Metal–Phosphorus Bonding in Fe(CO)₄PR₃ Complexes. **A Density Functional Study**

Òscar González-Blanco and Vicenç Branchadell*,†

Departament de Química, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Spain

Received June 23, 1997[®]

 $Fe(CO)_4PR_3$ complexes have been studied for R = H, Me, Ph, OMe, F, *i*-Pr, and NC₄H₄ using density functional methods. The $Fe-PR_3$ bond has been analyzed in terms of steric and electronic effects. The results obtained show that the main contribution to the bond stems always from the σ donation, but phosphines can be classified into three groups depending on the relative magnitude of the π -back-donation contribution. Thus, PMe₃, PPh₃, and P(*i*-Pr)₃ can be considered as σ -donor ligands, PF₃ and P(NC₄H₄)₃ would be σ -donor/ π acceptor ligands, and PH₃ and P(OMe)₃ would correspond to intermediate cases.

Introduction

Phosphorus(III) ligands play an important role in organometallic chemistry, since they are present in many transition-metal complexes.^{1–3} By selection of the appropriate substituents on the PR₃ ligand, the steric and electronic properties of the complex can be modified within a broad range.

The interaction between a PR₃ ligand and a metal is usually described in terms of steric and electronic effects. The separation between both effects is not always straightforward, since they are interconnected. The steric size of a ligand is usually measured through the cone angle θ introduced by Tolman.⁴ Two excellent reviews have recently been devoted to methods for estimating steric requirements of ligands.^{5,6} The electronic contribution to the M-P bond can be analyzed in terms of two factors: a σ -donation from the lone pair of the phosphorus ligand to the corresponding empty orbital of the metal fragment and a π -back-donation from the occupied orbitals of the metal to the virtual orbitals of appropriate symmetry in the PR₃ ligand. Several studies have been devoted to the nature of the donor and acceptor orbitals of the PR₃ ligands.⁷⁻⁹ Xiao et al.⁷ have analyzed the nature of the frontier orbitals of several PR3 molecules, showing that the lowest energy acceptor orbital of these systems is mostly a 3p orbital on the P atom with an antibonding P-R character. This fact has been confirmed by the measurement of electron attachment energies of the unstable negative ions of PR₃ by electron transmission spectros-

Metals; Wiley: New York, 1988.
(3) McAuliffe, C. A.; Mackie, A. G. In *Encyclopedia of Inorganic Chemistry*, King, R. B., Ed.; Wiley: New York, 1994; pp 2989–3010.
(4) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2953.
(5) Brown, T. L.; Lee, K. J. Coord. Chem. Rev. 1993, 128, 89.
(6) White, D.; Coville, N. J. Adv. Organomet. Chem. 1994, 36, 95.
(7) Xiao, S.-X.; Trogler, W. C.; Ellis, D. E.; Berkovitch-Yellin, Z. J. Am. Chem. Soc. 1983, 105, 7033.
(8) Tossell, J. A.; Moore, J. H.; Giordan, J. C. Inorg. Chem. 1985, 24, 1100

- 24 1100

copy.⁸ Orpen *et al.*^{10–12} have analyzed the geometries of several M-PR₃ complexes, providing evidence for the participation of P–R σ^* orbitals in the bonding.

Several parameters have been used to measure the donor/acceptor properties of PR₃ ligands. The σ -donor ability of PR₃ ligands has been related to their basicity. The gas-phase proton affinity, which would measure the Brønsted basicity, and the ionization energy, related to the Lewis basicity, usually follow similar trends.¹³ The basicity of phosphines has also been related to the heats of protonation of $M-PR_3$ complexes.¹⁴ Drago^{15,16} has rationalized the σ -donor strengths of phosphines by means of electrostatic and covalent substituent constants, $E_{\rm B}$ and $C_{\rm B}$.

Electron donor/acceptor properties of PR3 ligands have also been studied from the variation of CO stretching frequencies⁴ and from ¹³C NMR data¹⁷ in families of transition-metal carbonyl compounds. On the basis of values of CO stretching frequencies in Ni(CO)₃PR₃ complexes, Tolman⁴ introduced the electronic parameter χ associated with each substituent of the PR₃ ligand. The values obtained for this parameter show that the donor/acceptor ratio increases for different R substituents in the order halogen < alkoxy < aryl < alkyl.

This donor/acceptor ratio should be the result of changes in the σ - and π -contributions to the bonding. Several authors have proposed methods to distinguish between σ -donor and π -acceptor contributions to the M–P bond.^{18–24} Giering *et al.*^{21,22} have used the cor-

- (14) Angelici, R. J. Acc. Chem. Res. 1995, 28, 51.

- (15) Drago, R. S. Organometallics 1995, 14, 3408.
 (16) Drago, R. S.; Joerg, S. J. Am. Chem. Soc. 1996, 118, 2654.
 (17) Bodner, G. M.; May, M. P.; McKinney, L. E. Inorg. Chem. 1980, 19. 1951
- (18) Graham, W. A. G. *Inorg. Chem.* **1968**, *7*, 315.
 (19) Treichel, P. M. *Inorg. Chem.* **1968**, *7*, 1942.
 (20) Stelzer, O.; Unger, E. *Chem. Ber.* **1975**, *108*, 1246.
 (21) Golovin, M. N.; Rahman, M. M.; Belmonte, J. E.; Giering, W. P. Organometallics 1985, 4, 1981.
- (22) Rahman, M. M.; Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1.
 - (23) Alyea, E. C.; Song, S. Inorg. Chem. 1992, 31, 4909.

