The Presence and Absence of Agostic Electrostatic Si-H…M Interactions in [M{Me₂Si(H)N-*t*-Bu}] (M = Li, Mg_{1/2}) Species

Bernd Goldfuss,[†] Paul von Ragué Schleyer,* Sandra Handschuh, Frank Hampel, and Walter Bauer

Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany

Received July 30, 1997[®]

Agostic Si-H···Li contacts (i.e. significantly less than ~3.0 Å) are not present in the solventfree X-ray structure of [Li{Me₂Si(H)N-*t*-Bu}]₃; shorter (*t*-Bu)CH₃···Li distances (~2.8 Å) are observed instead. The situation in solution is different. While the ¹H-⁶Li HOESY spectrum of [Li{Me₂Si(H)N-*t*-Bu}] in toluene at -80 °C evidently detects the same trimeric species (lacking Si-H···Li interactions, but with short (*t*-Bu)CH₃···Li contacts), two major species with strong Si-H···Li interactions also are present. In the Li-HN-SiH₃ computational model system, Si-H···Li interactions are favored energetically and result in increased Si-H distances and decreased Si-H frequencies. Agostic Si-H···metal contacts in the solid state are found in the X-ray crystal structure of [Mg₂{Me₂Si(H)N-*t*-Bu}₄], where Li^{*+*} is replaced by the more highly charged Mg^{*2+*}. The two short agostic Si-H···Mg interactions (2.2, 2.5 Å) which result also are shown by the two low ν (Si-H) frequencies (2040, 1880 cm⁻¹) in the IR spectrum (Nujol mull) of [Mg₂{Me₂Si(H)N-*t*-Bu}₄].

Introduction

Agostic interactions¹ are frequently regarded as "frozen intermediate" models of C–H, or Si–H σ -bond activation processes.² Oxidative additions of C–H or Si–H σ -bonds by metal complex moieties ML_n are key catalytic steps in hydrocarbon activation³ or in hydrosilylation-⁴ and silane σ -bond metathesis⁵ reactions (Scheme 1).²

Recently, we studied the electrostatic contribution to metal- σ (C-C)-cyclopropane,⁶ metal- π (C=C)-acety-lene,⁷ and metal-thiophene⁸ interactions. Due to the direction and the enhanced polarity of the Si^{δ +}-H^{δ -} bond,^{9,10} electrostatics should play an important role in Si-H···M bonding. As electrostatics dominate in organolithium bonding,⁹ Si-H···Li⁽⁺⁾ agostic interactions

(3) (a) Strout, D. L.; Zaric, S.; Niu, S.; Hall, M. B. *J. Am. Chem. Soc.* **1996**, *118*, 6068. (b) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **1996**, *118*, 5961. (c) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson T. H. Acc. Chem. Res. **1995**, *28*, 154. (d) Hofmann, P. In *Organometallics in Organic Synthesis*; de Meijere, A.; tom Dieck, H., Eds.; Springer: Berlin, 1987; p 1.

should provide good assessments for the electrostatic component in $Si-H\cdots M$ arrangements.

In 1986, Schleyer and Clark predicted computationally that the "inverted" structure of LiH₃Si (1) was more stable than the "tetrahedral" (also $C_{3\nu}$) alternative.¹¹ Later, inverted SiH₃⁻Na⁺ moieties (Na-H = 2.52-2.67

Å) were found in the X-ray crystal structure of $[Na_8-(O_3C_5H_{11})_6(SiH_3)_2]$ and were shown to be favored electrostatically.¹² Short Si-H…Li distances (Li-H = 1.89-1.91 Å) are apparent in the X-ray crystal structure of the lithium amide (Me₃Si)₂NSi(H)[N(Li)SiMe₃]₂.¹³

Agostic Si–H···Li interactions (Li–H = 1.97-2.32 Å) were found to be responsible for the distortion of the molecular skeleton of MeSi(H)[N(Li)-*t*-Bu]₂.¹⁴ However,

[†] Present address: Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), 405 Hilgard Ave., Los Angeles, CA 90095-1569.

