({\rm C_6D_6}). \ \Lambda_{\rm M} \ ({\rm MeCN}, \ 1.29 \times 10^{-3} \ {\rm M}): \ 92 \ {\rm S \ cm^2}$ mol^{-1} . Anal. Calcd for $C_{24}H_{68}Cl_2LiN_6Si_4V$: C, 42.27; H, 10.05; N, 12.32. Found: C, 42.36; H, 10.05; N, 12.29.

 $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VMe_2\}$. A Et₂O solution of LiMe (4.0 mL, 5.9 mmol) was added to 20 mL of Et₂O. TMEDA (0.90 mL, 6.0 mmol) was then added, followed by a Et₂O solution (20 mL) of [(Me₃Si)₂N]₂VCl(THF) (1.42 g, 2.96 mmol). The mixture turned deep blue and was stirred for 2 h before the volatile materials were removed under reduced pressure leaving a blue solid. Extraction with Et₂O (25 mL), followed by concentration and cooling of the filtrate to $-25~^{\circ}\text{C}$ for 24 h, afforded 1.26 g (66% on V) of blue crystals. Mp: 146-148 °C (dec). 1 H NMR (CD₃CN, 300 MHz): δ 2.34 (s, 4H, TMEDA-

⁽¹⁸⁾ Berno, P.; Gambarotta, S.; Richeson, D. In Comprehensive Organometallic Chemistry II; Abel, E. D. Stone, F. G. A., Wilkinson, G., Eds.; Elsevier Science: New York, 1995; Vol. 5, p 1.

⁽¹⁹⁾ Berno, P.; Moore, M.; Minhas, R.; Gambarotta, S. Can. J. Chem.

⁽²⁰⁾ Andersen, R. A.; Wilkinson, G. J. Chem. Soc., Dalton Trans.

⁽²¹⁾ Miller, J. B. J. Org. Chem. 1959, 24, 560.
(22) Walton, D. R. M.; Waugh, F. J. Organomet. Chem. 1972, 37,

⁽²³⁾ Evans, D. F. J. Chem. Soc. 1959, 2003.

⁽²⁴⁾ Schubert, E. M. J. Chem. Educ. 1992, 69, 62.

CH2), 2.19 (s, 12H, TMEDA-CH3); a broad, low intensity signal whose maximum lay just downfield of the TMEDA-CH2 signal tailed out to ca. 3 ppm. IR: 1357 (m), 1291 (s), 1236 (s), 1185 (m), 1162 (m), 1130 (m), 1099 (m), 1066 (m), 1037 (s), 1019 (s), 975 (vs), 887 (s), 864 (vs), 842 (vs), 788 (s), 778 (s), 755 (m), 722 (w), 698 (m), 666 (s), 625 (s), 612 (m), 588 (w), 533 (w), 485 (m) cm⁻¹. $\mu_{\rm eff} = 2.57 \,\mu_{\rm B}$ (CD₃CN). $\Lambda_{\rm M}$ (MeCN, 1.24 \times 10^{-3} M): 92 S cm² mol⁻¹. Anal. Calcd for C₂₆H₇₄LiN₆Si₄V: C, 48.71; H, 11.63; N, 13.11. Found: C, 48.44; H, 11.46; N,

 $\{[(Me_3Si)_2N]_2VMe\}_2(\mu-O)$. A hexanes solution (40 mL) of [(Me₃Si)₂N]₂VMe(THF) (804 mg, 1.75 mmol) was treated with PhCH(O)CH₂ (0.10 mL, 0.88 mmol), giving a forest-green mixture that was stirred for 16 h. The volatiles were removed under reduced pressure, and the solid was extracted with HMDSO (2 \times 30 mL). The extracts were filtered and concentrated to ca. 15 mL. Cooling to -25 °C for 24 h afforded 450 mg (65%) of dark crystals, which were dried under vacuum. The crystals dissolved giving forest-green solutions. Mp: 111-113 °C (dec). ¹H NMR (0.08 M): δ 1.85 ($\Delta \nu_{1/2}$ ca. 90 Hz). IR: 1264 (m sh), 1251 (s), 882 (s), 858 (s), 786 (m), 750 (m), 709 (s), 672 (m), 657 (s), 643 (m), 557 (m), 503 (m) cm⁻¹. $\mu_{\text{eff}} =$ 2.46 μ_B (1.74 μ_B per V, $C_6D_6).$ Anal. Calcd for $C_{26}H_{78}N_4$ OSi₈V₂: C, 39.55; H, 9.96; N, 7.10. Found: C, 39.32; H, 9.91; N, 6.85.

Generation of $[(Me_3Si)_2N]_2V(O)(Me)$. Method A. A C₆D₆ solution (ca. 0.5 mL) of [(Me₃Si)₂N]₂VMe(THF) (8.6 mg, 0.019 mmol) in a Teflon sealable NMR tube was treated with PhCH(O)CH₂ (2.1 μ L, 0.018 mmol), giving a green solution. Analysis by ¹H NMR spectroscopy showed a mixture of styrene oxide, styrene, $[(Me_3Si)_2N]_2V(O)(Me)$, and $\{[(Me_3Si)_2N]_2VMe\}_2(\mu$ -O). After 24 h, the solution was a clear yellow and analysis by 1H NMR indicated the presence of only styrene and $[(Me_3Si)_2N]_2V(O)(Me)$ in solution.

Method B. A C_6D_6 solution (ca. 0.5 mL) of $\{[(Me_3Si)_2N]_2-$ VMe $_{2}(\mu$ -O) (22.5 mg, 0.0285 mmol) in a Teflon sealable NMR tube was treated with PhCH(O)CH₂ (3.2 μ L, 0.028 mmol). After 24 h, the initially green mixture was clear yellow. Analysis by ¹H NMR spectroscopy showed only styrene and [(Me₃Si)₂-N]₂V(O)(Me). ¹H NMR: δ 1.29 (s, 3H, V-Me, $\Delta \nu_{1/2}$ ca. 25 Hz), 0.39 (s, 36H, SiMe₃). ⁵¹V NMR (78.94 MHz): δ 222 ($\Delta \nu_{1/2}$ ca. 180 Hz). IR: 1251 (vs), 1093 (w br), 1014 (s, $\nu_{V=0}$), 900 (s), 846 (vs), 794 (s), 766 (m), 719 (s), 677 (m), 646 (m), 620 (w), 588 (w br), 523 (w), 461 w cm⁻¹.

 $[(Me_3Si)_2N]_2V(O)(Ph)$. THF (20 mL) was added to a mixture of $[(Me_3Si)_2N]_2VCl(THF)\ (0.45\ g,\ 0.94\ mmol)$ and MgPh₂ (84 mg, 0.47 mmol), giving a deep blue solution. After 10 min, PhCH(O)CH₂ (130 μ L, 1.14 mmol) was added. The solution at first became green, but over a few seconds it turned clear orange. After 5 min, the volatile materials were removed under reduced pressure, leaving an orange oily residue. Extraction with hexanes (50 mL), filteration of the extract through a frit padded with Celite, and removal of the solvent under vacuum left the product as a dark orange-red oil (355 mg, 81%). 1 H NMR: δ 7.78 (s, 2H, o-Ph), 6.97 (m, 3H, m- and p-Ph), 0.38 (s, 36H, $-SiMe_3$). ⁵¹V NMR (78.94 MHz): δ 101 $(\Delta v_{1/2} \text{ ca. } 235 \text{ Hz})$. IR (KBr, neat): 1422 (m), 1405 (m), 1253 (vs), 1113 (m), 1060 (m), 1011 (s), 994 (m), 950 (m), 847 (vs), 766 (m), 720 (s), 694 (m), 677 (m), 646 (m), 620 (w) cm⁻¹.