(24) Wang, S. P.; Richmond, M. G.; Schwartz, M. J. Am. Chem. Soc. 1992 114 7595

[†] E-mail: vicenc@klingon.uab.es. FAX: +34 3 581 2920.

[®] Abstract published in Advance ACS Abstracts, November 1, 1997. (1) Collman, J. P.; Hegedus, L. C.; Norton, J. R.; Finke, R. G.

Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, CA, 1987.

⁽²⁾ Crabtree, R. H. The Organometallic Chemistry of the Transition Metals; Wiley: New York, 1988.

⁽⁹⁾ Rolke, J.; Brion, C. E. Chem. Phys. 1996, 207, 173.

⁽¹⁰⁾ Orpen, A. G.; Connelly, N. G. J. Chem. Soc., Chem. Commun. 1985, 1310.

⁽¹¹⁾ Orpen, A. G.; Connelly, N. G. Organometallics 1990, 9, 1206. (12) Dunne, B. J.; Morris, R. B.; Orpen, A. G. J. Chem. Soc., Dalton

Trans. 1991, 653.

⁽¹³⁾ Dias, P. B.; Minas de Piedade, M. E.; Martinho Simões, J. A. Coord. Chem. Rev. 1994, 135/136, 737.

^{© 1997} American Chemical Society

relation between electrochemical data, the pK_a of the conjugated acid of PR₃, and CO stretching frequencies to classify PR₃ ligands into two different classes: σ -donors and σ -donor/ π -acceptors. According to this classification, the π -acceptor ability increases in the order $PMe_3 < PPh_3 < P(OMe)_3$. However, π -effects in PR_3 are small compared to those of strong π -acids such as CO. Ligand electrochemical parameters have also been used in conjunction with computed molecular electrostatic potentials to analyze the donor/acceptor capabilities of several ligands, including PPh₃ and P(OMe)₃.²⁵ The results obtained show that both ligands have similar π -acceptor abilities. The π -acceptor ability of PR₃ ligands has also been studied from ¹⁷O quadrupole coupling constants in W(CO)₅PR₃ complexes,²⁴ showing that even PMe_3 has some π -acceptor character.

Giering et al.²⁶⁻²⁹ have developed a method called quantitative analysis of ligand effects (QALE) that can be applied to the study of PR₃ coordination. In this method several physicochemical properties are related to the stereoelectronic properties of ligands through parameters such as χ and θ . Fernandez *et al.*³⁰ have shown that the electrostatic and covalent parameters introduced by Drago^{15,16} are linear combinations of these QALE parameters.

The nature of the M-P bond can also be analyzed from the values of the M-P bond lengths.³¹⁻³⁴ Bresciani-Pahor et al.^{31,32} have observed that the Co-P bond length in a series of PR₃ complexes increases with the bulkiness of the PR_3 ligand. On the other hand, determination of Fe-P bond lengths in sterically uncongested PR₃ complexes has shown that ligands with π -acid character, such as P(OR)₃, present shorter values than pure σ -donor ligands.³⁴

The metal-PR₃ bond has also been studied through theoretical calculations.³⁵⁻⁴⁶ In a series of papers, Brown et al.^{38–42} have developed a method for quantifying the steric requirements of PR₃ ligands based on molecular mechanics calculations. In this method a

- (29) Bartholomew, J.; Fernandez, A. L.; Lorsbach, B. A.; Wilson, M.
- R.; Prock, A.; Giering, W. P. Organometallics 1996, 15, 295.
 (30) Fernandez, A.; Reyes, C.; Wilson, M. R.; Woska, D. C.; Prock,
 A.; Giering, W. P. Organometallics 1997, 16, 342.
- (31) Bresciani-Pahor, N.; Calligaris, M.; Randaccio, L. Inorg. Chim. Acta 1980, 39, 173.
- (32) Bresciani-Pahor, N.; Randaccio, L.; Toscano, P. J. J. Chem. Soc., Dalton Trans. 1982, 1559.
- (33) Workulich, M. J.; Atwood, J. L.; Canada, L.; Atwood, J. D. Organometallics 1985, 4, 867.
- (34) Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1990, 9, 1758.
- (35) Marynick, D. S. J. Am. Chem. Soc. 1984, 106, 4064.
- (35) Marynick, D. S. J. Am. Chem. Soc. 1984, 106, 4064.
 (36) Blomberg, M. R. A.; Brandemark, U. B.; Siegbahn, P. E. M.; Mathisen, K. B.; Karlström, G. J. Phys. Chem. 1985, 89, 2171.
 (37) Braga, M. Inorg. Chem. 1985, 24, 2702.
 (38) Caffery, M. L.; Brown, T. L. Inorg. Chem. 1991, 30, 3907.
 (39) Lee, K. J.; Brown, T. L. Inorg. Chem. 1992, 31, 289.
 (40) Brown, T. L. Inorg. Chem. 1992, 31, 1286.
 (41) Choi, M.-G.; Brown, T. L. Inorg. Chem. 1993, 32, 1548.
 (42) Choi, M.-G.; Brown, T. L. Inorg. Chem. 1993, 32, 5603.
 (43) Pacchioni G.; Brown, T. L. Inorg. Chem. 1992, 31, 4391

 - (43) Pacchioni, G.; Bagus, P. S. *Inorg. Chem.* 1992, *31*, 4391.
 (44) Häberlen, O. D.; Rösch, N. J. Phys. Chem. 1993, *97*, 4970.
- (45) Fantucci, P.; Polezzo, S.; Sironi, M.; Bencini, A. J. Chem. Soc.,
- Dalton Trans. 1995. 4121.
- (46) Schmid, R.; Herrmann, W. A.; Frenking, G. Organometallics 1997, *16*, 701.

parameter called ligand repulsive energy, $E_{\rm R}$, is introduced. The values obtained for this parameter correlate well with the cone angles.

