Models for the Homogeneous Hydrodesulfurization of Benzothiophene: Sequential Insertion of Manganese into the C(aryl)-**S and C(vinyl)**-**S Bonds, Followed by Metallathiacycle Ring Contraction**

Conor A. Dullaghan, Xiao Zhang, Dane Walther, Gene B. Carpenter, and Dwight A. Sweigart*

Department of Chemistry, Brown University, Providence, Rhode Island 02912

Qingjin Meng

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, Peoples Republic of China

Received August 18, 1997^X

Summary: Coordination of $Mn(CO)_{3}^+$ to the carbocyclic *ring of benzothiophenes activates the C(aryl)*-*S bond to reductive cleavage, affording metallathiacycle 5. When the 7-R substituent in 5 is methyl or ethyl (but not hydrogen), rapid C(vinyl)*-*S bond scission ensues to give isomer 6, which subsequently undergoes a metallathiacycle ring contraction to yield complex 7.*

Hydrodesulfurization (HDS) of petroleum is one of the largest volume industrial chemical processes, the main purpose of which is the removal of sulfur and conversion to H_2S .¹ Most aliphatic and acyclic sulfur compounds are adequately treated by current technology. However, unsaturated heterocycles of the thiophenic type, especially substituted benzothiophenes (BTs) and dibenzothiophenes (DBTs),² are resistant to the usual HDS conditions and, as a consequence, constitute much of the residual sulfur in fossil fuels. A key step in HDS is the cleavage of the $C-S$ bonds, and this is thought³ to be facilitated by precoordination of a metal in the catalyst to the sulfur, which is then followed by insertion into the C-S bond. In homogeneous model studies of BT (**1**), a variety of nucleophilic metal fragments have been shown^{3c,d,4} to insert at the vinylic carbon-sulfur bond to afford **2**, Chart 1. The preference for cleavage at C(2), rather than at the aryl carbon-sulfur bond, $C(8)-S$, has been attributed^{3d} to selective weakening of the $C(2)-S$ bond via η ¹-S precoordination.

Recent studies show that cleavage of the C(aryl)-S bond in **1** to give metallathiacycle **3** can, in fact, be

accomplished by strategies based on either steric and/ or electronic effects. Thus, 2-methyl-BT reacts with $Cp*Rh(PMe_3)$ to give **2** as the kinetic product, which, due to the steric influence of the methyl group, converts upon prolonged heating to the thermodynamically favored **3**. ⁵ With regard to electronic effects, we have shown⁶ that selective activation of the $C(\text{aryl})-S$ bond in 1 occurs when the $Mn(CO)₃$ ⁺ fragment is precoordinated to the carbocyclic ring to give the *π*-bonded BT complex **4** ($R = H$; hereafter labeled "**4**(H)"). Chemical reduction of **4**(H) leads to rapid and high-yield formation of **5**(H), with no trace of insertion into the C(vinyl)-S bond. In a similar vein, precoordination of $Ru(C_6Me_6)^{2+}$ to **1** was also found to activate the C(aryl)-S bond.7 The suggestion was made that C(aryl)-S bond cleavage in BT may *require* initial coordination to the carbocyclic ring and that bimetallic species such as **5**(H), produced upon electron transfer or nucleophilic attack, play an important role in subsequent hydrogenolysis and desulfurization.^{6,7} Indeed, there are a number of model studies suggesting⁸ that important steps in HDS chemistry of thiophenes are facilitated when two metals are available, perhaps in analogy to the industrial heterogeneous catalysts (Mo/Co, etc.).

^X Abstract published in *Advance ACS Abstracts,* December 1, 1997. (1) (a) Sanchez-Delgado, R. A. *J. Mol. Catal.* **1994**, *86*, 287. (b)
Angelici, R. J. *Bull. Soc. Chim. Belg.* **1995**, *104*, 265. (c) Startev, A. N.
Catal. Rev.-Sci. Eng. **1995**, 37, 353. (d) Bianchini, C.; Meli, A. *J Soc., Dalton Trans.* **1996**, 801.

