[Ru(*η***5-C5Me5)(Me2NCH2CH2NMe2)]**⁺**, a Stable 16-Electron Complex. Reaction with Dioxygen and Formation of a Monomeric Hydroxoruthenium Tetramethylfulvene Complex**

Christian Gemel,† Kurt Mereiter,‡ Roland Schmid,† and Karl Kirchner*,†,§

Institute of Inorganic Chemistry and Institute of Mineralogy, Crystallography, and Structural Chemistry, Technical University of Vienna, Getreidemarkt 9, A-1060 Vienna, Austria

Received August 4, 1997^{\otimes}

Summary: NaBAr'₄ $(Ar' = 3.5-C_6H_3(CF_3)_2)$ abstracts *chloride from Ru(η5-C5Me5)(Me2NCH2CH2NMe2)Cl (1) in Et₂O to give the stable cationic 16e complex [Ru(* $η$ *⁵-C5Me5)(Me2NCH2CH2NMe2)]BAr*′*⁴ (2). Exposure of a Et2O solution of 2 to air at room temperature yields the novel monomeric hydroxotetramethylfulvene complex [Ru(η6-C5Me4CH2)(Me2NCH2CH2NMe2)(OH)]BAr*′*⁴ (4).*

Coordinatively unsaturated half-sandwich ruthenium complexes that are not stabilized by heteroatomic anionic ligands through metal-ligand multiple bonds, e.g., alkoxides or halides, $¹$ appear to be very reactive</sup> and to date have not been isolated or structurally characterized. Thus, compounds of the type [Ru(*η*5-C5- Me_5)(P-P)]⁺ (P-P = tertiary bisphosphines) are prepared *in situ* and react readily with dioxygen to give stable peroxo Ru(IV) complexes $\left[\text{Ru}(\eta^5\text{-}C_5\text{Me}_5)(P-P)(\eta^2\text{-}P_5\text{-}P_5)\right]$ O_2]⁺² The related complex $\left[\text{Ru}(\eta^5 \text{-} C_5 \text{Me}_5)(\text{Ph}_2 \text{PCH}_2 \text{-} C_5\text{Me}_5)\right]$ $CH₂NMe₂$ $]$ ⁺ smoothly undergoes *N*-methyl β -hydrogen elimination to give a cyclometallated complex.3 If the $P-P$ or $P-N$ coligand is replaced with a diamine, $N-N$, group, a remarkably stable unsaturated complex is obtained. Herein we report the first cationic 16e ruthenium complex $\text{Ru}(n^5\text{-}C_5\text{Me}_5)(\text{Me}_2\text{NCH}_2\text{CH}_2\text{NMe}_2)\,^+$, adding to the recently described isostructural iron variants [Fe(η⁵-C₅Me₅)(Ph₂PCH₂CH₂PPh₂)]PF₆^{4a} and [Fe(η ⁵-C₅Me₅)(Prⁱ₂PCH₂CH₂PPrⁱ₂)]BPh₄,^{4b} and also delineate some reactivities. It may be noted that the solid $Ru(\eta^5-C_5Me_5)(acac)$ purported to be a 16e complex⁵ turned out to be a dimer.⁶

Halide abstraction from Ru($η$ ⁵-C₅Me₅)(Me₂NCH₂CH₂-NMe₂)Cl (1)⁷ with NaBAr'₄ (Ar' = 3,5-C₆H₃(CF₃)₂)⁸ in

Figure 1. Structural view of $\text{[Ru}(\eta^5 \text{-} C_5 \text{Me}_5) \text{(Me}_2 \text{NCH}_2 \text{CH}_2\text{-}$ NMe2)]BAr′⁴ (**2**). Selected bond lengths (Å) and angles (deg): $Ru-C(1-5)_{av}$, 2.124(7); $Ru-N(1)$, 2.183(7); $Ru-N(2)$, $2.180(6)$; N(1)-Ru-N(2), 80.3(3).

Et₂O affords the blue cationic 16e complex $\left[\text{Ru}(n^5-C_5-\right]$ Me5)(Me2NCH2CH2NMe2)]BAr′⁴ (**2**) in 92% isolated yield.9,10,11 Characterization of **2** was achieved by elemental analysis, and ¹H and ¹³C{¹H} NMR spectroscopies.9 The complex is characterized by the presence of single resonances in the 1H NMR spectrum for the NMe₂ and NCH₂CH₂N protons. The simplicity of the spectrum is indicative of a cationic complex that has C_{2v} symmetry. This is also supported by the ¹³C{¹H} NMR data and unequivocally confirmed by X-ray crystallography (see Figure 1).¹² The angle between the planes defined by the C_5Me_5 ring and the atoms $N(1)$, Ru, and N(2) is 89.3(3)°, indicating no pyramidalization

[†] Institute of Inorganic Chemistry.