Pacchioni and Bagus⁴³ have reported a theoretical study of the metal $-PR_3$ (R = H, F, Me, OMe) interaction in several Pd complexes. According to their analysis of the bonding energy, the σ -basicity of PR₃ changes only slightly from one ligand to another. In contrast, there are significant variations in the π -acidity. Finally, Fantucci et al.45 have analyzed the M-PR3 bonding in $Pt(PX_3)_2$ (X = H, F), finding that PF_3 should be classified as both a stronger σ -donor and π -acceptor than PH₃.

Another aspect of M-PR₃ complexes relevant for theoretical calculations is the modelization of the PR₃ ligand. Häberlen and Rösch⁴⁴ have computed bond dissociation energies for several Au-PR₃ complexes, showing that the value obtained for PH3 is notably different than the values corresponding to PMe₃ and PPh₃. Similar results have recently been reported by Schmid *et al.*⁴⁶ for Rh–PR₃ complexes.

The purpose of this paper is to carry out a systematic study of the M-PR₃ bond for a series of PR₃ ligands in order to distinguish between steric and electronic effects and between σ - and π -interactions. We have chosen a C_{3v} Fe(CO)₄PR₃ complex, since in this system the symmetry of the complex is the same as that of the isolated PR₃ ligand, and σ - and π -orbitals belong to different symmetry species. As PR₃ ligands we have considered PH₃, PMe₃, PPh₃, P(OMe)₃, P(*i*-Pr)₃, and PF₃, which offer a broad variation of both steric and electronic properties. We have also considered tris(pyrrol-1-yl)phosphine, P(NC₄H₄)₃, which has been shown to present an important π -acceptor character.⁴⁷

Computational Details

All the calculations have been done using the ADF program.⁴⁸⁻⁵⁰ The molecular geometries have been optimized using the method developed by Versluis and Ziegler.⁵¹ Two different levels of calculation have been used in the geometry optimizations. In the most simple one, the local density approximation⁵² (LDA) has been used, with the parametrization developed by Vosko et al.53 In the highest level of calculation the gradient corrections to the exchange and correlation potentials developed by Becke⁵⁴ and Perdew,⁵⁵ respectively, have been used (BP). All the reported energies have been computed to include the gradient corrections. The 1s shell of C and O and the 1s2s2p shells of Fe and P have been treated by the frozen core approximation.⁴⁹ For the representation of the valence shells of C, O, and P we have used an uncontracted double- ζ basis set of Slater orbitals (STO) augmented with a set of 3d polarization functions. For H we have also used a double- ζ basis set augmented with a set of 2p polarization functions. In the geometry optimization of the systems containing PPh₃ the polarization functions of the C and H atoms have not been included. However, the energies have been recomputed to include these functions.

- (52) Gunnarsson, O.; Lundquist, I. *Phys. Rev.* **1974**, *B10*, 1319.
 (53) Vosko, S. H.; Wilk, L.; Nusair, M. *Can. J. Phys.* **1980**, *58*, 1200.

- (54) Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098.
 (55) Perdew, J. P. *Phys. Rev. B* **1986**, *33*, 8822.
 (56) Boys, S. F.; Bernardi, F. *Mol. Phys.* **1970**, *19*, 553.
 (57) Rosa, A.; Ehlers, A. W.; Baerends, E. J.; Snijders, J. G.; te Velde, *J. Phys. Chem. Chem. Chem.* **2002**, *100*, 2000.
- J. Phys. Chem. **1996**, 100, 5690. (58) Gilheany, D. G. Chem. Rev. **1994**, 94, 1339.

⁽²⁵⁾ Fielder, S. S.; Osborne, M. C.; Lever, A. B. P.; Pietro, W. J. J. Am. Chem. Soc. 1995, 117, 6990.

⁽²⁶⁾ Wilson, M. R.; Woska, D. C.; Prock, A.; Giering, W. P. Orga-nometallics 1993, 12, 1742.

⁽²⁷⁾ Lorsbach, B. A.; Bennett, D. M.; Prock, A.; Giering, W. P. Organometallics 1995, 14, 869.

⁽²⁸⁾ Lorsbach, B. A.; Prock, A.; Giering, W. P. Organometallics 1995, 14, 1694

⁽⁴⁷⁾ Moloy, K. G.; Petersen, J. L. J. Am. Chem. Soc. 1995, 117, 7696.
(48) ADF 2.2; Theoretical Chemistry, Vrije Universiteit, Amsterdam.
(49) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41.
(50) te Velde, G.; Baerends, E. J. J. Comput. Phys. 1992, 99, 84.
(51) Versluis, L.; Ziegler, T. J. Chem. Phys. 1988, 88, 322.
(52) Cumpargent Octumeration of Laboratory and Physical Physical

Figure 1. Schematic representation of the geometry of a Fe(CO)₄PR₃ complex.

Table 1. Optimized Geometric Parameters^a for the **Free PR₃ Molecules**

	P-R	R-P-R
Н	1.432 (1.412)	91.9 (93.4)
Me	1.838 (1.847)	97.8 (98.6)
Ph	1.829 (1.828)	103.2 (103.0)
OMe	1.656	105.0
F	1.603 (1.570)	96.7 (97.8)
<i>i</i> -Pr	1.882	102.6
NC ₄ H ₄	1.737	101.4

^a Bond lengths are in angstroms, and bond angles are in degrees. Available experimental values for the isolated phosphines taken from ref 58 are given in parentheses.