Abstract published in Advance ACS Abstracts, December 1, 1997.
 (1) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395.

^{(2) (}a) Schneider, J. J. Angew. Chem. 1996, 108, 1132; Angew. Chem., Int. Ed. Engl. 1996, 35, 1068. (b) Schubert, U. Adv. Organomet. Chem. 1990, 30, 151. (c) Bauer, W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1989, 111, 7191.

<sup>Mooney, 1. A.; Peterson 1. H. Acc. Chem. Res. 1995, 28, 154. (d)
Hofmann, P. In Organometallics in Organic Synthesis; de Meijere, A.;
tom Dieck, H., Eds.; Springer: Berlin, 1987; p 1.
(4) (a) Tilley, T. D. In The Chemistry of Organic Silicon Compounds;
Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989; Vol. II,
p 1458. (b) Fryzuk, M. D.; Rosenberg, L.; Rettig, S. J. Organometallics
1996, 15, 2871. (c) Hofmann, P. In Silicon Chemistry; Auner, N., Weis,
J., Eds.; VCH: Weinheim, Germany, 1993; p 231. (d) Hofmann, P.;
Meier, C.; Hiller, W.; Heckel, M.; Riede, J.; Schmidt, M. U. J. Organomet. Chem. 1995, 490, 51.
(5) Tilley, T. D. Acc. Chem. Res. 1993, 26, 22 and references therein.</sup>

⁽⁵⁾ Tilley, T. D. Acc. Chem. Res. 1993, 26, 22 and references therein.
(6) Goldfuss, B.; Schleyer, P. v. R.; Hampel, F. J. Am. Chem. Soc.
1996, 118, 12183.

⁽⁷⁾ Goldfuss, B.; Schleyer, P. v. R.; Hampel, F. J. Am. Chem. Soc. 1997, 119, 1072.

⁽⁸⁾ Goldfuss, B.; Schleyer, P. v. R.; Hampel, F. Organometallics, in press.

⁽⁹⁾ The Allred-Rochow electronegativities of H and Si are 2.2 and 1.74, respectively: (a) Apeloig, Y. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989. (b) Pawlenko, S. *Organosilicon Chemistry*; de Gruyter: Berlin, 1986.

^{(10) (}a) Streitwieser, A.; Bachrach, S. M.; Dorigo, A.; Schleyer, P. v. R. In *Lithium Chemistry*; Sapse, A.-M., Schleyer, P. v. R., Eds.; Wiley: New York, 1995. (b) Lambert, C.; Schleyer, P. v. R. *Angew. Chem.* **1994**, *106*, 1187; *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 1129. (c) Lambert, C.; Schleyer, P. v. R. In *Houben-Weyl Methods of Organic Chemistry*, 4th ed.; Thieme: Stuttgart, Germany, 1993; Vol. E19d, p 1.

⁽¹¹⁾ Schleyer, P. v. R.; Clark, T. J. Chem. Soc., Chem. Commun. 1986, 1371.

⁽¹²⁾ Pritzkow, H.; Lobreyer, T.; Sundermeyer, W.; Hommes, N. J. R. v. E.; Schleyer, P. v. R. Angew. Chem. **1994**, *106*, 221; Angew. Chem., Int. Ed. Engl. **1994**, *33*, 126.

⁽¹³⁾ Veith, M.; Zimmer, M.; Kosse, P. Chem. Ber. 1994, 127, 2099.