[‡] Institute of Mineralogy, Crystallography, and Structural Chemistry.

[§] E-mail: kkirch@fbch.tuwien.ac.at.

[®] Abstract published in *Advance ACS Abstracts*, November 15, 1997.
(1) Johnson, T. J.; Folting, K.; Strib, W. E.; Martin, J. D.; Huffman,

J. C.; Jackson, S. A.; Eisenstein, O.; Caulton, K. G. *Inorg. Chem.* **1995**, *34*, 488.

^{(2) (}a) Kirchner, K.; Mauthner, K.; Mereiter, K.; Schmid, R. *J. Chem. Soc., Chem. Commun.* **1993**, 892. (b) Lindner, E.; Haustein, M.; Fawzi, R.; Steimann, M.; Wegner, P. *Organometallics* **1994**, *13*, 5021. (c) de los Rios, I.; Jimenez Tenorio, M.; Padilla, J.; Puerta, M. C.; Valerga,

P. *J. Chem. Soc., Dalton Trans.* **1996**, 377. (3) Mauthner, K.; Slugovc, C.; Mereiter, K.; Schmid, R.; Kirchner, K. *Organometallics* **1997**, *16*, 1956.

^{(4) (}a) Hamon, P.; Toupet, L.; Hamon, J.-R.; Lapinte, C. *Organometallics* **1996**, *15*, 10. (b) de la Jara Leal, A.; Tenorio, M. J.; Puerta,

M. C.; Valerga, P. *Organometallics* **1995**, *14*, 3839.

(5) Kölle, U.; Kossakowski, J.; Raabe, G. *Angew. Chem., Int. Ed.*
 Engl. **1990**, *29*, 773.

⁽⁶⁾ Kölle, U.; Rietmann, C.; Raabe, G. Organometallics 1997, 16, 3273.

⁽⁷⁾ Wang, M. H.; Englert, U.; Kölle, U. *J. Organomet. Chem.* 1993, *453*, 127.

⁽⁸⁾ Brookhart, M.; Grant, B.; Volpe, J. *Organometallics* **1992**, *11*, 3920.

⁽⁹⁾ Preparation and data for **2**: A solution of **1** (86 mg, 0.222 mmol) in Et₂O (4 mL) was treated with NaBAr'₄ (196 mg, 0.222 mmol) and stirred for 5 min at room temperature. After removal of the solvent, the residue was dissolved in $Et₂O$ (0.5 mL), insoluble materials were removed by filtration, and the blue product was precipitated by addition of *n*-hexane. Yield: 248 mg (92%). Anal. calcd. for C48H43- BF₂₄N₂Ru: C, 47.42; H, 3.57; N, 2.30. Found: C, 47.77; H, 3.83; N, 2.04. ¹H NMR (*δ*, CD₂Cl₂, -40 °C): 7.76 (m, 8H), 7.61 (s, 4H), 2.88 (s, 12H, NMe₂), 1.80 (s, 4H, NCH₂CH₂N), 1.45 (s, 15H, C₅Me₅). ¹³C{¹H}
NMR (δ , CD₂Cl₂, -40 °C): 160.3 (q, $J_{BC} = 49.6$ Hz), 133.3, 127.4 (q, $J_{CF} = 31.5$ Hz), 123.1 (q, $J_{CF} = 272.3$ Hz), 115.9, 69.3 (*C* 48.3, 8.5 (C₅*Me*₅).

⁽¹⁰⁾ If NaBPh4 is used for halide abstraction, not **2** but the sandwich complex Ru(*η*5-C5Me5)(*η*6-C6H5BPh3) is quantitatively formed.

⁽¹¹⁾ For related 16e ruthenium complexes, see: Campion, B. K.; Heyn, R. H.; Tilley, D. D. *J. Chem. Soc., Chem. Commun.* **1988**, 278.
Lindner, E.; Haustein, M.; Mayer, H. A.; Gierling, K.; Fawzi, R.;
Steinmann, M. *Organometallics* **1995**, *14*, 2246. Sutter, J.-P.; James, S. L.; Steenwinkel, P.; Karlen, T.; Grove, D. M.; Veldman, N.; Smeets,
W. J. J.; Spek, A. L.; van Koten, G. *Organometallics* **1996**, *15*, 941.
Mashima, K.; Kaneyoshi, H.; Kaneko, S.; Mikami, A. Tani, K.;
Nakamura, A. *Or*

⁽¹²⁾ Crystal data of 2: monoclinic space group $P2_1/c$ (no. 14), $a = 12.968(5)$ Å, $b = 19.841(8)$ Å, $c = 21.505(8)$ Å, $\beta = 104.91(1)^\circ$, $V = 5347-(4)$ Å 3 , $Z = 4$, $R_I = 0.065$ ($I \ge 2\sigma(I)$), $R_I = 0.089$ (all data), wR_Z (all data), no. of reflections 6880, no. of refined parameters 677.