[(Me₃Si)₂N]₂V(Cl)(N₂CPh₂). A hexanes solution (40 mL) of [(Me₃Si)₂N]₂VCl(THF) (1.41 g, 2.94 mmol) was added to a flask containing Ph₂CN₂ (570 mg, 2.93 mmol), resulting in a dark orange-red mixture. After the mixture was stirred for 5 min, the volatile materials were removed under reduced pressure, leaving a sticky residue. Extraction with MeCN (60 mL) and then THF (60 mL) was followed by filtration and concentration of the combined extracts to ca. 20 mL. Cooling the mixture to -25 °C for several days afforded dark red-brown crystals (442 mg, 25%), which were isolated by filtration and dried under vacuum. Mp: 91-95 °C (dec). 1H NMR (400 MHz, 22 °C): δ 7.69 ("d of d", 4H, o-Ph and o-Ph'), 7.25 (t, 2H, J = 7.6 Hz, m-Ph), 7.10 (t, 1H, J = 7.4 Hz, p-Ph), 7.02 (m, 3H, m- and p-Ph'), 0.42 (s, 36H, -SiMe₃). ¹H NMR (400 MHz, 97

°C): δ 7.71 ("d", 4H, o-Ph), 7.21–7.13 (m, 6H, m- and p-Ph), 0.45 (s, 36H, $-\text{Si}Me_3$). ¹³C{¹H} NMR (100 MHz, 23 °C): δ 157.5 (N₂CPh₂), 135.5, 134.8 (i-Ph), 131.1 (o- or m-Ph), 130.9 (p-Ph), 130.5 (p-Ph'), 129.9 (o- or m-Ph'), 128.7 (coincident oor m-Ph and Ph'), 5.7 (-SiMe₃). ¹³C{¹H} NMR (100 MHz, 97 °C): δ 135.6 (*i*-Ph), 130.6 (*o*- or *m*-Ph), 130.4 (*p*-Ph), 128.7 (*o*or m-Ph). ⁵¹V NMR (78.94 MHz): δ 285 ($\Delta v_{1/2}$ ca. 485 Hz). IR: 1331 (m), 1262 (m), 1249 (s), 1218 (w), 1075 (m), 1040 (m), 952 (w), 881 (s), 845 (s), 787 (s), 722 (m), 699 (m), 689 (m),672 (m), 644 (w), 559 (w) cm⁻¹. Anal. Calcd for C₂₅H₄₆Cl-N₄Si₄V: C, 49.93; H, 7.71; N, 9.32. Found: C, 50.18; H, 7.91;

X-ray Crystallography. A summary of crystal data, data collection, and refinement for all crystallographically characterized compounds is given in Table 1. A list of selected bond lengths and bond angles is given in Table 2.

[(Me₃Si)₂N]₂VCl₂. Red crystals were grown from acetonitrile at −25 °C. A suitable crystal was mounted on a glass capillary under Paratone-N hydrocarbon oil. The crystal was transferred to a Siemens SMART diffractometer/CCD area detector²⁵ and cooled by a nitrogen-flow low-temperature apparatus which had been previously calibrated by a thermocouple placed at the same temperature as the crystal. A preliminary orientation matrix and unit cell parameters were determined by collecting 60, 10 s frames, followed by spot integration and least-squares refinement. A hemisphere of data was collected using 0.3° ω scans at 10 s per frame. The raw data were integrated (XY spot spread = 1.60° ; Z spot spread = 0.60°), and the unit cell parameters were refined (7930 reflections with $I > 10\sigma(I)$) using SAINT.²⁶ The acentric, orthorhombic space group P2₁2₁2₁ (No. 19) was uniquely defined by the systematic absences. Preliminary data analysis and a semiempirical ellipsoidal absorption correction ($T_{min} =$ 0.755; T_{max} = 0.841; merging R_{int} before/after correction = 0.0334/0.0302) were performed using XPREP.²⁷ Of the 9928 reflections measured, 3479 were unique and 3039 had $I > 3\sigma(I)$ and were used in the refinement. Redundant reflections were averaged. The data were corrected for Lorentz and polarization effects, but no correction for crystal decay was applied. The structure was solved by direct methods using the TEXSAN software package²⁸ on a Digital microvax workstation and refined using standard least-squares and Fourier techniques. A conformational disorder involving V and the N(2) amide ligand across a virtual mirror plane passing through N(1), N(2), and Cl(2) was refined, resulting in partial occupancies of 0.844 for V(1), Si(3), Si(4), and C(8). The occupancies of V(2), Si(5), Si(6), and Cl(3) were constrained to sum to full occupancy. The position of the low-occupancy carbon atom near Cl(1) was not resolved. All of the full occupancy nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms for the ordered −N(SiMe₃)₂ group were fixed at idealized positions (C-H = 0.95 Å). Assignment of the correct enantiomorph was indicated by refinement of the Flack parameter to −0.0404(83). Neutral atomic scattering factors were taken from Cromer and Waber,29 and anomalous dispersion effects 30 were included in F_c . The final residuals for 202 variables refined against 3039 data for which $I > 3\sigma(I)$ were R = 0.0381, $R_w = 0.0570$, and GOF = 2.083.

 $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VCl_2\}$. Data collection and integration were carried out as described above. The space group $P2_1/c$ (No. 14) was uniquely defined by the systematic

Crystallography, The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.3.1.

⁽²⁵⁾ SMART Area-Detector Software Package; Siemens Industrial

Automation, Inc.: Madison, WI, 1993. (26) SAINT: SAX Area-Detector Integration Program, version 4.024; Siemens Industrial Automation, Inc.: Madison, WI, 1994.

⁽²⁷⁾ XPREP: Part of the SHELXTL Crystal Structure Determination Package, Siemens Industrial Automation: Madison, WI, 1994. (28) TEXSAN: Crystal Structure Analysis Package; Molecular

Structure Corp.: 1992. (29) Cromer, D. T.; Waber, J. T. International Tables for X-ray

Crystallography, The Kynoch Press: Birmingham, England, 1974; Vol. (30) Cromer, D. T.; Waber, J. T. International Tables for X-ray

Table 1. Summary of X-ray Diffraction Data: $[N] = N(SiMe_3)_2$; $[Li] = Li(TMEDA)_2$