Finally, for Fe we have used a triple- ζ basis set. The basis set superposition error (BSSE) on the computed bonding energies has been estimated through the counterpoise method.56,57

Results and Discussion

Figure 1 schematically represents the geometry of a Fe(CO)₄PR₃ complex. The values of the most significant geometry parameters corresponding to the isolated PR₃ ligands and to all the complexes are presented, respectively, in Tables 1 and 2. For $P(i-Pr)_3$ we have considered the conformation in which all CH₃ groups point toward the incoming metal fragment, as shown in 1, in order to keep $C_{3\nu}$ symmetry. For P(OMe)₃ we have considered the conformation in which all methyl groups are directed inward with respect to the 3-fold axis that passes through phosphorus, as shown is 2. This conformation would be consistent with the value of the cone angle found in the literature (107°).⁶⁰

Table 1 shows that for the isolated PR₃ molecules there is an excellent agreement between the computed and the experimental geometries. For the Fe(CO)₄PH₃ complex (see Table 2) we have optimized the geometry at two different levels of calculation. LDA underestimates the Fe-P bond length by more than 0.07 Å with respect to BP, while for the Fe-C bonds the underestimation is 0.05 Å. This difference in the optimized geometries has a small effect on the computed bond energies, as we will see below. For the Fe(CO)₄PPh₃ complex (Table 2), our results can be compared with the experimental crystal structure. The computed values of the Fe-P and Fe-C bond lengths are lower by about 0.05 Å than the experimental ones. If we assume that the LDA calculation underestimates these bond lengths by amounts similar to those in the PH_3 complex, we may predict that a BP optimization of the PPh₃ complex would lead to a Fe-P bond length slightly larger than the X-ray value.

We will analyze the bonding between $Fe(CO)_4$ and PR₃ using the extended transition state method.^{61,62} According to this method, the bond energy (BE) between two fragments can be decomposed into several contributions:

$$BE = -(\Delta E_{prep} + \Delta E_{st} + \Delta E_{orb})$$

 $\Delta E_{\rm prep}$ is the preparation energy term, i.e. the energy necessary to convert the fragments from their groundstate equilibrium geometries to the geometry and electronic state involved in the complex formation. This term can be split into contributions from both fragments. For Fe(CO)₄ we have considered the ³B₂ ground state with the C_{2v} optimized geometry obtained by Li and Ziegler,⁶³ while in the complex, we have considered that this fragment is in a singlet state $({}^{1}A_{1}$ in $C_{3\nu}$), so that its contribution to the preparation term will involve a triplet-singlet excitation and a geometry distortion. $\Delta E_{\rm st}$ is the steric interaction term. This term represents the interaction energy between the two "prepared" fragments with the electron densities that each fragment would have in the absence of the other fragment. This term can be split into an exchange repulsion or Pauli term (ΔE_{Pauli}) and an electrostatic term (ΔE_{elstat}). Finally, the orbital interaction term (ΔE_{orb}) represents the stabilization produced when the electron densities are allowed to relax.

The orbital interaction between PR_3 and $Fe(CO)_4$ can be viewed as the consequence of two contributions: a σ -donation from the HOMO of PR₃ to the LUMO of Fe- $(CO)_4$ (3) and a π -back-donation involving the HOMO of $Fe(CO)_4$ and the LUMO of PR_3 (4). The orbital

interaction term has been decomposed into several contributions:

$$\Delta E_{\rm orb} = \Delta E_{\sigma} + \Delta E_{\pi} + \Delta E_{\rm syn} + \Delta E_{\rm res}$$

 ΔE_{σ} is the σ -donation term and represents the stabilization produced when only the first σ virtual orbital of Fe(CO)₄ is included (3). ΔE_{π} is the π -back-bonding term that represents the stabilization produced when only the first π virtual orbitals of PR₃ are included (4). ΔE_{syn} , the synergic term, is the additional stabilization produced when both interactions are allowed. Finally, $\Delta E_{\rm res}$ is the residual stabilization produced when the remaining virtual orbitals of both fragments are included. This term would take into account the polariza-

⁽⁵⁹⁾ Riley, P. E.; Davis, R. E. *Inorg. Chem.* **1980**, *19*, 159. (60) Tolman, C. A. *Chem. Rev.* **1977**, *77*, 313.

⁽⁶¹⁾ Ziegler, T.; Rauk, A. *Theor. Chim. Acta* **1977**, *46*, 1. (62) Ziegler, T.; Rauk, A. *Inorg. Chem.* **1979**, *18*, 1558.

⁽⁶³⁾ Li, J.; Schreckenbach, G.; Ziegler, T. J. Am. Chem. Soc. 1995, 117, 486.

Table 2. Optimized Geometry Parameters^a of the Fe(CO)₄PR₃ Complexes

	\mathbf{H}^{b}	Me	$\mathbf{P}\mathbf{h}^{c}$	OMe	F	<i>i</i> -Pr	NC ₄ H ₄
Fe-P	2.168 (2.252)	2.171	2.188 (2.244)	2.098	2.066	2.212	2.124
Fe-Cax	1.751 (1.799)	1.759	1.751 (1.795)	1.760	1.765	1.750	1.758
Fe-C _{eq}	1.756 (1.811)	1.747	1.754 (1.794)	1.757	1.766	1.755	1.762
$C_{ax} - O_{ax}$	1.148 (1.156)	1.149	1.150 (1.139)	1.150	1.145	1.150	1.148
$C_{eq} - O_{eq}$	1.153 (1.160)	1.155	1.154 (1.143)	1.153	1.148	1.158	1.152
P-R	1.417 (1.418)	1.800	1.837 (1.831)	1.613	1.569	1.890	1.724
$Fe-C_{eq}-O_{eq}$	179.4 (179.7)	175.0	179.7 (178.3)	178.9	178.6	174.5	179.0
P-Fe-C _{eq}	88.3 (88.8)	85.2	87.9 (88.8)	86.9	89.5	90.8	89.3
R-P-R	99.0 (98.5)	104.2	105.0 (103.9)	107.4	98.0	102.9	103.1

^{*a*} Bond distances are in angstroms, and bond angles are in degrees. ^{*b*} Values in parentheses obtained at a BP level of calculation. ^{*c*} Experimental values given in parentheses are taken from ref 59.

