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Summary: A reactive coordinatively unsaturated iron-
(II) bonded to a quasi-planar O4 environment in
[calix[4](OMe)2(O)2Fe] (2) has been obtained from the
reaction of the free ligand 1 with Fe2Mes4 (Mes ) 1,3,5-
Me3C6H2). The reaction of 2, which adds a variety of
monodentate ligands, [calix[4](OMe)2(O)2FeL] (L ) thf,
3; ButNC, 4), with Ph2CN2 led to the first high-spin iron-
(II) carbene bonded to an oxo matrix, [calix[4](OMe)2-
(O)2FedCPh2] (5).

An iron-carbon functionality supported exclusively
by an oxygen donor set has no precedent.1 In the case
of a preorganized geometry, such a set of donor atoms
would mimic quite nicely the coordination environment
experienced by iron in some iron oxide based heteroge-
neous catalysts.2 In order to achieve such a result, we
chose as a binding matrix for iron(II) dimethoxy-p-tert-
butylcalix[4]arene.3 The two methoxy groups not only
adapt the O4 set of calix[4]arene to the iron oxidation
state but also provide an additional protection against
any strong dimerization.4,5 The starting compound 2
is accessible only through the reaction with the easily
available Fe2Mes4.6 The use of iron-halides led to
compounds containing Fe-X bonds that were very

difficult to free from the alkali-metal salts. The coor-
dinative unsaturation of 2, along with the oxygen
environments makes iron(II) particularly prone to dis-
play a great variety of coordinative and redox chemis-
try.
We report here not only the synthesis of the first

monomeric calix[4]arene iron(II) but also the quite
surprising high-spin iron(II)-carbene functionality fixed
over an O4 oxo surface.7 Complex 2 adds a number of
monodentate ligands in the only accessible axial posi-
tion, thus forming complexes such as 3 and 4 (Scheme
1).8
The reaction with diazoalkanes gave iron-carbene

derivatives9 with variable stabilities as a function of the
substituents at the carbene carbon. The diphenylcar-
bene derivative 5,10 which is an unprecedented high-
spin (5.2 µB at 295 K) iron(II) carbene,9 showed an
unusual thermal stability and resistance to hydrolysis.
It can be decomposed only by acids or oxygen. In the
former case the anionic iron(II) complex 6 formed, while
the reaction with O2 produces benzophenone and the
µ-oxo iron(III) dimer 7. The formulations reported in
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Scheme 1 are supported by preliminary X-ray analyses
on 3,11 6,11 and 7,11 while details are given here only
for 5. Its structure is shown in Figure 1 with a selection
of structural parameters.12

Its structure consists of discrete complex molecules
of formula [Fe(calix(OMe)2)(CPh2)] and a dichloromethane
solvent molecule of crystallization in the stoichiometric
molar ratio of 1/3. One dichloromethane molecule is
present in the calixarene cavity as a guest. As is usually
observed in metal dimethoxycalixarene derivatives, the
macrocycle assumes an elliptical cross-section confor-

mation, as indicated by the dihedral angles they form
with the “reference” plane through the C7, C14, C21,
and C28 bridging methylene carbon atoms (dihedral
angles 131.9(2), 111.7(3), 133.3(2), and 110(8)° for A-D,
respectively) and by the values of the distances between
opposite para carbon atoms (C4‚‚‚C17, 8.969(11) Å,
C10‚‚‚C24, 7.361(15) Å). The O4 core shows remarkable
tetrahedral distortions ranging from -0.223(5) to 0.216-
(5) Å, the metal being displaced by 0.550(2) Å from the
mean plane. The iron to oxygen distances Fe-O1 and
Fe-O3 (1.854(6) and 1.828(5) Å, respectively) suggest
some double-bond character,4,5c in agreement with the
approximate linearity of the Fe-O-C bond angles (Fe-
O1-C1, 152.2(5)°; Fe-O3-C20, 161.0(5)°). The Fe-O2
and Fe-O4 bond distances (2.225(7) and 2.256(6) Å,
respectively) are much longer, like those found for Fe-
O(ether) bond distances.4,5c The Fe-C47 bond distance
(1.946(8) Å) is rather longer than the values usually
quoted in the literature for terminal Fe-C(carbene)
bond distances.9a,13 This lengthening13a may be ascribed
to the intraligand steric hindrance involving the H49
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Scheme 1

Figure 1. ORTEP drawing of complex 5 (50% probability
ellipsoids). Selected bond distances (Å) are as follows: Fe1-
O1, 1.854(6); Fe1-O2, 2.225(7); Fe1-O3, 1.828(5); Fe1-
O4, 2.256(6); Fe1-C47, 1.946(8); C47-C48, 1.452(10);
C47-C54, 1.480(10). Selected bond angles (deg): O2-Fe1-
O4, 162.4(2); O1-Fe1-O3, 130.7(2); O1-Fe1-C47, 117.7-
(3); O3-Fe1-C47, 111.6(3); Fe1-O1-C1, 152.2(5); Fe1-
O2-C13, 116.9(6); Fe1-O3-C20, 161.0(5); Fe1-O4-C27,
118.5(5); Fe1-C47-C54, 119.1(6); Fe1-C47-C48, 124.7-
(6); C48-C47-C54, 116.3(7).
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and H59 R-hydrogen atoms of the carbene phenyl rings
and O1 and O3 (O1‚‚‚H49, 2.39 Å; O1‚‚‚C49, 3.226(9)
Å; O3‚‚‚H59, 3.10 Å; O1‚‚‚C59, 3.096(10) Å). The
planarity of the Fe,C47,C48,C54 system is consistent
with the sp2 carbene carbon.14
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