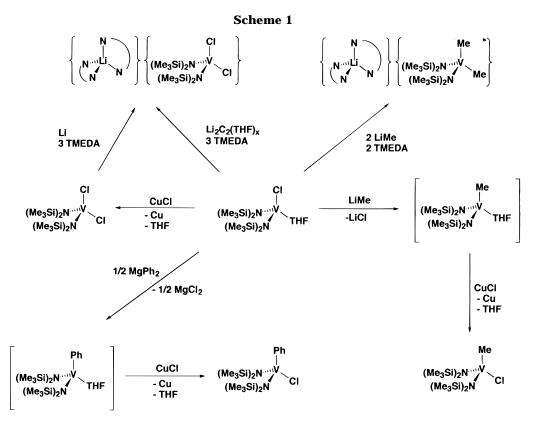
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	quant
source, color, habit MeCN, red, tabular hexanes, purple, acicular ether, blue, equant 0.36 \times 0.25 \times 0.13 hexanes, purple, acicular ether, blue, equant 0.49 \times 0.35 \times 0.30 hexanes, red-brown, equal 0.34 \times 0.30 \times 0.28	quant
cryst size (mm) $0.36 \times 0.25 \times 0.13$ $0.39 \times 0.35 \times 0.25$ $0.49 \times 0.35 \times 0.30$ $0.34 \times 0.30 \times 0.28$	ղuant
cryst size (mm) $0.36 \times 0.25 \times 0.13$ $0.39 \times 0.35 \times 0.25$ $0.49 \times 0.35 \times 0.30$ $0.34 \times 0.30 \times 0.28$	
cryst syst arthorhombic monoclinic monoclinic monoclinic monoclinic	
space group $P2_12_12_1$ $P2_1/c$ $P2_1/c$ $P2_1/n$	
$\dot{T}(^{\circ}\text{C})^{\circ}$ -145 -157 -122 -117	
a (Å) 12.5250(2) 19.2175(2) 21.2683(1) 9.4017(3)	
b(Å) 13.2145(1) 22.4030(1) 13.5551(2) 32.088(6)	
c(Å) 14.6238(3) 19.4357(3) 29.0793(2) 11.5636(3)	
α (deg) 90 90 90	
β (deg) 90 96.749(1) 93.113(1) 107.050(1)	
γ (deg) 90 90 90	
$\text{vol}\left(\check{\mathbf{A}}^3\right)$ 2420.40(8) 8309.61(15) 8371.00(25) 3335.23(23)	
Z 4 8 8 4	
$ ho_{ m calcd}~({ m g~cm^{-3}})$ 1.22 1.00 1.02 1.20	
$\mu \text{ (cm}^{-1})$ 8.25 4.44 3.73 5.41	
diffractometer Siemens, CCD/ Siemens, CCD/ Siemens, CCD/ Siemens, CCD/ area detector area detector area detector	
radiation (λ) Mo K α (0.710 73 Å)	
scan mode ω (0.3° scans) ω (0.3° scans) ω (0.3° scans) ω (0.3° scans)	
collen range hemisphere hemisphere hemisphere hemisphere hemisphere total no. of reflens 9928 34 748 34 349 14 090	
no. of unique reflns 3479 $12 274$ $12 508$ 4888 $R_{\rm int}$ 0.038 0.0327 0.0427 0.0281	
abs type semiempirical, XPREP semiempirical, XPREP semiempirical, XPREP none transm coeff 0.755-0.841 0.828-0.893 0.730-0.885 NA	
structure soln direct methods, TEXSAN direct	A NI
no. of obs (n_0) , $I \ge 3\sigma(I)$ 3039 8561 7259 3910	-11 N
no. of params refined (n_v) 202 685 660 500	
final R ,	
GOF^c 2.083 2.051 3.471 1.764	

 ${}^{a}R = [\Sigma||F_{0}| - |F_{c}||]/\Sigma|F_{0}|. \ {}^{b}R_{w} = \{[\Sigma_{w}(|F_{0}| - |F_{c}|)^{2}]/\Sigma_{w}F_{0}^{2}\}^{1/2}. \ {}^{c}GOF = [\Sigma_{w}(|F_{0}|^{2} - |F_{c}|^{2})^{2}/(n_{0} - n_{v})]^{1/2}.$

Table 2. Selected Metrical Data for Crystallographically Characterized Compounds

[(Me ₃ Si) ₂ N] ₂ VCl ₂		$\textcolor{red}{\underline{[\text{Li}(\text{TMEDA})_2]\{[(\text{Me}_3\text{Si})_2\text{N}]_2\text{VCl}_2\}}}$		$\overline{[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VMe_2\}}$		$\boxed{[(Me_3Si)_2N]_2V(Cl)(N_2CPh_2)}$			
Bond Distances (Å)									
V(1)-N(1)	1.847(4)	V(1)-Cl(1)	2.311(1)	V(1)-N(1)	2.031(6)	V-Cl	2.2454(7)		
V(1)-N(2)	1.842(4)	V(1)-Cl(2)	2.309(1)	V(1)-N(2)	2.011(6)	V-N(1)	1.851(1)		
V(1)-Cl(1)	2.211(2)	V(1)-N(1)	1.936(3)	V(1)-C(1)	2.096(8)	V-N(2)	1.879(2)		
V(1)-Cl(2)	2.222(2)	V(1)-N(2)	1.949(3)	V(1)-C(2)	2.124(8)	V-N(3)	1.683(2)		
N(1)-Si(1)	1.774(4)	V(2)-Cl(3)	2.299(1)	N(1)-Si(1)	1.711(6)	N(3)-N(4)	1.328(3)		
N(1)-Si(2)	1.796(4)	V(2)-Cl(4)	2.306(1)	N(1)-Si(2)	1.722(6)	N(4)-C(13)	1.295(3)		
N(2)-Si(3)	1.772(4)	V(2)-N(3)	1.946(3)	N(2)-Si(3)	1.709(6)	C(13)-C(14)	1.487(4)		
N(2)-Si(4)	1.807(4)	V(2)-N(4)	1.949(3)	N(2)-Si(4)	1.729(6)	C(13)-C20)	1.483(4)		
N(2)-Si(5)	1.84(1)	$Li(1)-N_{av}$	2.13(1)						
N(2)-Si(6)	1.75(1)	$Li(2)-N_{av}$	2.13(2)						
Bond Angles (deg)									
N(1)-V(1)-N(2)	118.5(2)	Cl(1)-V(1)-Cl(2)	103.42(5)	N(1)-V(1)-N(2)	124.0(2)	Cl-V-N(1)	106.89(7)		
N(1)-V(1)-Cl(1)	103.1(1)	Cl(1)-V(1)-N(1)	109.1(1)	N(1)-V(1)-C(1)	101.4(3)	Cl-V-N(2)	113.75(7)		
N(1)-V(1)-Cl(2)	111.2(1)	Cl(1)-V(1)-N(2)	107.5(1)	N(1)-V(1)-C12	111.2(3)	Cl-V-N(3)	106.10(7)		
N(2)-V(1)-Cl(1)	113.0(1)	Cl(2)-V(1)-N(1)	103.2(1)	N(2)-V(1)-C(1)	112.5(3)	N(1)-V-N(2)	117.79(9)		
N(2)-V(1)-Cl(2)	102.2(1)	Cl(2)-V(1)-N(2)	114.5(1)	N(2)-V(1)-C(2)	104.0(3)	N(1)-V-N(3)	105.5(1)		
Cl(1)-V(1)-Cl(2)	108.83(7)	N(1)-V(1)-N(2)	118.0(1)	C(1)-V(1)-C(2)	101.8(3)	N(2)-V-N(3)	105.9(1)		

absences. The structure was solved and refined as above. The final residuals for 685 variables refined against 8561 data for which $I \geq 3\sigma(I)$ were R = 0.0451, $R_{\rm w} = 0.0575$, and GOF = 2.051.


[Li(TMEDA)₂]{[(Me₃Si)₂N]₂VMe₂}. All aspects, from data collection to solution and refinement of the structure, were as described above. The space group $P2_1/c$ was uniquely defined by the systematic absences. The molecule crystallized as well-separated cations and anions with two molecules per asymmetric unit (Z=8). In one of the anions, there existed a conformational disorder (analogous to that described for $[(Me_3Si)_2N]_2VCl_2)$ across a virtual mirror plane defined approximately by N(7), N(8), and the midpoint of the vector joining V(2) and V(3). A model employing major (75%) and minor (25%) conformations was employed with moderate success, as indicated by the final agreement factors. The Li(TMEDA) cations and the ordered anion were well-behaved. All non-hydrogen atoms (except the silicon and carbon atoms of the disordered $-N(SiMe_3)_2$ ligand) were refined with aniso-

tropic thermal parameters. Hydrogen atoms were included on the three ordered $-N(SiMe_3)_2$ ligands and on the TMEDA ligands at idealized positions. The final residuals for 660 variables refined against 7259 data for which $I > 3\sigma(I)$ were R = 0.0820, $R_w = 0.1038$, and GOF = 3.471.