 Table 3. Decomposition of the Interaction Energy^a

 between PR₃ and a Model Fe(CO)₄ Fragment

						-	
	Н	Me	Ph	OMe	F	<i>i</i> -Pr	NC ₄ H ₄
E _{Pauli}	130.9	155.6	199.1	127.3	105.5	269.0	165.3
$E_{\rm elstat}$	-95.2	-126.6	-146.2	-98.8	-70.9	-175.9	-113.1
$E_{\rm st}$	35.7	29.0	52.9	28.5	34.6	93.1	52.2
E_{σ}	-35.8	-40.8	-39.9	-33.6	-28.4	-44.3	-32.4
E_{π}	-8.3	-7.0	-7.3	-9.2	-13.5	-7.7	-13.1
Esyn	-9.2	-9.4	-8.9	-10.1	-12.9	-9.5	-12.8
$E_{\rm res}$	-26.4	-31.0	-43.8	-29.5	-26.3	-55.6	-34.1
$E_{\rm orb}$	-79.7	-88.2	-99.9	-82.4	-81.1	-117.1	-92.3
$E_{\rm st} + E_{\rm orb}$	-44.0	-59.2	-47.0	-53.9	-46.5	-24.0	-40.2

^{*a*} See text for definitions; values in kcal mol⁻¹.

Table 4. Frontier Orbital Energies, Proton Affinities, Ionization Potentials, Tolman Electronic Parameters, and Cone Angles for the PR₃ Ligands

R	$E_{\rm HOMO}^a$	$E_{\rm LUMO}^a$	$\mathbf{P}\mathbf{A}^{b}$	$E_{\rm I}{}^c$	χ^d	cone angle ^e
Н	-6.94	-0.25	789	9.87	8.3	87
Me	-5.58	0.32	950	8.06	2.85	118
Ph	-6.26	0.23^{f}	962	7.39	4.42	145
OMe	-6.66	-0.20	923	8.5	8.03	107
F	-8.40	-1.89			18.2	104
<i>i</i> -Pr	-5.47	0.02			1.15	160
NC ₄ H ₄	-7.94	-1.77				

^{*a*} Values in eV. ^{*b*} Values in kJ mol⁻¹ taken from ref 13. ^{*c*} Values in eV taken from ref 13. ^{*d*} Values in cm⁻¹ taken from ref 13. ^{*e*} Values in degrees taken from ref 60. ^{*f*} Energy of the LUMO + 2 orbital, since the LUMO is centered on the Ph ligands.

tion of both fragments that contributes to alleviate the steric repulsion between them.

We will first perform an analysis of the bonding using model geometries, in order to analyze the intrinsic electronic and steric properties of all phosphines and isolate them from effects due to changes in the geometries of the fragments. We will consider the interaction between a PR₃ molecule in its equilibrium geometry and in the same position occupied by PH_3 in the $Fe(CO)_4$ - PH_3 complex and a singlet $Fe(CO)_4$ fragment with the geometry corresponding to the Fe(CO)₄PH₃ complex. In these cases the contribution of the Fe(CO)₄ fragment to the preparation energy term will have the same value in all complexes and has not been included. The results obtained are presented in Table 3. Table 4 presents the computed values for the HOMO and LUMO energies of the isolated PR₃ molecules as well as several parameters obtained from the literature, such as proton affinities, ionization potentials, Tolman electronic parameters, and cone angles.

Table 3 shows that the steric energy term increases in the order OMe < Me < F < H < NC₄H₄ < Ph < *i*-Pr. There is a parallel variation in the absolute values of electrostatic and Pauli terms. The variation of the Pauli term, i.e. the repulsive contribution to the steric energy term, follows the same trends as the values of the cone angles (Table 4), the only exception being PH_3 .

The absolute value of the σ -donation contribution to the orbital interaction term decreases in the order *i*-Pr > Me > Ph > H > OMe > NC₄H₄ > F. With the only exception of PH₃, this ordering is consistent with the values of E_{HOMO} , proton affinities, and ionization potentials presented in Table 4. According to these results, proton affinity is a good measure of the σ -donor ability of PR₃ in a metal complex.

Regarding the π -back-donation contribution, Table 3 shows that the absolute value of this term decreases in the order F > NC₄H₄ > OMe > H > *i*-Pr > Ph > Me. Again, with the only exception of PH₃, this ordering is the same as the one corresponding to the values of E_{LUMO} (Table 4).

The comparison between the σ - and π -contributions to the orbital interaction energy shows that all the PR₃ ligands studied are essentially σ -donor ligands. From the relative contributions of the σ - and π -terms we can distinguish between three different cases. The first one corresponds to "pure" σ -donor phosphines (PMe₃, P(*i*-Pr)₃, and PPh₃), in which the contribution of the π -term is only about 17–18% of that of the σ -term. The second case would correspond to PF₃ and P(NC₄H₄)₃, which can be considered as σ -donor/ π -acceptor phosphines. In these cases the contribution of the π -term is greater than 40% of that corresponding to the σ -term. Finally, the third case would correspond to intermediate ligands (PH₃ and P(OMe)₃), for which the contribution of the π -term is between 23 and 28% of the σ -contribution.