^{(2) (}a) Willey, C.; Iwao, M.; Castle, R. N.; Lee, M. L. *Anal. Chem.* **1981**, *53*, 400. (b) Kabe, T.; Ishihara, A.; Tajima, H. *Ind. Eng. Chem. Res.* **1992**, *31*, 1577.

^{(3) (}a) Dong, L.; Duckett, S. B.; Ohman, K. F.; Jones, W. D. *J. Am. Chem. Soc.* **1992**, *114*, 151. (b) Choi, M.-G.; Angelici, R. J. *Organometallics* **1992**, *11*, 3328. (c) Bianchini, C.; Herrera, V.; Jimenez, M. V.; Meli, A.; Sanchez-Delgado, R.; Vizza, F. *J. Am. Chem. Soc.* **1995**, *117*, Meli, A.; Sanchez-Delgado, R.; Vizza, F. *J. Am. Chem. Soc.* **1995**,

^{(4) (}a) Ogilvy, A. E.; Draganjac, M.; Rauchfuss, T. B.; Wilson, S. R.
Organometallics **1988**, 7, 1171. (b) Jones, W. D.; Dong, L. *J. Am. Chem.*
Soc. **1991**, *113*, 559. (c) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizz **1994**, *116*, 4370. (d) Bianchini, C.; Herrera, V.; Jimenez, M. V.; Laschi, F.; Meli, A.; Sanchez-Delgado, R.; Vizza, F.; Zanello, P. *Organometallics* **1995**, *14*, 4390. (e) Bianchini, C.; Meli, A.; Patinec, V.; Sernau, V.; Vizza, F. *J. Am. Chem. Soc.* **1997**, *119*, 4945.

⁽⁵⁾ Myers, A. W.; Jones, W. D.; McClements, S. M. *J. Am. Chem. Soc.* **1995**, *117*, 1704.

⁽⁶⁾ Dullaghan, C. A.; Sun, S.; Carpenter, G. B.; Weldon, B.; Sweigart, D. A. *Angew. Chem.* **1996**, *108*, 234; *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 212.

⁽⁷⁾ Sun, S.; Dullaghan, C. A.; Sweigart, D. A. *J. Chem. Soc., Dalton Trans.* **1996**, 4493.

In this communication, we demonstrate that C(aryl)-S bond cleavage in **4** is the kinetically favored pathway even when the thermodynamically favored product involves C(vinyl)-S cleavage. This, as well as a novel metallathiacycle ring contraction reaction that may be of general significance in HDS chemistry, are illustrated in Scheme 1.

Benzothiophenes occurring in petroleum are generally highly substituted and, as a result, are more resistant to HDS than is unsubstituted BT. In order to probe these important "substituent" effects on C-S bond scission, we undertook a study of complexes **4** substituted at the 7-position with methyl and ethyl groups. Herein, we demonstrate that substitution at the C(7) carbon has a profound effect on the chemistry related to C-S bond activation. The manganese tricarbonyl complexes of 7-Me-BT and 7-Et-BT were readily synthesized by a standard method^{9,10} in which $Mn(CO)_{5}Br$ in CH_2Cl_2 is treated with AgBF₄, followed by addition of the benzothiophene. In analogy with the previously observed facile conversion of **4**(H) to **5**(H), it was anticipated that reduction of **4**(Me) and **4**(Et) would produce the bimetallics **5**(Me) and **5**(Et), although at a lower rate reflective of steric inhibition in the vicinity of the C(aryl)-S bond. Indeed, cobaltocene reduction of **4**(Me) and **4**(Et) under CO produced the red-purple C(aryl)-S insertion products **5** in high yield, as summarized in

(9) (a) Jackson, J. D.; Villa, S. J.; Bacon, D. S.; Pike, R. D. *Organometallics* **1994**, *13*, 3972. (b) Sun, S.; Yeung, L. K.; Sweigart, D. A.; Lee, T.-Y.; Lee, S. S.; Chung, Y. K.; Switzer, S. R.; Pike, R. D. *Organometallics* **1995**, *14*, 2613.