[(Me₃Si)₂N]₂VCl(N₂CPh₂). All aspects, from data collection to solution and refinement of the structure, were as described above. The space group $P2_1/n$ (No. 14) was uniquely defined by the systematic absences. All non-hydrogen atoms were refined with anisotropic thermal parameters; hydrogen atoms were located and refined with isotropic thermal parameters. The final residuals for 500 variables refined against 3910 data for which $I > 3\sigma(I)$ were R = 0.0298, $R_{\rm w} = 0.0421$, and GOF = 1.764.

Results and Discussion

Neutral V(IV) Species. Drawing from established research on vanadocene systems, where Cp_2VCl_2 may

be obtained 31 by reaction of Cp_2VCl with CuCl, $[(Me_3Si)_2-$ N₂VCl(THF) underwent one-electron oxidation by CuCl to yield [(Me₃Si)₂N]₂VCl₂ (Scheme 1). Likewise, [(Me₃Si)₂- $N_{2}VR(THF)$ (R = Me, Ph³²) reacted with CuCl to yield the methyl-chloride and phenyl-chloride V(IV) organometallic products (Scheme 1). We note that Cp₂V(Cl)-(Me) is the lone example of a mixed halide-hydrocarbyl that is stable within the Cp₂V ligand system.^{33,34}

The redox reactions proceeded rapidly in THF, as a color change from blue to red along with precipitation of elemental copper were immediately apparent on mixing the reactants. The red products are exceedingly soluble in hydrocarbons and were crystallized from MeCN to afford the first crops of material in 40–60% yields. This latter point highlights the decreased reactivity of these V(IV) hydrocarbyls relative to V(III) species of the type [(Me₃Si)₂N]₂VRL which rapidly add their V-C bonds across the C-N bonds of both nitriles and isocyanides. 13,35 Solution-state magnetic moments of 1.7 μ_B are indicative of a d¹electronic configuration and are consistent with the products as formulated. The X-ray crystal structure of [(Me₃Si)₂N]₂VCl₂ has been determined (see below). Similar to other structurally characterized early metal -N(SiMe₃)₂ complexes, the

amides are planar at nitrogen, indicating that they are probably acting as three-electron donors $(1\sigma + 2\pi)$ toward the metal center, resulting in a formal electron count about the vanadium of 13 in these species.³⁶

Since reactions between VCl₄ and strong alkylating reagents can be highly dependent on the reaction conditions and countercations, we view these transformations as mild, oxidative routes to (R₂N)₂VX₂ or (R₂N)₂VXR vanadium(IV) species that may not be cleanly obtainable from reactions of V(IV) sources with highly reducing -NR₂ anions. Hoffman and co-workers have reported congeneric group 5 species that are obtained using different synthetic methodologies. The Nb(IV) dihalide [(Me₃Si)₂N]₂NbCl₂, 14,15 available from NbCl₄(THF)₂ and LiN(SiMe₃)₂, may be converted to [(Me₃Si)₂N]₂Nb(Cl)(Ph)³⁷ on treatment with ZnPh₂. Reduction of Andersen's [(Me₃Si)₂N]₂TaCl₃³⁸ with Na/ Hg affords $[(Me_3Si)_2N]_2TaCl_2^{16,17}$ in 64% yield. It is noteworthy that bis(amide)titanium(IV) alkyl iodides have recently been prepared by substitution of a -NMe₂ with I or by monoalkylation of a bis(amide)titanium(IV) diiodide.39

We assume the mechanism of the above reactions involves initial oxidation of $[(Me_3Si)_2N]_2VX(THF)$ (X = Cl, Me, Ph) to $\{[(Me_3Si)_2N]_2VX(THF)\}^+$, followed by an associative displacement of THF by chloride. In an attempt to synthesize cationic {[(Me₃Si)₂N]₂VMe(THF)}⁺ by using a less nucleophilic anion, a THF solution of the neutral V(III)-methyl was treated with AgBPh₄ in THF. Although the reaction was immediate, a pure

⁽³¹⁾ Gladyshev, E. N.; Bayushkin, P. Y.; Cherkasov, V. K.; Sokolov, V. S. Bull. Acad. Sci. USSŘ, Div. Chem. Sci. 1979, 28, 1070.

⁽³²⁾ Although the V(III)-Ph complex could not be isolated as a stable solid, persistent blue solutions formed from the reaction of $[(Me_3Si)_2N]_2VCl(THF)$ and 0.5 equiv of $MgPh_2$ in THF behave as if they contain " $[(Me_3Si)_2N]_2VPh(THF)$ ". It is likely that the instability of the complex stems from facile dissociation of THF followed by metallation of a -N(SiMe₃)₂ ligand. Gerlach, C. P.; Arnold, J. Manu

⁽³³⁾ Razuvaev, G. A.; Korneva, S. P.; Vyshinskaya, L. I.; Mar'in, V. ; Cherkasov, V. K. Bull. Acad. Sci. USŠR, Div. Čhem. Sci. 1978, 27,

⁽³⁴⁾ Razuvaev, G. A.; Bayushkin, P. Y.; Cherkasov, V. K.; Gladyshev, E. N.; Phokeev, A. P. Inorg. Chim. Acta 1980, 44, L103.

⁽³⁵⁾ Gerlach, C. P.; Arnold, J. Manuscript in preparation. (36) The covalent convention is followed in counting electrons. See:

Crabtree, R. H. The Organometallic Chemistry of the Elements, 2nd ed.; Wiley: New York, 1994.

⁽³⁷⁾ Bott, S. G.; Hoffman, D. M.; Rangarajan, S. P. J. Chem. Soc., Dalton Trans. 1996, 1979.

⁽³⁸⁾ Andersen, R. A. Inorg. Chem. 1979, 18, 3622.

⁽³⁹⁾ Johnson, A. R.; Davis, W. M.; Cummins, C. C. Organometallics

⁽⁴⁰⁾ While a persistent color change from green-blue to blue was observed on treating [(Me3Si)2N]2VCI(THF) with sources of Et-, we have no evidence that indicates the identity of the product one way or another and have not been successful in isolating either a product or product-derivative from these mixtures.

product could not be isolated from the dark brown mixture. Blue solutions of putative [(Me₃Si)₂N]₂VEt-(THF),⁴⁰ from alkylation of [(Me₃Si)₂N]₂VCl(THF) with EtMgCl or MgEt2, also reacted quickly with CuCl in THF, but the expected [(Me₃Si)₂N]₂V(Cl)(Et) could not be isolated. Our inability to isolate either a V(III)— or V(IV)—alkyl with β -hydrogens in this system may be compared to the decomposition of Cp2VXR complexes when the R group contains β -hydrogen atoms.⁴¹

Our initial attempts at synthesizing dialkyl, diaryl, or mixed alkyl-aryl V(IV) species suggested that the reactions were solvent and temperature dependent, as indicated above for alkylations of VCl₄. For example, reaction of [(Me₃Si)₂N]₂VCl₂ with MgPh₂ in THF at room temperature (Scheme 2) gave a blue solution that most likely contained "[(Me₃Si)₂N]₂VPh(THF)". Work-up of the reaction mixture in hexanes led to violet mixtures from which the known⁴² dimeric $\{[(Me_3Si)_2N]V[\mu-$ CH₂SiMe₂NSiMe₃]₂ was isolated in 55% yield. Given the crowded coordination sphere about the metal center in four-coordinate [(Me₃Si)₂N]₂V species, it is likely that loss of THF in [(Me₃Si)₂N]₂VPh(THF) generates threecoordinate "[(Me₃Si)₂N]₂VPh", which then metalates a -N(SiMe₃)₂ ligand, loses benzene, and dimerizes. Addition of pyridine (pyr) to blue solutions of "[(Me₃Si)₂N]₂-VPh(THF)" formed the stable [(Me₃Si)₂N]₂VPh(pyr) (Scheme 2), which is more conveniently prepared from [(Me₃Si)₂N]₂VCl(THF), 0.5 equiv of MgPh₂, and pyr.³⁵ In contrast, [(Me₃Si)₂N]₂VCl₂ and MgPh₂ react in cold (-60 °C) diethyl ether to give red mixtures that may contain the V(IV)-diphenyl complex; unfortunately, extreme solubility in hydrocarbon solvents has hampered adequate purification and characterization of the material (the compound separates from MeCN as an oil). Difficulties have also been noted in attempts to prepare Ta(IV) dialkyls from [(Me₃Si)₂N]₂TaCl₂;¹⁷ nonetheless, the synthesis of [(Me₃Si)₂N]₂TaPh₂ in 65% yield was successful. Thus, as a class of compounds, d1 [(Me₃Si)₂-N₂MR₂ species remain rare.