This ordering is in a good qualitative agreement with the donor/acceptor scales proposed by several authors.^{4,17,21,22} In contrast, previous theoretical studies^{25,43,45} obtained different results in some aspects. According to our results, the PR₃ ligands studied differ mainly in the σ -donor ability, while, with the exception of PF₃ and NC₄H₄, they are weak π -acceptors.⁴³ We conclude that PF₃ is weaker σ -donor than PH₃.⁴⁵ Finally, P(OMe)₃ is a better π -acceptor than PPh₃.²⁵

The synergic contribution to the orbital interaction term is slightly larger for PF₃, P(OMe)₃, and P(NC₄H₄)₃ than for the other ligands, while the variation of the absolute value of the residual term follows the same trend as the steric term, except for PF₃. The variation of the absolute value of $\Delta E_{st} + \Delta E_{orb}$ follows the order Me > OMe > Ph > F > H > NC₄H₄ >> *i*-Pr, as a consequence of both steric and orbital interactions.

Let us now consider the effects that take place when the geometries of the different complexes are optimized. The analysis of the bonding energy corresponding to the optimized geometries is presented in Table 5. If we

Table 5.	Decomp	osition	of the	Bonding	Energy ^a	between	\mathbf{PR}_3	and	Fe(C	CO)4
----------	--------	---------	--------	---------	---------------------	---------	-----------------	-----	------	----	----

	Н	Me	Ph	OMe	F	<i>i</i> -Pr	NC_4H_4
$E_{\rm prep}({\rm PR}_3)$	1.8	4.7	1.4	5.5	4.8	2.4	2.5
$E_{\rm prep}({\rm Fe}({\rm CO})_4)$	7.7	9.8	8.2	8.2	7.8	8.2	7.6
E_{Pauli}	138.9	189.9	188.8	177.2	147.0	172.2	179.8
Eelstat	-105.2	-153.7	-144.0	-136.3	-101.9	-138.0	-129.0
E _{st}	33.7	36.2	44.8	40.9	45.1	34.2	50.8
E_{σ}	-38.0	-49.7	-41.3	-40.8	-31.1	-40.1	-34.2
E_{π}	-7.4	-5.1	-5.5	-9.1	-15.8	-5.6	-12.9
Esvn	-8.8	-7.5	-7.6	-10.3	-15.1	-7.7	-13.0
Eres	-27.2	-40.1	-43.1	-38.8	-32.7	-38.2	-35.6
Eorb	-81.4	-102.4	-97.5	-99.0	-94.7	-91.6	-95.7
$E_{\rm st} + E_{\rm orb}$	-47.7	-66.2	-52.7	-58.1	-49.6	-57.4	-44.9
BE^{b}	38.2 (35.3)	51.7 (45.3)	43.1 (34.8)	44.4 (37.0)	37.0 (28.8)	46.8 (38.0)	34.8 (26.4)

^a See text for definitions; values in kcal mol⁻¹. ^b Values in parentheses include the BSSE correction.

compare these results with the ones presented in Table 3, we can observe that the sum of the orbital and steric terms increases in absolute value upon geometry relaxation. In most cases, this increase is due to a diminution of the orbital term that overtakes the increase of the steric term. In contrast, for the bulkier phosphines, PPh₃ and P(*i*-Pr)₃, the steric energy term decreases, while the orbital term becomes less stabilizing. For P(NC₄H₄)₃ we can also observe a diminution of the steric term increases.

Regarding the components of the orbital energy term, we can observe that the σ -contribution increases in absolute value in all cases except for P(*i*-Pr)₃. The π -acceptor term decreases in absolute value for most phosphines, while it remains almost unchanged for P(OMe)₃ and P(NC₄H₄)₃ and increases for PF₃. As a result of these two effects, the π/σ ratio in the orbital interaction energy decreases in all cases except for PF₃ and P(*i*-Pr)₃. However, the ordering of this ratio that has allowed us to distinguish between three different kinds of PR₃ ligands does not basically change due to the geometry relaxation.

Table 2 shows that the substitution of PH₃ by PMe₃, PPh₃, or $P(i-Pr)_3$ produces a lengthening in the Fe-P bond. In contrast, P(OMe)₃, PF₃, and P(NC₄H₄)₃ complexes have shorter Fe-P bonds. This result is consistent with the experimental observation that π -acceptor phosphines normally present shorter M–P bonds.^{34,47} Upon complexation, the R-P-R bond angle of the phosphine increases, and so the R-P-Fe angle decreases. This distortion would produce an increase of the steric repulsion with the metal fragment. However, it leads to a destabilization of the HOMO of PR364 and, hence, to an increase of the σ -donor ability of the PR₃ fragment. This increase in the value of the R-P-R angle is observed for all the complexes. However, the extent of this distortion strongly depends on the bulkiness of the R substituents. For PH_3 , the increase is 7.1°, while for $P(i-Pr)_3$ it is only 0.3°. The values of the P-Rbond lengths also change upon complexation. In all cases except PPh_3 and $P(i-Pr)_3$ these bonds slightly shorten.