(10) **4**(R): All reaction vessels were flame dried under nitrogen. AgBF₄ (1.1 mmol) was added to Mn(CO)₅Br (1.0 mmol) in CH₂Cl₂ (20 mL), and the reaction mixture was stirred for 10 min at room temperature in the absence of light. At this stage, 1.5 mmol of 7-Me-BT or 7-Et-BT, prepared by a published method,¹¹ was added and the
mixture refluxed for 3 h. The volume was then reduced to 5 mL, and the product precipitated as the BF_4^- salt by the addition of diethyl ether. Reprecipitation from CH₂Cl₂ with diethyl ether afforded pure product as a bright yellow powder. $\mathbf{\hat{4}}$ (Me)·BF₄: yield 79%; IR (CH₂Cl₂)
 $v_{\rm CO}$ 2074 (s), 2012 (s) cm⁻¹; ¹H NMR (CD₂Cl₂) δ 8.30 (d, $J = 5.6$ Hz,
H2), 7.69 (d, $J = 5.6$ Hz, H3), 7.33 (d, $J = 6.8$ Hz Hz, H5), 6.38 (d, $J = 6.0$ Hz, H6), 2.93 (s, Me). Anal. Calcd: C, 38.51; H, 2.16. Found: C, 38.07; H, 1.85. **4**(Et) BF₄: yield 84%; IR (CH₂Cl₂)
*ν*_{CO} 2074 (s), 2012 (s) cm⁻¹; ¹H NMR (CD₂Cl₂) *δ* 8.28 (d, *J* = 5.4 Hz, H2), 7.69 (d, $J = 5.5$ Hz, H3), 7.37 (d, $J = 6.5$ Hz, H4), 6.60 (t, $J = 6.2$ Hz, H5), 6.35 (d, $J = 5.8$ Hz, H6), 3.19 (m, CH₂), 1.56 (t, $J = 7.5$ Hz, Me). Anal. Calcd: C, 40.21; H 2.60. Found: C, 40.48; H 2.45.

(11) Loozen, G. *J. Org. Chem.* **1974**, *38*, 1036.

 $7(Me)$

Figure 1. Crystal structures of **5**(Me), **6**(Me), and **7**(Me). Selected bond distances (Å) for **5**(Me): Mn2-C8 2.122(6), Mn2-S1 2.384(2), S1-C2 1.694(9), C2-C3 1.358(11), C3- C9 1.485(10). Bond distances (Å) for **6**(Me): Mn2-C2 2.039- (4), Mn2-S1 2.348(1), S1-C8 1.722(4), C2-C3 1.333(5), C3-C9 1.453(5). Bond distances (Å) for **7**(Me): Mn2-C3 2.105(4), Mn2-S1 2.365(1), S1-C8 1.738(3), C2-C3 1.310- (6), C3-C9 1.526(5).

Scheme 1.12 However, **5**(Me) and **5**(Et) were formed as *kinetic* products which, in CH_2Cl_2 solution at room temperature, cleanly isomerized to the orange C(vinyl)-S insertion analogues **6**(Me) and **6**(Et) with a halflife of circa 6 and 0.5 h, respectively.¹³ By comparison, **5**(H), which lacks a substituent at C(7), undergoes no detectable reaction in 24 h. Surprisingly, it was also found that in refluxing CH_2Cl_2 or Et_2O over 2 h 6 (Me) and **6**(Et) react further via an unprecedented metallathiacycle ring contraction to afford **7**(Me) and **7**(Et).14

^{(8) (}a) Chen, J.; Daniels, L. M.; Angelici, R. J. *J. Am. Chem. Soc.* **1991**, *113*, 2544. (b) Dailey, K. M. K.; Rauchfuss, T. B.; Rheingold, A. L.; Yap, G. P. A. *J. Am. Chem. Soc.* **1995**, *117*, 6396. (c) Bianchini, C.; Jimenez, M. V.; Mealli, C.; Meli, A.; Moneti, S.; Patinec, V.; Vizza, F. *Angew. Chem.* **1996**, *108*, 1845; *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 1706.