V(III) Anions. Given the stability of the 14-electron species [(Me₃Si)₂N]₂VXL, it seemed reasonable that 14electron V(III) anions of the type $\{[(Me_3Si)_2N]_2VX_2\}$ would be accessible via the one-electron reduction of [(Me₃Si)₂N]₂VX₂ or by nucleophilic attack of X⁻ on

[(Me₃Si)₂N]₂VXL. Thus, reaction between [(Me₃Si)₂N]₂-VCl(THF) and 2 equiv of LiMe in the presence of TMEDA afforded [Li(TMEDA)₂]{[(Me₃Si)₂N]₂VMe₂} in 66% yield as highly air-sensitive, deep-blue crystals (Scheme 1). While the salt formed an oily suspension in benzene, it was soluble in acetonitrile or ethereal solvents giving ink-blue solutions. ¹H NMR spectra measured in CD₃CN showed sharp signals for the TMEDA ligand as well as a broad low intensity signal in the range 2.5-3.0 ppm, presumably for the anionic portion of the molecule. Magnetic susceptibility measurements made in this same solvent indicated a high spin d² electronic configuration ($\mu_{\rm eff} = 2.57 \ \mu_{\rm B}$). The molar conductivity of acetonitrile solutions ($\Lambda_M = 92 \text{ S}$ cm² mol⁻¹) was in accord with the behavior of a 1:1 electrolyte. 43 X-ray quality crystals of the complex were obtained on recrystallization from diethyl ether, and the experiment verified our proposed connectivity. The molecule crystallized as well-separated cations and anions as discussed below. Variable, low yields of an extremely air-sensitive, blue, paramagnetic compound were isolated when the reaction was carried out in the absence of TMEDA; however, due to the low yield and irreproducibility of the reaction, characterization of this material was not possible.

Attempts to extract hydride from {[(Me₃Si)₂N]₂VMe₂} to give the V(V) methyl-methylidene complex with Ph₃CPF₆ or Et₃OBF₄ led to an as yet uncharacterized paramagnetic product in the first case and no reaction in the second.⁴⁴ Reaction with $B(C_6F_5)_3$ in C_6D_6 apparently led to abstraction of Me⁻ to generate the unstable intermediate [(Me₃Si)₂N]₂VMe, which, via metalation of a bis(silyl)amide ligand and loss of CH4, gave dimeric $\{[(Me_3Si)_2N]V[[\mu-CH_2SiMe_2N(SiMe_3)]\}_2$ as the only detectable product by ¹H NMR spectroscopy. ⁴⁵

Attempts to prepare a lithiated vanadium acetylide in one step by reaction of Li₂C₂ wtih [(Me₃Si)₂N]₂-VCl(THF) led instead to the dichloride anion analog of the dimethyl complex discussed above. Purple needles

⁽⁴¹⁾ Sustmannn, R.; Kopp, G. J. Organomet. Chem. 1988, 347, 325. (42) Berno, P.; Minhas, R.; Hao, S.; Gambarotta, S. Organometallics 1994. 13. 1052.

⁽⁴³⁾ Angelici, R. J. Synthesis and Technique in Inorganic Chemistry,

University Science Books: Mill Valley, CA, 1986. (44) Conversely, the extraction of H⁺ from cationic transition metal dimethyl complexes has successfully been used to synthesize methylmethylidene complexes. See: Schrock, R. R. Acc. Chem. Res. 1979, 12, 98. Dawson, D. Y.; Arnold, J. Organometallics 1997, 16, 1111.

⁽⁴⁵⁾ Although the dimer is paramagnetic, C_6D_6 solutions show several low-intensity resonances in the ¹H NMR spectrum that are indicative of the complex. ¹H NMR (300 MHz, C_6D_6): δ 0.96, 0.64, 0.39,

Scheme 3

of $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VCl_2\}$ were isolated in 40% yield based on vanadium from the reaction of $[(Me_3Si)_2N]_2VCl(THF)$ with 1 equiv of $Li_2C_2(THF)_x$ in the presence of TMEDA. Recrystallization of the complex from diethyl ether afforded purple, prismatic crystals which dissolved in hydrocarbon solvents to give blue solutions. In the absence of TMEDA, the reaction was messy and it is clear that the presence of the diamine assists in the chloride redistribution that has taken place during the course of the reaction. The lithium reduction of [(Me₃Si)₂N]₂VCl₂ in the presence of TMEDA also yielded the dichloride anion, although the product was not as clean as that isolated from the above route.

In contrast to the low solubility of the dimethyl anion, the dichloride salt dissolves in benzene, giving a solution magnetic moment of 2.64 μ_B at ambient temperature. Conductivity measurements indicated that it is a 1:1 electrolyte in acetonitrile ($\Lambda_{\rm M}=92~{\rm S~cm^2~mol^{-1}}$). In contrast to the ¹H NMR spectrum measured in C₆D₆, which showed two broadened signals at ca. 5.0 and 1.9 ppm, in CD₃CN sharp signals for the Li(TMEDA)₂ cation were observed at δ 2.32 (CH₂) and 2.17 (CH₃), along with a broadened signal ($\Delta v_{1/2}$ ca. 200 Hz) centered at ca. δ 2.8 for the anion. A crystallographic study (see below) verified the proposed connectivity shown in Scheme 1. We note that related "ate" complexes of Ti(III) have recently been reported where the Cl and Me ligands form bridges between bis(amide)titanium and Li(TMEDA) units. 39,46 The successful isolation of bis(amide)Ti and bis(amide)V halide ate complexes may be contrasted with the metallocene systems, where $[Cp_2MCl_2]^-$ (M = Ti, V) and $[Cp_2VCl]^-$ are rapidly susceptible to loss of Cl⁻.47

Oxidations with PhCH(O)CH₂. We have previously shown that the V(III) bromide derivative [(Me₃Si)₂-N]₂VBr(THF) reacts with styrene oxide to yield [(Me₃Si)₂-N]₂V(O)(Br) as the kinetic product.¹² Curious as to whether organovanadium oxo complexes could be prepared in a similar manner, we investigated the reaction between $[(Me_3Si)_2N]_2VR(THF)$ (R = Me, Ph) and styrene

Treatment of a hexanes solution of [(Me₃Si)₂N]₂VMe-(THF) with 1 equiv of styrene oxide (Scheme 3) resulted in an immediate color change from blue to green and

eventually clear yellow. Removal of the solvent yields [(Me₃Si)₂N]₂V(O)(Me) as a dark-orange oil. Monitoring the reaction by ¹H NMR spectroscopy (C₆D₆) showed a broad signal at δ 1.85 that we attribute to the green intermediate (see below), which over several hours gave way to only signals for free styrene and [(Me₃Si)₂N]₂V-(O)(Me). The oxo-methyl complex was characterized by a sharp singlet at δ 0.39 for the $-SiMe_3$ groups and a singlet at δ 1.29 ($\Delta v_{1/2} = 25$ Hz) for the methyl group, broadened due to coupling to the quadropolar ⁵¹V nucleus ($I = \frac{7}{2}$). A singlet in the ⁵¹V NMR spectrum at δ 222 is consistent with a +5 oxidation state of the vanadium, and we assign a strong absorbance in the IR spectrum at 1014 cm⁻¹ to the $v_{V=0}$.