Scheme 1. Oxidative Si-H Addition as the Key Step in σ -Bond Metathesis and Hydrosilylation Reactions

no Si-H···Li coordination was detected in solution (1H, ⁶Li NMR) or in the solid state (X-ray analysis) for the HSi(Me₃SiNLi)₃ dimer (2).¹⁵

Agostic η^2 -Si-H····M coordination was found in molybdenum,¹⁶ titanium,¹⁷ and ruthenium¹⁸ complexes. The $3 \cdot H > 3 \cdot I > 3 \cdot Br > 3 \cdot Cl > 3 \cdot F$ agostic Si-H···Zr

interaction order was evaluated by means of NMR criteria (upfield δ ⁽²⁹Si,¹H) and small ¹J_{SiH}) as well as the decrease in ν (SiH), the stretching vibration frequencies.¹⁹ Agostic Si-H····Zr interactions are evident from X-ray crystal structures of 3-H and 3-Cl.¹⁹ The "trisagostic" Si-H···Er character in 4 was suggested to be responsible for the high vapor pressure and the low melting point of 4.²⁰ Two Si-H····Y contacts are apparent in 5.²¹ Recently, Sekiguchi et al. observed a SiH-

(18) Delpech, F.; Sabo-Etienne, S.; Chaudret, B.; Daran, J.-C. J. Am. Chem. Soc. 1997, 119, 3167.

Chem. **1996**, *108*, 481; *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 419. (21) Herrmann, W. A.; Eppinger, J.; Spiegler, M.; Runte, O.; Anwander, R. Organometallics **1997**, *16*, 1813.

Figure 1. Representation of the X-ray crystal structure of (6-Li)₃. The hydrogen atoms of Si₂ and the methyl groups are omitted. For bond distances and angles see Table 1.

Li agostic interaction in (1,1,2,2-tetrakis(dimethylsilyl)-1,2-ethanediyl)dilithium-bis(diethyl ether).²²

To assess the electrostatic contribution of Si-H····M interactions involving the $\{Me_2Si(H)N-t-Bu\}^-$ ligand, we have now studied lithium (6-Li) and magnesium (6-Mg) derivatives of 6-H by experimental (e.g. X-ray diffraction) methods. In addition, computations on model compounds are provided for comparison.

Results and Discussion

X-ray Single-Crystal Analysis and ¹H-⁶Li-HOESY of [Li{Me₂Si(H)N-t-Bu}]. The X-ray crystal structure of [Li{Me₂Si(H)N-t-Bu}] (6-Li) reveals a trimeric solventfree aggregate (Figure 1). Disorder appears for the SiMe₂ and *t*-Bu moieties at N(2) (shown in Figure 1) as well as for the *t*-Bu groups at N(1) and N(1a). As in the X-ray crystal structure of [(Me₃Si)₂NLi]₃,²³ **6-Li** adopts a planar (LiN)3 ring with perpendicular Si(H)-Me₂ and *t*-Bu moieties (Figure 1). The H-Si bonds are not oriented toward lithiums but bisect the LiNLi angles (Li(1)-N(1)-Si(1)-H(1))= 48.1°, Li(2) - N(1) - $Si(1)-H(1) = 48.2^{\circ}$; Table 1). These $Si(H)Me_2$ arrangements result in long Si-H···Li distances (H(1)-Li(1) =2.99 Å, H(1)-Li(2) = 2.98 Å). In contrast, the (*t*-Bu)-CH₃ groups tend to coordinate the lithiums (C(4)-Li-(1) = 2.78Å, C(13)–Li(2a) = 2.75Å; Figure 1, Table 1). No lithium affinity of the (Si)CH₃ groups is apparent (C(5)-Li(1), C(6)-Li(2) > 3.5 Å; Table 1).

However, the structure of the species in solution is different and there is evidence for Si-H…Li interactions. While the magnitudes of scalar ${}^{1}J_{H-Si}$ coupling constants as well as of $\delta_{\rm H}$ and $\delta_{\rm Si}$ only give indirect evidence for short Si-H····M distances in solution,¹⁹

⁽¹⁴⁾ Becker, G.; Abele, S.; Dautel, J.; Motz, G.; Schwarz, W. In Organosilicon Chemistry II; Auner, N., Weis, J., Eds.; VCH: Weinheim, Germany, 1996

⁽¹⁵⁾ Kosse, P.; Popowski, E.; Veith, M.; Huch, V. Chem. Ber. 1994, 127, 2103.