Figure 2. A comparison of **5**(H) and **5**(Me) viewed along the edge of the carbocyclic plane.

A transformation of this type has not been previously observed or postulated in HDS chemistry.

The chemistry discussed above and outlined in Scheme 1 was verified by X-ray structural studies of **5**(Me), **6**(Me), and **7**(Me), the results of which are shown in Figure 1.15 Figure 2 gives a comparative structural view of $5(Me)$ and the previously reported $5(H)$.⁶ In both cases, the metallathiacyclic rings are highly nonplanar, but in very different manners. For example, in **5**(H), the ring is twisted such that the sulfur is 1.04 Å above the plane defined by the carbocyclic atoms, whereas in **5**(Me), the ring is flipped in an opposite sense such that the sulfur is 0.96 Å below this plane. It appears that **5**(Me) adopts this conformation to avoid contact between a carbonyl group and the 7-methyl substituent, which, as a consequence, renders **5**(Me) thermodynamically unstable with respect to isomerization to **6**(Me). The conversion $5(R) \rightarrow 6(R)$ is surprisingly facile, with the observed rate order $R = Et$ > Me being in agreement with the idea that the reaction is driven by steric constraints imposed by the 7-R substituent. In contrast to the case with **5**(Me), the metallathiacyclic ring in

 (13) **6**(R): Complex **5**(R) (0.10 mmol) was dissolved in CH₂Cl₂ (10) mL) under nitrogen at room temperature. The conversion to **6**(R) was monitored via IR, with approximate half-lives being 6 h for $\hat{R} = Me$
and 0.5 h for R = Et. After the reaction was complete, the volume was reduced to 2 mL and the solution passed through alumina with CH2- $Cl₂$ as the eluant. Crystals of 6 (Me) suitable for X-ray diffraction were grown by cooling a 1:1 Et₂O:pentane solution. 6(Me): yield 85%; IR
(CH₂Cl₃) v_{C0} 2068 (m), 2047 (s), 1975 (s, br), 1931 (m) cm⁻¹; ¹H NMR
(CDCl₃) ∂ 8.68 (d, J = 12 Hz, H2), 7.22 (d, J = 12 Hz, H3), 5.82 (d, J
= (s, Me). Anal. Calcd: C, 42.30; H, 1.78. Found: C, 42.12; H, 2.02.
6(Et): yield 76%; IR (CH₂Cl₂) *ν*_{CO} 2066 (m), 2047 (s), 1975 (s, br), 1931 (m) cm⁻¹; ¹H NMR (CD₂Cl₂) δ 8.57 (d, $J = 12$ Hz, H2), 7.33 (d, $J = 12$ $\overline{H}Z$, H3), 5.93 (d, $\overline{J} = 6.4$ H \overline{L} , H4), 5.87 (d, $\overline{J} = 6.4$ H \overline{L} , H6), 5.53 (t, $\overline{J} = 6.2$ Hz, H5), 3.23 (m, CH₂), 2.77 (m, CH₂), 1.35 (t, $\overline{J} = 7.6$ Hz, Me).