The green intermediate was isolated cleanly from preparative-scale reactions between (i) 0.5 equiv of styrene oxide and [(Me₃Si)₂N]₂VMe(THF) (Scheme 3) or (ii) $[(Me_3Si)_2N]_2VMe(THF)$ and $[(Me_3Si)_2N]_2V(O)(Me)$. The μ -O dimer is converted smoothly to $[(Me_3Si)_2N]_2$ -V(O)(Me) on treatment with an additional equivalent of styrene oxide. Although extremely soluble in hexanes, the dimer crystallized nicely from HMDSO (65%) and the crystal structure confirmed the connectivity.¹³ We tentatively assign a strong absorbance at 709 cm⁻¹ in the IR spectrum to the linear V-O-V unit. The dimer is paramagnetic, and its magnetic moment of 2.46 $\mu_{\rm B}$ (1.74 $\mu_{\rm B}$ per V) indicates that, at least at room temperature in solution, there is negligible coupling of the unpaired spins and that the μ -oxo core is best described as bridging two V(IV), d1 centers. Crystallographic data also rules out a mixed valence ground state, i.e., a V(V) oxo acting as a dative donor to a V(III) center, as the molecule crystallized with a C_2 -axis passing through the μ -O resulting in one independent V-O distance of 1.7943(4) Å. This contrasts with the μ-N derivatives of vanadium, which may possess both long and short V-N bonds, 48-51 and also with [Cp₂TaMe]₂(*u*-S),⁵² which is described as diamagnetic and possibly in equilibrium with Cp2Ta(Me)(S) and "Cp2TaMe", i.e., Ta(V) and Ta(III) species. A broad signal at δ 1.85 in the ¹H NMR spectrum of the isolated material matches that for the observed intermediate in

⁽⁴⁶⁾ Scoles, L.; Minhas, R.; Duchateau, R.; Jubb, J.; Gambarotta, S. Organometallics 1994, 13, 4978.

⁽⁴⁷⁾ Mugnier, Y.; Moise, C.; Laviron, E. Nouv. J. Chim. 1982, 6,

⁽⁴⁸⁾ Critchlow, S. C.; Lerchen, M. E.; Smith, R. C.; Doherty, N. M. J. Am. Chem. Soc. 1988, 110, 8071

⁽⁴⁹⁾ Sorensen, K. L.; Lerchen, M. E.; Ziller, J. W.; Doherty, N. M. Inorg. Chem. 1992, 31, 2678.

⁽⁵⁰⁾ Willing, W.; Christophersen, R.; Muller, U.; Dehnicke, K. Z. Anorg. Allg. Chem. 1987, 555, 16.

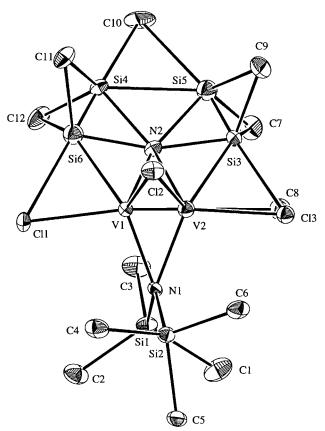
⁽⁵¹⁾ Sable, D. B.; Armstrong, W. H. *Inorg. Chem.* **1992**, *31*, 161.
(52) Proulx, G.; Bergman, R. G. *Organometallics* **1996**, *15*, 133.

the one-step transformation of [(Me₃Si)₂N]₂VMe(THF) to $[(Me_3Si)_2N]_2V(O)(Me)$.

In regard to the kinetics of the reactions in Scheme 3, once [(Me₃Si)₂N]₂V(O)(Me) is formed it must react with [(Me₃Si)₂N]₂VMe(THF) faster than does styrene oxide. Nucleophilic addition of vanadium(V) oxo complexes to unsaturated Ti⁵³ species has recently been studied by Cummins and co-workers, and there is also precedent for this type of reaction between two vanadium centers in the literature.⁵⁴

While the reaction of 0.5 equiv of styrene oxide with [(Me₃Si)₂N]₂VPh(THF) gave persistent green mixtures, on workup the color changed to brown and the putative $\{[(Me_3Si)_2N]_2VPh\}_2(\mu-O)$ was not isolated. However, treatment of [(Me₃Si)₂N]₂VPh(THF) with a full equivalent of styrene oxide yielded [(Me₃Si)₂N]₂V(O)(Ph) as a dark red-orange oil in 81% yield (eq 1). ¹H and ⁵¹V NMR

$$\begin{bmatrix} \mathsf{Ph} \\ (\mathsf{Me_3Si})_2 \mathsf{N} & \mathsf{THF} \\ (\mathsf{Me_3Si})_2 \mathsf{N} & \mathsf{THF} \end{bmatrix} \xrightarrow{\begin{array}{c} \mathsf{PhHC} \\ -\mathsf{PhHC} = \mathsf{CH}_2 \\ -\mathsf{THF} \end{array}} \underbrace{\begin{array}{c} \mathsf{(Me_3Si)_2N} \\ (\mathsf{Me_3Si})_2 \mathsf{N} & \mathsf{Ph} \\ \end{array}}_{\mathsf{Ph}} \tag{1}$$


data are consistent this formulation, and a strong absorbance at 1011 cm⁻¹ in the IR spectrum is indicative of a terminal V=O functionality. At this point, we have no reasonable explanation for why an intermediate $\{[(Me_3Si)_2N]_2VPh\}_2(\mu-O)$ does not appear to be stable in the solid state, and attempts to isolate [(Me₃Si)₂N]₂-VMe(μ-O)VPh[N(SiMe₃)₂]₂ by reaction of [(Me₃Si)₂N]₂V-(O)(R) with [(Me₃Si)₂N]₂VR'(THF) were also unsuccess-

Reaction of [(Me₃Si)₂N]₂VCl(THF) with Ph₂CN₂. Reaction of [(Me₃Si)₂N]₂VCl(THF) with diphenyldiazomethane in hexanes gave a deep-red solution from which [(Me₃Si)₂N]₂V(Cl)(N₂CPh₂) was isolated (eq 2).

$$(\text{Me}_3\text{Si})_2\text{N} \cdots \text{V} \xrightarrow{\text{THF}} \xrightarrow{\text{Ph}_2\text{C} = \text{N} = \text{N}} (\text{Me}_3\text{Si})_2\text{N} \cdots \text{V} \times \text{N} \times \text{CPh}_2 (2)$$

The compound is extremely soluble in hydrocarbon solvents, but crystallization from a mixture of MeCN/ THF afforded a crop of analytically pure material in 30% yield. X-ray structural data (see below) suggest that the vanadium center has been oxidized to the +5 state concomitant with a two-electron reduction of the diazoalkane moiety to an alkylidenehydrazido.⁵⁵ Sharp resonances in the ¹H, ¹³C{¹H}, and ⁵¹V NMR spectra also indicate the species is best described as a d^0 , diamagnetic compound.