^{(16) (}a) Luo, X.-L.; Kubas, G. J.; Bryan, J. C.; Burns, C. J.; Unkefer, C. J. J. Am. Chem. Soc. 1994, 116, 10312. (b) Fan, M.-F.; Jia, G.; Lin, Z. J. Am. Chem. Soc. 1996, 118, 9915.

⁽¹⁷⁾ Spaltenstein, E.; Palma, P.; Kreutzer, K. A.; Willoughby, C. A.; Davis, W. M.; Buchwald, S. L. J. Am. Chem. Soc. **1994**, *116*, 10308.

⁽¹⁹⁾ Procopio, L. J.; Carroll, P. J.; Berry, D. H. J. Am. Chem. Soc. **1994**, *116*, 177

⁽²⁰⁾ Rees, W. S., Jr.; Just, O.; Schumann, H.; Weinmann, R. Angew.

⁽²²⁾ Sekiguchi, A.; Ichinohe, M.; Takahasi, M.; Kabuto, C.; Sakurai, H. Angew. Chem. **1997**, 109, 1577; Angew. Chem., Int. Ed. Engl. **1997**, 36. 1533.

^{(23) (}a) Mootz, D.; Zinnius, A.; Bötcher, B. Angew. Chem. 1969, 81, 398; Angew. Chem., Int. Ed. Engl. 1969, 8, 378. (b) Rogers, R. D.; Atwood, J. L.; Grüning, R. J. Organomet. Chem. 1978, 157, 229.

Figure 2. ¹H–⁶Li HOESY contour plot of **6**-⁶Li (toluened₈, +25 °C, c = 2.0 M, mixing time 2.0 s). δ (⁶Li) is arbitrarily set to zero. Cross peaks between ⁶Li and the ¹H nuclei are shown.

Table 1. Bond Distances (Å) and Bond and Torsion Angles (deg) in the X-ray Crystal Structure of [Li{Me₂Si(H)N-*t*-Bu}]₃ (Figure 1)

				-
	Li(1)-N(1)	1.945(5)	H(1)-Li(1)	2.987(7)
	Li(2) - N(1)	1.955(9)	H(1)-Li(2)	2.981(7)
	Li(2) - N(2)	1.957(9)	C(4)-Li(1)	2.778(10)
	Li(1)-Si(1)	2.943(2)	C(2)-Li(2)	2.939(10)
	Li(1) - C(5)	3.658(5)	Li(2) - C(6)	3.726(5)
	Li(2)-Si(1)	2.929(9)	C(13)-Li(2)	3.674(20)
	Li(2)-Si(2)	2.734(10)	C(13)-Li(2a)	2.747(20)
	(1) N(1) $C_{2}(1)$	100 0(9)	I :(1) N(1) C:(1) 11(1) 40 1(4)
ł	LI(1) = N(1) = SI(1)	108.0(2)	LI(1) = N(1) = SI(1)	I)—H(I) 48.I(4)
1	Li(2) - N(1) - Si(1)	106.8(4)	Li(2) - N(1) - Si(2)	1)-H(1) 48.2(4)
	Li(1) - N(1) - C(1) -	C(4) 16.9(5)	Li(2)-N(1)-C(1)-C(2) 39.7(5)

¹H–⁶Li-HOESY (heteronuclear overhauser effect spectroscopy) detects short Li···H distances directly through space by dipolar relaxation processes.²⁴ The ¹H–⁶Li-HOESY spectrum of **6**-⁶Li at +25 °C in toluene-*d*₈ exhibits one ⁶Li signal with strong cross peaks to H(Si) and to the CH₃(*t*-Bu) groups as well as weaker cross signals to the CH₃(Si) moieties (Figure 2). Cooling the **6**-⁶Li sample down to -80 °C results in three ⁶Li peaks (Figure 3); these are consistent with three different ⁶Li locations, e.g. in three different aggregates or forms of **6**-⁶Li. These are resolved in the ¹H–⁶Li-HOESY spectrum at -80 °C (Figure 3), where the central and the upfield ⁶Li peaks exhibit cross signals to H(Si), to CH₃-(*t*-Bu), and to CH₃(Si). These two species with Si–H··· Li contacts are the major components in solution.