at the metal center. A planar ground-state structure has indeed been predicted on the basis of MO calculations for diamagetic d^6 complexes of the types $CpML_2$ and CpMLL′ when L and L′ are pure or predominant *σ*-donor ligands.1,13 The shortest distance between the ruthenium center and the carbon and hydrogen atoms of the $NMe₂$ groups is 2.97 and 3.05 Å, respectively, excluding agostic interactions. Compound **2** is remarkably stable for a 16e complex and does not react with H₂, HSiEt₃, or MeBr. However, treatment of 2 with Br₂ (0.5 equiv) affords the monobromo Ru(III) complex $[Ru(\eta^5-C_5Me_5)(Me_2NCH_2CH_2NMe_2)Br]^+$ (3) instead of the expected dibromo $Ru(IV).^{2a}$

Exposure of a Et_2O solution of **2** to air at room temperature yields the novel monomeric hydroxotetramethylfulvene complex [Ru($η$ ⁶-C₅Me₄CH₂)(Me₂NCH₂-CH2NMe2)(OH)]BAr′⁴ (**4**) in 86% yield (Scheme 1). This reaction involves methyl C-H bond cleavage of the C_5 -Me5 ligand. 1H and 13C{1H} NMR spectra of **4** showed the characteristic resonances of the coligands.14 The X-ray analysis of crystals of 4 revealed¹⁵ its monomeric nature (see Figure 2). The coordination about the Ru- (II) is approximately octahedral, three sites being taken up by an η^6 -tetramethylfulvene, the remaining three by one terminal OH group and the $Me₂NCH₂CH₂NMe₂$ ligand. The methylenic $=CH_2$ is bent toward the metal by about 0.87 Å from the C_5 plane, corresponding to an angle of about 39.2°. Dioxygen-induced methyl C-H activations of transition metal coordinated C_5Me_5 and C_6Me_6 ligands, which may be related to this process, have been reported previously.¹⁶ The formation of a hydroxo species could involve prior dioxygen coordination at ruthenium. Indeed, if the reaction of **2** with O_2 is carried out at -50 °C in Et₂O, a diamagnetic complex, tentatively formulated as $\text{[Ru}(n^5 \text{-} C_5 \text{Me}_5) \text{(Me}_2 \text{NCH}_2 \text{CH}_2)$ $NMe_2(Q_2)^+$ (5), but contaminated with **4** (ca. 10%), is isolated and characterized by ¹H and ¹³C{¹H} NMR

Figure 2. Structural view of [Ru(*η*6-C5Me4CH2)(Me2NCH2- $CH_2NMe_2(OH)$]BAr'₄ (4). Selected bond lengths (Å) and angles (deg): Ru-N(1), 2.213(5); Ru-N(2), 2.238(5); Ru-O, 1.990(3); Ru-C(1), 2.074(6); Ru-C(2), 2.158(6); Ru-C(3), 2.184(7); Ru-C(4), 2.218(7); Ru-C(5), 2.186(6); Ru-C(6), 2.430(11); N(1)-Ru-N(2), 80.3(2).

spectroscopies.¹⁷ In the ¹³C{¹H} NMR spectrum, resonances of the ring carbon atoms of the C_5Me_5 ligand are low-field-shifted from 69.3 ppm in **2** to 106.2 ppm in **5**, indicative of an oxidation state of ruthenium >+II. On warming an anaerobic acetone- d_6 solution of 5 (contaminated with **4**) from -50 to 0 $^{\circ}$ C, **4** is formed quantitatively as monitored by ${}^{1}H$ NMR spectroscopy.¹⁷ This conversion is also achieved even at low temperature upon addition of $PPh₃$ (1 equiv), giving 4 and $O=PPh₃$ in a ratio of 1:1. This result is evidence of 5 containing coordinated dioxygen. It is not clear at present whether a d^5 Ru(III) superoxo or a d^4 Ru(IV) peroxo complex is dealt with. The diamagnetic behavior of **5** would be consistent with both descriptions since in the first case magnetic coupling between the metal (*S* $=$ $\frac{1}{2}$) and the superoxide ligand (*S* = $\frac{1}{2}$) may occur, resulting in a ground state with $S = 0.18$ Unfortunately, IR measurements are hampered due to the intensive bands of the BAr'_{4}^- anion overlapping with the O-O stretching frequencies of coordinated dioxygen (O2 $^{\rm -}$ 1200-1070 cm⁻¹, O₂²⁻ 930-740 cm⁻¹).¹⁸ The formulation of a superoxo Ru(III) compound is conjectural but is in line with the finding that no $Ru(\eta^5-C_5Me_5)$ complex in conjunction with N-donor ligands in the oxidation state +IV is known. It should also be noted that **5** does not react with $Me₂C=CMe₂$ to give an epoxide.