The replacement of PH_3 by PR_3 also produces a geometry distortion of the $Fe(CO)_4$ fragment. For Me, Ph, and OMe, the $P-Fe-C_{eq}$ angle decreases, so that

Figure 2. Variation of the frontier orbital energy of a $C_{3\nu}$ Fe(CO)₄ fragment as the equatorial CO ligands bend over the vacant position. Bond lengths were taken from D_{3h} Fe-(CO)₅ and kept frozen. The X–Fe–(CO)_{eq} angle represents the angle of the vacant position (PR₃ in Figure 1), the Fe atom, and the equatorial carbonyls.

the equatorial CO ligands approach the PR₃ ligand. This distortion, which involves an increase in the steric repulsion, also leads to an enhancing of the σ -acceptor ability of the Fe(CO)₄ fragment. Figure 2 presents the variation of the total energy and the frontier orbital energies of a C_{3v} Fe(CO)₄ fragment versus the 3-foldaxis-Fe- C_{eq} angle. We can observe that the diminution of this angle leads to an important lowering of the LUMO energy. The decrease of this angle is especially significant for PMe₃, so that in this case, the σ -donation term is expected to be largely increased with respect to the model geometries, as we can confirm by comparing Tables 3 and 5. For the more π -accepting phosphine PF₃, the 3-fold-axis-Fe-C_{eq} angle slightly increases. This distortion would decrease the σ -acceptor ability of the metal fragment and slightly increase its π -donor character, since the HOMO of $Fe(CO)_4$ is slightly destabilized (see Figure 2). Therefore, for PF_3 we observe an increase of the contribution of the π -backdonation term. For P(*i*-Pr)₃, the same kind of distortion is observed. However, it is the result of the large steric repulsion between both fragments. With regard to the values of the Fe-C bond lengths, Table 2 shows that the Fe-(CO)_{ax} bond remains unchanged for Ph and *i*-Pr, while it is elongated in all other cases. The $Fe-(CO)_{eq}$

⁽⁶⁴⁾ Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry, Wiley: New York, 1985.

Table 6. Net Charges^a in the Different Fragments of the Fe(CO)₄PR₃ Complexes

-							
	Н	Me	Ph	OMe	F	<i>i</i> -Pr	NC ₄ H ₄
Fe	0.267	0.459	0.245	0.394	0.297	0.471	0.235
PR_3	0.428	0.417	0.456	0.278	0.186	0.440	0.318
CO _{ax}	-0.131	-0.141	-0.119	-0.145	-0.091	-0.132	-0.084
$\mathrm{CO}_{\mathrm{eq}}$	-0.188	-0.245	-0.194	-0.176	-0.131	-0.260	-0.156

^a Values in au derived from a Mulliken population analysis.

bond length decreases for Me, remains almost unchanged for Ph, i-Pr, and OMe, and increases for F and NC_4H_4 .

Table 6 presents the charge distribution obtained from a Mulliken population analysis in the Fe(CO)₄PR₃ complexes in their optimized geometries. In all cases the charge on the Fe atom is positive. The maximum value is obtained for P(i-Pr)₃ and PMe₃, followed by P(OMe)₃. The charge on Fe does not reflect the donor/ acceptor character of the PR₃ ligand. The charge on the axial CO ligand only slightly changes from one complex to another. In contrast, the charge on the equatorial CO ligands varies within a broader range. The variation of these charges follows the donor/acceptor properties of the PR₃ ligand. The π -back-donation to the CO ligands will be enhanced by strong σ -donor PR₃ ligands, while the σ -donation from CO to Fe will be enhanced by π -acceptors. PR₃ ligands that can be considered essentially as σ -donors (PMe₃ and P(*i*-Pr)₃) will increase the electron density on the CO ligands. In contrast, PF₃ and $P(NC_4H_4)_3$, which have an important π -acceptor character, will lead to lower electron densities on the CO ligands. This is the variation observed in the charges on the equatorial CO ligands.

Let us now consider the values of the M-PR₃ bond dissociation energies. The largest value, 45.3 kcal mol⁻¹, is obtained for PMe₃, while the smallest values, 28.8 and 26.4 kcal mol⁻¹, correspond to PF_3 and $P(NC_4H_4)_3$, respectively. The remaining PR_3 ligands present bond dissociation energies that vary within a range of 3.2 kcal mol⁻¹. The comparison of these results and the values of the Fe-P bond length in the complex (Table 2) shows that there is no direct relationship between the strength of an M-PR₃ bond and the M-P bond length. This fact has already been observed in Ti-PR₃ complexes by Ernst *et al.*⁶⁵ For the PH₃ complex we have also computed the bond dissociation energy from the geometries optimized at the BP level. The result obtained is 37.0 kcal mol⁻¹, 1.7 kcal mol⁻¹ larger than the value computed for the LDA geometry (see Table 5). The error introduced in the bond energy is less than 5% when LDA geometries are used.

There are no experimental data for the Fe-PR₃ bond dissociation energies in Fe(CO)₄PR₃ complexes, but the variation of the computed values for this system can be compared with the variation of bond energies corresponding to other complexes containing the same PR₃ ligands.¹³ In Mo(CO)₃(PR₃)₃ complexes, the Mo-PR₃ bond dissociation energies determined from solution calorimetric studies range from 30.2 kcal mol⁻¹ for PCl₃ to 38.9 kcal mol⁻¹ for P(OMe)₃⁶⁶ with the following variation: $PCl_3 < PPh_3 < PMe_3 \approx P(OMe)_3$. The ordering in the PMe₃/P(OMe)₃ pair changes in the Mo(CO)₄(PR₃)₂

system, where the corresponding Mo-PR₃ bond energies are 43.2 and 40.5 kcal mol⁻¹, respectively.⁶⁷ For Fe-PR₃ systems Nolan *et al.*⁶⁸⁻⁷⁰ have measured enthalpies of reactions of (benzylideneacetone)Fe(CO)₃ with phosphines leading to Fe(CO)₃(PR₃)₂, from which the variation of the Fe-P strength can be predicted. The results obtained indicate that the Fe-PMe₃ bond is stronger than the $Fe-PPh_3$ one by 6 kcal mol⁻¹. In a similar study Li *et al.*⁷¹ have shown that the $Fe-P(i-Pr)_3$ bond energy must be between those of Fe-PMe₃ and Fe- PPh_3 . The values that we have computed for the $Fe(CO)_4PR_3$ complexes are in excellent agreement with these experimental observations.