However, the third species with the most downfield $\delta(^{6}\text{Li})$ value only shows contacts to the *t*-Bu groups and *no* cross signals to H(Si) and CH₃(Si) (Figure 3). This ¹H-⁶Li-HOESY behaviour is consistent with the long Si-H…Li and Si-CH₃…Li distances as well as the short (*t*-Bu)CH₃…Li arrangements in the X-ray crystal structure of **6-Li**. Hence, ¹H-⁶Li-HOESY of this minor

Figure 3. ¹H–⁶Li HOESY contour plot of **6**-⁶Li (toluened₈, -80 °C, c = 2.0 M, mixing time 2.0 s). The central δ (⁶Li) is arbitrarily set to zero. The three ⁶Li signals indicate the presence of three distinct species or lithium locations. The δ (⁶Li) signal at lowest field shows no cross peaks to H(Si) and to CH₃(Si).

species with the most downfield δ (⁶Li) values (Figure 3) points to a close structural relationship to the solidstate X-ray crystal structure of **6**-Li (Figure 1). These results provide further examples of differences between solid-state and solution structures of lithium compounds.²⁵

Computational Model for Agostic Si-H…Li Interactions. In order to assess the effects of electrostatic Si-H…Li interactions computationally, we optimized H_2NSiH_3 (7; C_s , NIMAG = 0) as well as the lithiated species $LiHNSiH_3$ both without Li-H contacts (7-Litrans, C_s , NIMAG = 1) and with Li–H contacts (7-Li**cis**, C_s , NIMAG = 0; Figure 4, Table 2). Lithiation of the NH₂ group in 7 shortens the N-Si bond length in **7-Li-trans** and results in longer Si-H(1-3) distances and in a smaller H(1)-Si-N angle (Figure 4). These geometrical changes are even more pronounced upon rotation of the LiHN group in 7-Li-trans to the minimum geometry 7-Li-cis (Figure 4). The Si-H···Li contact in 7-Li-cis increases the Si-H(1) bond length and decreases the H(1)-Si-N angle considerably (Figure 4). Due to the attractive Si-H(1)…Li interaction, the 7-Li-cis conformation is 2.2 kcal/mol more stable than 7-Li-trans (Table 2).

^{(24) (}a) Bauer, W.; Schleyer, P. v. R. *Magn. Reson. Chem.* **1988**, *26*, 827. (b) Bauer, W.; Clark, T.; Schleyer, P. v. R. *J. Am. Chem. Soc.* **1987**, *109*, 970.

^{(25) (}a) Bauer, W. In Lithium Chemistry; Sapse, A.-M., Schleyer, P. v. R., Eds.; Wiley: New York, 1995. (b) Weiss, E. Angew. Chem. **1993**, 105, 1565; Angew. Chem., Int. Ed. Engl. **1993**, 32, 1501. (c) Setzer, W. N.; Schleyer, P. v. R. Adv. Organomet. Chem. **1985**, 24, 353. (d) Günther, H.; Moskau, D.; Bast, P.; Schmalz, D. Angew. Chem. **1987**, 99, 1242; Angew. Chem., Int. Ed. Engl. **1987**, 26, 1212.

Figure 4. RB3LYP/6-311+G^{**} optimized geometries (Table 2) of H_2NSiH_3 (7, C_s , NIMAG = 0), LiHNSiH₃ (7-Li-trans, C_s , NIMAG = 1; 7-Li-cis, C_s , NIMAG = 0).