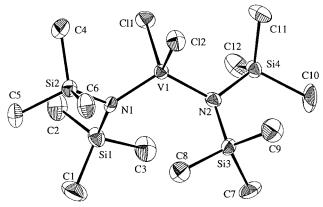
A signal for the diazo-bound carbon was observed in the ${}^{13}C\{{}^{1}H\}$ NMR spectrum at δ 157.5. The aryl carbon signals for the two phenyl rings are inequivalent at room temperature (i.e., Ph and Ph'), indicating a slow rotation about one or more of the bonds in the V=N-N=CPh₂ unit. On warming the sample, the signals coalesced at 55 °C. Further heating to 95 °C sharpened the signals such that a single set of four phenyl ¹³C resonances is observed in the spectrum. Although metallodiazoalkane complexes have long been recog-

Figure 1. ORTEP drawing (50% ellipsoids) of [(Me₃Si)₂-N₂VCl₂. V(2), Si(5), Si(6), and Cl(3) are at 16% occupancy, while V(1), Si(3), Si(4), and C(8) are at 84% occupancy. The position of the (minor occupancy) carbon atom near Cl(1) was not resolved.

nized as precursors to alkylidenes via loss of dinitrogen, 56-59 no evidence for this type of reactivity was found in the present case. [(Me₃Si)₂N]₂V(Cl)(N₂CPh₂) showed no sign of decomposition in C₆D₆, even after prolonged periods of heating (>100 °C) or photolysis. Reaction between (i) [(Me₃Si)₂N]₂VMe(THF) and Me₃SiCHN₂ or Ph₂CN₂ or (ii) [(Me₃Si)₂N]₂VCl(THF) and Me₃SiCHN₂ also proceeded rapidly to afford deep red mixtures, however, in these cases the products could not be isolated as crystalline solids and appear to be very low melting materials that were difficult to isolate and purify in good yields.

X-ray Crystal Structures. [(Me₃Si)₂N]₂VCl₂. Selected bond distances and angles for this as well as the other crystallographically characterized compounds are collected in Table 2. As described in the Experimental Section, the molecule crystallized as a mixture of major (85%) and minor (15%) conformers that are related by a virtual mirror plane that passes roughly through the amide nitrogens, Cl(2), C(10), and the midpoint of the vector that connects the two partial occupancy vanadium nuclei. This is illustrated in Figure 1, which includes all full and partial occupancy atoms. The following points refer to the major conformer, of which an ORTEP drawing is shown in Figure 2. The VNSi₂ units are virtually planar, with all of the angles about

⁽⁵³⁾ Wanandi, P. W.; Davis, W. B.; Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 2110.


⁽⁵⁴⁾ Ruiz, J.; Vivanco, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, J. Chem. Soc., Chem. Commun. 1991, 762.

⁽⁵⁵⁾ Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; John Wiley & Sons: New York, 1988.

⁽⁵⁶⁾ Hermann, W. A. Angew. Chem., Int. Ed. Engl. 1978, 17, 800. (57) Mizobe, Y.; Ishii, Y.; Hidai, M. Coord. Chem. Rev. 1995, 139,

⁽⁵⁸⁾ Polse, J. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc.

⁽⁵⁹⁾ Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996 118, 100,

Figure 2. ORTEP drawing (50% ellipsoids) of the major conformer of [(Me₃Si)₂N]₂VCl₂.

the amide nitrogen being ca. 120°. As in the other complexes that we have crystallographically studied that contain the $\{[(Me_3Si)_2N]_2V\}^{n+}$ fragment, the largest angle about the metal center is between the two amide ligands $(N(1)-V(1)-N(2) = 118.5(2)^{\circ})$. The remainder of the angles about the metal span the range 102.2(1)°-113.0(1)° (Table 2). Relative to [(Me₃Si)₂N|₂VCl(THF), ¹⁹ the V-Cl bond lengths in $[(Me_3Si)_2N]_2VCl_2$ (V(1)-Cl(1) = 2.211(2) Å; V(1)-Cl(2) = 2.222(2) Å) are slightly shorter due to the smaller V(IV) in the present case.

There are some interesting differences between this vanadium structure and that of [(Me₃Si)₂N]₂TaCl₂, ¹⁶ with which the intermediate niobium complex is apparently isostructural.¹⁵ Despite the smaller radius of V(IV), the distortion of the N₂VCl₂ core from idealized $C_{2\nu}$ symmetry is not nearly as pronounced as that observed in [(Me₃Si)₂N]₂TaCl₂. For example, the dihedral angle between the VN₂ and VCl₂ deviates by ca. 6° from the ideal value of 90°, versus a value of 17° in the Ta analog. Furthermore, the Ta complex possesses a rather compressed Cl-Ta-Cl angle (95.7(2)°) compared to a more normal Cl-V-Cl angle of 108.83(7)° in the major conformer. Equivalent V-N bond lengths (V(1)-N(1) = 1.847(4) Å, V(1)-N(2) = 1.842(4) Å) contrast with the unsymmetrical Ta-N bond lengths, the latter due to steric repulsion between a chlorine and amide methyl groups. On the basis of the wide range of dihedral angles we have observed between the two N₂V planes in structures having the $\{[(Me_3Si)_2N]_2V\}^{n+}$ fragment (e.g., see below), the apparently soft potential-energy surface for rotation about the V-N bonds may not exist in the third-row congener, particularly if $N(p\pi)-M(d\pi)$ overlap assists in "locking" the amides in a particular conformation. In other words, facile rotation about V-N bonds in complexes of $\{[(Me_3Si)_2N]_2V\}^{n+}$ may allow the molecules to avoid unfavorable, intramolecular steric repulsions in the solid state. A shallow potential-energy curve for bending the Nb-N-Si angles in [(Me₃Si)₂-N]2NbBr2 has been noted, a point perhaps related to the ability of the $-N(SiMe_3)_2$ ligand to metalate via γ -hydrogen elimination.

 $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VCl_2\}$. The molecule crystallized as well-separated cations and anions, the closest intramolecular contact (excluding hydrogen atoms) being the C(9)-C(30) distance of 3.333(7) Å. There are two molecules per asymmetric unit, and an ORTEP drawing of one of them is shown in Figure 3. The metrical parameters of the Li(TMEDA) cations are unremarkable. The vanadium-ligand bond lengths (V- $N_{av} = 1.945(5) \text{ Å}, V-Cl_{av} = 2.306(2) \text{ Å})$ are elongated

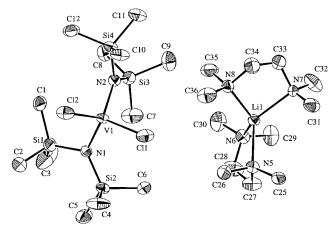
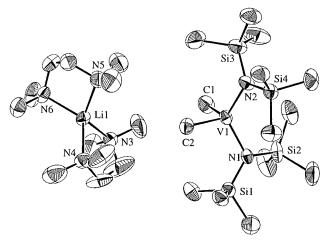
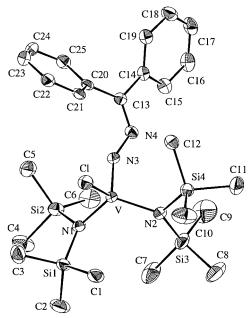


Figure 3. ORTEP drawing (50% ellipsoids) of one of the crystallographically independent molecules of {Li(TMEDA)₂}- $\{[(Me_3Si)_2N]_2VCl_2\}.$




Figure 4. ORTEP drawing (50% ellipsoids) of one of the crystallographically independent molecules of [Li(TMEDA)₂]- $\{[(Me_3Si)_2N]_2VMe_2\}.$

by ca. 0.1 Å when compared with those of neutral [(Me₃Si)₂N]₂VCl₂ above and, as expected, are slightly shorter than those in the analogous Ti species. 60,61 The angles about the vanadium center are virtually identical in the two crystallographically independent molecules, however, a subtle difference between the anions exists. While the −N(SiMe₃)₂ groups are all planar at nitrogen, the dihedral angle between the two VNSi₂ planes measures 99° in the V(1) anion versus a value of 83° in the V(2) anion, again indicative of a low activation energy for rotation about the V-N bonds in this system.