(14) $7(R)$: Complex $6(R)$ (0.10 mmol) was dissolved in CH_2Cl_2 (10 mL), and the solution was refluxed under nitrogen for 2 h. The volume was then reduced to 2 mL and passed through neutral alumina with CH2Cl2 as the eluant. Crystals of **7**(Me) suitable for X-ray diffraction were grown by cooling a pentane solution. **7**(Me): yield 82%; IR (CH₂-
Cl₂) *ν*_{CO} 2068 (m), 2047 (s), 1975 (s, br), 1931 (m) cm⁻¹; ¹H NMR (CDCl₃) *δ* 6.57 (s, CH), 6.51 (d, *J* = 7.6 Hz, H4), 6.00 (s, CH), 5.87 (d, *J* = 6.5
Hz, H6), 5.46 (t, *J* = 6.3 Hz, H5), 2.54 (s, Me). FAB-MS: *m*/*z* 454 (M⁺), 370 (M⁺ - 3CO), 342 (M⁺ - 4CO), 87 (M⁺ - Mn - 4CO). HRMS: *m*/*z* calcd 453.8752, found 453.8762. Anal. Calcd: C, 42.30; H, 1.78. Found: C, 41.83; H, 2.06. **7**(Et): yield 86%; IR (CH2Cl2) *ν*CO 2066 (m), 2047 (s), 1975 (s, br), 1931 (m) cm⁻¹; ¹H NMR (CD₂Cl₂) δ 6.57 (s, CH), 6.54 (d, $J = 6.4$ Hz, H4), 5.98 (s, CH), 5.88 (d, $J = 5.8$ Hz, H6), 5.47 (t, $J = 6.4$ Hz, H5), 3.10 (m, CH₂), 2.81 (m, CH₂), 1.36 (t, $J = 6.4$ Hz, Me).

6(Me) is fairly planar (mean deviation 0.057 Å), with the sulfur 0.16 Å above the plane defined by the carbocyclic atoms.

A completely unexpected result of the present study was the observation that **6**(R) cleanly transforms to **7**(R) after 2 h in refluxing CH_2Cl_2 . The resultant fivemembered metallathiacyclic ring in **7**(Me) is approximately planar (mean deviation 0.054 Å) with the sulfur and manganese atoms on opposite sides of the mean plane and 0.06 Å away from it. The mechanism of the transformation $f{B}(R) \rightarrow f{R}$ is presently unclear, although it was found that the same product is obtained in CD_2Cl_2 and Et_2O , indicating that the exocyclic methylene hydrogens on C(2) in **7**(Me) originate from the thiophene ring and not the solvent.

The results presented herein indicate that metal coordination to the carbocyclic ring in benzothiophenes favors C(aryl)-S over C(vinyl)-S bond scission, even when the latter is the thermodynamic product. This may be true as well for heterogeneously catalyzed HDS reactions of BTs. Preliminary work¹⁶ shows that precoordination of a variety of metal fragments to the carbocyclic ring of BTs leads to enormous increases in the rate of C-S bond cleavage via metal insertion reactions. The metallathiacycle ring contractions **6**(R) \rightarrow 7(R) appears to be a new reaction type in HDS chemistry, the significance of which is yet to be determined. Mechanistic studies and hydrogenation reactions related to **5**(R), **6**(R), and **7**(R) are underway.

Acknowledgment. This work was supported by grants from the National Science Foundation (Grant Nos. CHE-9400800 and CHE-9705121) and the Petroleum Research Fund, administered by the American Chemical Society.

Supporting Information Available: Tables of atomic coordinates, bond lengths and angles, anisotropic displacement parameters, and hydrogen coordinates for **5**(Me), **6**(Me), and **7**(Me) (32 pages). Ordering information is given on any current masthead page.