In summary, we have shown that the $Ru(r^5-C_5Me_5)$ fragment bearing a hard *σ*-donor N-N coligand actually forms a remarkably stable 16e complex, while in the

⁽¹³⁾ Ward, T. R.; Schafer, O.; Daul, C.; Hofmann, P. *Organometallics* **1997**, *16*, 3207.

⁽¹⁴⁾ Preparation and data for **4**: A solution of **2** (123 mg, 0.101 mmol) in $Et₂O$ (4 mL) was stirred at room temperature in the presence of air for 3 min. After removal of the solvent, the residue was dissolved in $Et₂O$ (0.5 mL), insoluble materials were removed by filtration, and the product was precipitated by adding *n*-hexane. Yield: 107 mg (86%).
Anal. Calcd for C₄₈H₄₃BF₂₄N₂ORu: C, 46.81; H, 3.52; N, 2.27. Found:
C, 46.72; H, 3.68; N, 2.14. ¹H NMR (δ , acetone- d_6 , -50 °C): 7.80 (m,
 62.0, 56.2, 51.0, 9.1, 8.9.

⁽¹⁵⁾ Crystal data of **4**: triclinic space group $P\overline{1}$ (no. 2), $a = 12.400$ -(4) Å, $b = 13.176(4)$ Å, $c = 17.276(5)$ Å, $\alpha = 96.63(1)^\circ$, $\beta = 96.52(1)^\circ$, γ
= 95.38(1)°, $V = 2769(2)$ Å³, $Z = 2$, $R_I = 0.054$ ($I \ge 2\sigma(I)$), $R_I = 0.079$ (all data), $wR_2 = 0.163$ (all data), no. of reflections 9699, no. of refined parameters 919.

⁽¹⁶⁾ For related ruthenium fulvene complexes, see: Fan, L.; Turner, M. L.; Hursthouse, M. B.; Malik, K. M. A.; Gusev, O. V.; Maitlis, P. M. *J. Am. Chem. Soc.* **1994**, *116*, 385. Fan, L.; Wei, C.; Aigbirhio, F. I.; Turner, M. L.; Gusev, O. V.; Morozova, L. N.; Knowles, D. R. T.; Maitlis, P. M. *Organometallics* **1996**, *15*, 98. Li, C.; Luo, L.; Nolan, S. P.; Marshall, W.; Fagan, P. J. *Organometallics* **1996**, *15*, 3456. Kölle, U.;
Kang, B.-S. *J. Organomet. Chem*. **1990**, *386*, 267. For ruthenium–

hydroxo systems, see: Burn, M. J.; Fickes, M. G.; Hartwig, J. F.;
Hollander, F. J.; Bergman, R. G. *J. Am. Chem. Soc.* 1993, 115, 5875.
1(17) NMR data for 5: H NMR (δ , acetone- d_6 , -50 °C): 7.80 (m, 8H),
7.68 (s, 4H)

Y.; Kitajima, N. *J. Am. Chem. Soc.* **1994**, *116*, 12079. (c) Egan, J. W.; Haggerty, B. S.; Rheingold, A. L.; Sendlinger, S. C.; Theopold, K. H. *J. Am. Chem. Soc.* **1990**, *112*, 2445.

case of the $Ph_2PCH_2CH_2NMe_2$ coligand oxidative addition of the methyl C-H bond takes place. For the $Me₂$ -NCH2CH2NMe2 ligand, not even any agostic interaction between the ruthenium center and the *N*-methyl C-H bond could be observed. Further, *in situ* prepared 16e complexes with a bisphosphine coligand are reactive toward H_2 , Br_2 , or O_2 undergoing oxidative addition to form $Ru(IV)$ complexes. In contrast with the N-N coligand, such 2e changes do not appear to be realized, but instead a Ru(III) complex is favored. From this point of view, coordination of dioxygen should lead to a superoxo rather than a peroxo compound. This intermediate eventually activates a methyl C-H bond of the

 C_5Me_5 ligand, giving rise to the hydroxoruthenium tetramethylfulvene complex.

Acknowledgment. Financial support by the "Fonds zur Förderung der wissenschaftlichen Forschung" is gratefully acknowledged (Project No. 11896).

Supporting Information Available: Text giving full experimental details and analytical data for complex **3** and tables of X-ray structural data, including data collection parameters, positional and thermal parameters, and bond distances and angles for complexes **2** and **4** (32 pages). Ordering information is given on any current masthead page.

OM9706774