Regarding the $P(NC_4H_4)_3$ ligand, reaction enthalpies measured by Li et al.72 for substitution reactions involving Ru complexes suggest that the M-P(NC₄H₄)₃ bond is slightly stronger than the M-PPh₃ bond. Our results do not agree with this observation. However, it should be taken into account that the experimental reaction enthalpies correspond to processes in THF solution, while the computed values would correspond to the gas phase.

Finally, there is a question that arises in theoretical calculations of PR₃-containing systems: modeling the PR₃ ligand. Schmid et al.⁴⁶ have recently shown that in Rh-PR₃ complexes the Rh-PMe₃ bond dissociation energy is 7.2 kcal mol⁻¹ higher than the corresponding PH₃ bond dissociation energy. In our case the difference is even larger (9.9 kcal mol⁻¹). Therefore, PH₃ would be a bad model of PMe₃ in a theoretical calculation. The same authors suggest that PMe₃ could be used as a model for PPh₃. However, our results indicate that the difference between Fe-PMe₃ and Fe-PPh₃ bond energies is 10.6 kcal mol⁻¹, so that PMe₃ would not be a good model for PPh₃ either. The value of the M-PR₃ bond dissociation energy must be considered when model PR₃ ligands are used in the study of processes that involve the cleavage or formation of M–P bonds. In cases in which the PR₃ ligands act only as spectator ligands, steric and electron donor/acceptor properties should be considered.73-75

Concluding Remarks

We have studied Fe(CO)₄PR₃ complexes, considering different PR₃ ligands. The Fe-PR₃ bonding has been analyzed in terms of steric and electronic factors. In a first analysis, model geometries have been considered for the complexes, in order to separate the steric and electronic terms from effects that arise from changes in the geometries of the fragments upon complexation. This analysis shows that the main contribution to the Fe–P bond stems from the σ -donation but, depending on the π/σ ratio, we can classify phosphines into three groups: "pure" σ -donor phosphines (PMe₃, P(*i*-Pr)₃, and PPh₃, with a ratio lower that 20%), σ -donor/ π -acceptor

- (72) Li, C.; Serron, S.; Nolan, S. P. Organometallics 1996, 15, 4020.
 (73) Lin, Z.; Hall, M. B. J. Am. Chem. Soc. 1992, 114, 2928.
 (74) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.;
- Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357
- (75) Jacobsen, H.; Berke, H. Chem. Eur. J. 1997, 3, 881.

⁽⁶⁵⁾ Ernst, R. D.; Freeman, J. W.; Stahl, L.; Wilson, D. R.; Arif, A. M.; Nuber, B.; Ziegler, M. L. J. Am. Chem. Soc. **1995**, *117*, 5075.

⁽⁶⁶⁾ Nolan, S. P.; Lopez de la Vega, R.; Hoff, C. D. Organometallics 1986, 5, 2529.

⁽⁶⁷⁾ Mukerjee, S. L.; Nolan, S. P.; Hoff, C. D.; Lopez de la Vega, R. Inorg. Chem. 1988, 27, 81.

⁽⁶⁸⁾ Luo, L.; Nolan, S. P. Organometallics 1992, 11, 3483.
(69) Luo, L.; Nolan, S. P. Inorg. Chem. 1993, 32, 2410.
(70) Li, C.; Nolan, S. P. Organometallics 1995, 14, 1327.
(71) Li, C.; Stevens, E. D.; Nolan, S. P. Organometallics 1995, 14, 3791

phosphines (PF₃ and P(NC₄H₄)₃, with a ratio of about 40–50%), and intermediate phosphines (PH₃ and P(OMe)₃, with intermediate ratios).

When the geometries of the complexes are allowed to relax, two kinds of distortions are observed. For complexes with bulky PR₃ ligands, the geometry distortion leads to a diminution of the steric contribution to the interaction energy. On the other hand, for PMe₃, P(OMe)₃, and PF₃ the geometry distortion involves an increase in the steric repulsion that is overtaken by a more favorable orbital interaction. The σ -donation contribution increases in all cases except for P(*i*-Pr)₃, while the π -back-donation contribution only increases for PF₃. Regarding the bond dissociation energies, we have found that the strongest Fe–P bond belongs to Fe-(CO)₄PMe₃ (45.3 kcal mol⁻¹), while the weakest ones are found for Fe(CO)₄P(NC₄H₄)₃ (26.4 kcal mol⁻¹) and Fe(CO)₄PF₃ (28.8 kcal mol⁻¹). The remaining complexes lie in between and vary from one to another within a range of only 3.2 kcal mol⁻¹.

Acknowledgment. This work has been financially supported by the DGICYT (Grant Nos. PB92-0621 and PB95-0640) and CIRIT (Grant No. SGR95-00401). O.G.-B. gratefully acknowledges the Spanish Ministry of Education and Science for a doctoral fellowship.

OM9705214