OM970728X

(15) The crystal structures of **5**(Me), **6**(Me), and **7**(Me) were determined with a Siemens P4 diffractometer equipped with a CCD area detector and controlled by SMART version 4 software. Data reduction was carried out by SAINT version 4 and included a profile analysis; this was followed by absorption correction by use of the program
SADABS. Data was collected at 25 °C with Mo Κα radiation. The
structures were determined by direct methods and refined on *F*² using the SHELXTL version 5 package. Hydrogen atoms were introduced in ideal positions, riding on the carbon atom to which they are bonded; each was refined with isotropic temperature factors 20-50% greater than that of the ridden atom. All other atoms were refined with anisotropic thermal parameters. **5**(Me): crystal dimensions 0.16×0.15 × 0.07 mm, crystal system triclinic, space group *P*1, *a* = 9.8508(2) Å,
b = 14.2111(3) Å, *c* = 14.9125(4) Å, α = 117.853(1)°, β = 90.655(1)°, γ
= 106.487(1)°, *V* = 1744.14(7) Å³, *Z* = 4, ρ_{calcd} = 1.730 g cm⁻³ 1.603 mm-1, *θ* range 1.57-24.64°, 471 variables refined with 5715 independent reflections to final *R* indices ($I > 2\sigma(I)$) of R = 0.0649 and $wR2 = 0.1471$, and $GOF = 1.091$. The unit cell contains two independent molecules, which are similar except that molecule 2 (with 20 added to the atom numbers of molecule $\hat{1}$) shows evidence of disorder in the $S(21)-C(22)-C(23)$ region and in the $C(35)-O(25)$ carbonyl group. **6**(Me): crystal dimensions $0.20 \times 0.20 \times 0.05$ mm, crystal
system monoclinic, space group P_2/c , $a = 9.7032(5)$ Å, $b = 13.8228(8)$
Å, $c = 13.6898(8)$ Å, $\beta = 105.881(1)^{\circ}$, $V = 1766.1(2)$ Å³, $Z = 4$, $\rho_{\text{cal$ of R = 0.0379 and wR2 = 0.0807, and GOF = 0.993. 7 (Me): crystal dimensions $0.56 \times 0.12 \times 0.07$ mm, crystal system monoclinic, space group $C2/c$, $a = 28.9521(3)$ Å, $b = 8.06810(10)$ Å, $c = 18.7138(2)$ Å, β
= 123.729(1)°, $V = 3635.51(7)$ Å³, $Z = 8$, $\rho_{\text{caled}} = 1.660$ g cm⁻³, μ
1.538 mm⁻¹, θ range 1.69–26.33°, 236 variables refined with 3 independent reflections to final *R* indices ($I > 2\sigma(I)$) of R = 0.0467 and wR2 = 0.1043, and GOF = 0.980. $\dot{=}$ 0.1043, and GOF $=$ 0.980.

(16) Camiletti, C.; Dullaghan, C. A.; Zhang, X.; Meng, Q.; Carpenter, G. B.; Sweigart, D. A. Unpublished results.

⁽¹²⁾ **5**(R): Cobaltocene (0.31 mmol) and **4**(R)·BF4 (0.30 mmol) were combined in CH_2Cl_2 (10 mL), and the mixture was stirred at room temperature for 20 min and then passed through deactivated neutral alumina with CH_2Cl_2 as the eluant. After the solvent was removed under vacuum, the resulting red-purple solid was washed with pentane
and dried. 5(Me): yield 85%; IR (CH₂Cl₂) v_{CO} 2072 (m), 2047 (s), 1991
(s, br), 1927 (m) cm⁻¹; ¹H NMR (CDCl₃) δ 7.47 (d, $J = 9.7$ Hz, H2) 1.78. Found: C, 42.68; H, 1.55. 5(Et): yield 86%; IR (CH₂Cl₂) *ν*_{CO} 2072 (m), 2047 (s), 1993 (s, br), 1927 (m) cm⁻¹; ¹H NMR (CDCl₃) δ 7.52 (d, *J* = 9.5 Hz, H2), 6.28 (d, *J* = 9.5 Hz, H3), 5.96 (t, *J* = 6.5 Hz, H5), 5.57 (d, $J = 6.5$ Hz, H4), 5.52 (d, $J = 6.6$ Hz, H6), 3.30 (m, CH₂), 2.97 (m, CH₂), 1.36 (t, $J = 7.6$, Me).