 $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VMe_2\}$. The molecule crystallized in the same manner as the dichloride above, i.e., in $P2_1/c$ with two molecules per asymmetric unit. Diffraction data verified the connectivity in the paramagnetic molecule, but a severe disorder in one of the anions (analogous to that described for [(Me₃Si)₂N]₂VCl₂, but not nearly as well-behaved) limits the usefulness of the metrical data. An ORTEP view of the ordered molecule is shown in Figure 4. The dihedral angle between the VNSi₂ planes is 96°, close to that observed in the V(1) anion of $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VCl_2\}$ to which the present structure is closely related. The V–C bond lengths in the ordered anion (V(1)-C(1)=2.096(8)

⁽⁶⁰⁾ Beydoun, N.; Duchateau, R.; Gambarotta, S. J. Chem. Soc., Chem. Commun. 1992, 244.

⁽⁶¹⁾ Duchateau, R.; Gambarotta, S.; Beydoun, N.; Bensimon, C. J. Am. Chem. Soc. 1991, 113, 8986.

Figure 5. ORTEP drawing (50% ellipsoids) of $[(Me_3Si)_2-N]_2V(Cl)(N_2CPh_2)$.

Å, V(1)-C(2)=2.124(8) Å) are the same within experimental error as that in the neutral V(III) complex $[(Me_3Si)_2N]_2VMe(THF)$.¹³

[(Me₃Si)₂N]₂VCl(N₂CPh₂). An ORTEP drawing of the structure is shown in Figure 5. The distorted tetrahedral geometry about the metal is such that the angle between the amide nitrogens and vanadium is $117.79(9)^{\circ}$ and that between the N-bound Ph_2CN_2 and the remaining three ligands are all ca. 106° . The sum of the angles about N(1) (357.5(2)°) and N(2) (358.3(2)°) again establish planarity at nitrogen for the amide ligands. The V-N(1), V-N(2), and V-Cl bond lengths (1.851(2), 1.879(2), and 2.2454(7) Å, respectively) are all unremarkable.

The most interesting structural feature is the geometry of the coordinated Ph₂CN₂ ligand. Consistent with a reduction of the diazoalkane to a Ph₂CN₂²⁻ ligand, or alkylidenehydrazido, is the short V-N(3) bond length of 1.683(2) Å. Although marginally longer, the V-N(3) distance is comparable to the V-N triple bonds found in other four-coordinate, V(V) imido complexes, such as $(Ph_3SiS)_3V=NBu^t$ (V-N = 1.622(2) Å, V-N-C = $170.7(2)^{\circ}$), 62 (Me₃SiO)₃V=NAdm (Adm = adamantyl; $V-N = 1.614(2), V-N-C = 175.8(2)^{\circ}, ^{63} Me_3SiN=VCl_3$ $(V-N = 1.59(1) \text{ Å}, V-N-Si = 177.5(7)^{\circ})$, 64 and $(RAr_FN)_2$ -VI(=NMes) (R = $C(CD_3)_2Me$, $Ar_F = 2.5-C_6H_3FMe$, Mes $= 2,4,6-C_6H_2Me_3; V-N = 1.645(7) Å, V-N-C =$ 175.7(7)°).65 In view of the large distortion of the V-N(3)-N(4) angle (152.8(2)°) from 180°, the V=N-1linkage is analogous to that in a bent imido consisting of a double bond between the vanadium and nitrogen (i.e., a two-electron donor). The N(3)-N(4) distance (1.328(3) Å) is intermediate to a N=N double and N-N single bond, 66 while the N(4)-C(13) distance (1.295(3)

Å) is as expected for a N=C double bond.⁶⁷ Along with the N(3)-N(4)-C(13) angle of 121.9(2)°, which indicates sp^2 hybridization of N(4), it follows that the best Lewis structure is resonance structure **A**, shown below, with a smaller contribution from **B**. Of the numerous bind-

ing modes that have been well-documented for transition metal diazoalkane complexes, 68 this doubly-bent form is rare; 57 the other example being $Mo_2(OPr^i)_{6^-}(N_2CPh_2)_2(py)^{69}$ whose solid-state structure features Mo-N-N angles of $155(1)^\circ$ and $164(1)^\circ$, with corresponding N-N-C angles of $124(1)^\circ$ and $122(1)^\circ$.

Summary. We have demonstrated that V(III) species of the type [(Me₃Si)₂N]₂VX(THF) are easily oxidized by CuCl to give [(Me₃Si)₂N]₂V(Cl)(X) products. As in alkylation reactions of Cp₂VCl₂, attempts to use these V(IV) compounds as the starting material for bis(hydrocarbyl) complexes of V(IV) showed that care must be taken in order to minimize reduction of the metal. Styrene oxide affects the two-electron oxidation of $[(Me_3Si)_2N]_2VR(THF)$ (R = Me, Ph), and in the case of R = Me, it was shown that the reaction proceeded through a dimeric V(IV) intermediate bridged by a single O2- ligand. Barring a trimolecular transfer of oxygen from the epoxide to two V(III) centers, the formation and lifetime of $\{[(Me_3Si)_2N]_2VMe\}_2(\mu-O)$ in the presence of excess PhCH(O)CH2 suggests that nucleophilic addition of [(Me₃Si)₂N]₂V(O)(Me) to [(Me₃Si)₂-N₂VMe(THF) is faster than than the transfer of oxygen from PhCH(O)CH₂ to [(Me₃Si)₂N]₂VMe(THF). In a related oxidation reaction, Ph₂CN₂ was formally reduced to a Ph₂CN₂²⁻ ligand by [(Me₃Si)₂N]₂VCl(THF) to give an "alkylidenehydrazido" in which the N2 unit was neither thermally or photolytically labile under the conditions we have examined thus far. The crystal structure of [(Me₃Si)₂N]₂VCl(N₂CPh₂) showed the PhCN₂²⁻ unit bound in a rare, doubly-bent, two-electron donor mode.

Acknowledgment. We thank the National Science Foundation for support and the Alfred P. Sloan Foundation for a fellowship (to J.A.).

Supporting Information Available: Tables of bond distances and angles, atomic coordinates, and anisotropic thermal parameters, packing diagrams for $[(Me_3Si)_2N]_2VCl_2$, $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VCl_2\}$, $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VMe_2\}$, and $[(Me_3Si)_2N]_2VCl(N_2CPh_2)$, and an ORTEP drawing showing the disorder in $[Li(TMEDA)_2]\{[(Me_3Si)_2N]_2VMe_2\}$ (47 pages). Ordering information is given on any current masthead page.

OM970458I

⁽⁶²⁾ Preuss, F.; Noichl, H.; Kaub, J. Z. Naturforsch, Teil B 1986, 41, 1085.

⁽⁶³⁾ Nugent, W. A.; Harlow, R. L. J. Chem. Soc., Chem. Commun. 1979, 342.

⁽⁶⁴⁾ Schweda, E.; Scherfise, K. D.; Dehnicke, K. Z. Anorg. Allg. Chem. 1985, 528, 117.

⁽⁶⁵⁾ Fickes, M. G.; Davis, W. B.; Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 6384.

⁽⁶⁶⁾ Cotton, F. A.; Wilkinson, G.; Gaus, P. L. Basic Inorganic Chemistry, 3rd ed.; Wiley: New York, 1995.

⁽⁶⁷⁾ For comparison, the C=N bond length and C=N-C angle in triphenylimine is 1.287(1) Å and 120.6(1)°, respectively. See: Tucker, P. A.; Hoek, A.; ten Cate, J. M.; Vos, A. *Acta. Crystallogr., Sect. B* **1975**, *31*, 733.

⁽⁶⁸⁾ Hillhouse, G. L.; Haymore, B. L. J. Am. Chem. Soc. 1982, 104, 1537.

⁽⁶⁹⁾ Chisholm, M. H.; Folting, K.; Huffman, J. C.; Ratermann, A. L. J. Chem. Soc., Chem. Commun. 1981, 1229.