Table 2. Computed Energies,^a Si-H Stretching Frequencies ω ,^a NPA Charges q,^b and ¹H Chemical Shifts δ^c

	7 (<i>C</i> _s)	7-Li-trans (C _s)	7-Li-cis (<i>C_s</i>)
total energy (au)	-347.319 18	-354.25347	-354.257 93
ZPE (kcal/mol)	31.50 (0)	24.82 (1)	25.39 (0)
(NIMAG)			
rel energy		+2.23	0
(kcal/mol)			
$\omega(H(1)-Si (cm^{-1}))$	2180	2162	1955
q(Li) (au)		+0.964	+0.949
q(H(1)) (au)	-0.204	-0.211	-0.295
q(H(2,3)) (au)	-0.181	-0.229	-0.215
$\delta(H(1))$	+5.44	+5.47	+5.05
$\delta(H(2,3))$	+5.19	+5.61	+5.96

 a RB3LYP/6-311+G** optimizations and frequency computations. b Natural population analysis.³¹ c B3LYP/6-311+G**-GIAO computations;³² the δ values are relative to the computed absolute chemical shielding of H (32.29) in TMS.

While the H₂N lithiation affects the Si-H(1) stretching frequency only slightly in **7-Li-trans** (2162 vs 2180 cm⁻¹ in **7**), ω (Si-H(1)) is strongly decreased by the Si-H(1)····Li contact in **7-Li-cis** (1955 cm⁻¹; Table 2). The Si-H(1)····Li interaction also increases the negative charge on H(1) and results in a slightly upfield shifted δ^1 H(1) value in **7-Li-cis** relative to **7-Li-trans** (Table 2).

X-ray Crystal Structure of [Mg{Me₂Si(H)N-*t***-Bu**}₂]. Although computations show that the (Si)H^{δ -</sub>…Li⁺ contact in **7-Li-cis** is favored electrostatically (Figure 4, Table 2), no short (Si)H…Li distances are apparent in the X-ray crystal structure of **6-Li** (Figure 1, Table 1). However, we find that replacement}

Figure 5. X-ray crystal structure of (**6-Mg**)₂. The hydrogen atoms of the methyl groups are omitted. For bond distances and angles see Table 3.

Table 3. Bond Distances (Å) and Bond and Torsion Angles (deg) in the X-ray Crystal Structure of [Mg{Me₂Si(H)N-*t*-Bu}₂]₂ (Figure 5)

	0.		-	
Mg(1)-N(1)	2.139(1)	H(1)-Mg(1)	2.495(10)
Mg(1)-N(2)	1.984(2)	H(2)-Mg(1)	2.227(10)
Mg(1)-N(1a)	2.133(1)	C(31)-Mg(1a)	2.984(10)
Mg(1)-Si(1)	2.922(1)	H(1)-Si(1)	1.379(10)
Mg(1)-Si(2)	2.792(1)	H(2)-Si(2)	1.469(10)
$M_{\sigma}(1) = N(2) = S_{1}(2)$	08 82(7)	$U(1) = S_{i}(1) = N(1) = N(1)$	$M_{\alpha}(1)$	26 5
$\log(1) - N(2) - S(2)$	90.03(7)	$\Pi(1) - \Im(1) - \Pi(1) - \Pi$		20.5
Mg(1) - N(2) - C(6)	136.81(11)	H(2) - Si(2) - N(2) -	Ag(1)	0.8
C(3) - N(1) - N(1a)	130.1(1)	C(31)-C(3)-N(1)-1	Mg(1a)	32.4
Si(1) - N(1) - N(1a)	111.91(14)		-	

of Li^{"+"} with Mg^{"2+"} results in short Si $-H^{\delta-}\cdots$ Mg^{"2+"} distances in the solid state, presumably due to increased positive charge on the metal center.^{10b,c,26}

The X-ray crystal structure analysis of [Mg{Me₂Si- $(H)N-t-Bu_{2}$ reveals dimeric aggregation of **6-Mg** (Figure 5). Two distinct amido moieties are apparent, the one bridging between two magnesium centers, the other bonding terminally to the magnesiums. Short Si-H… Mg contacts are apparent for the bridging (H(1)-Mg(1))= 2.50 A) and especially for the terminal (H(2)-Mg(1)) = 2.23 Å) amido groups (Figure 5, Table 3). These short Si-H···Mg distances are supported by the tilt of the Me_2SiH groups toward the magnesiums (Si(1)-N(1)- $N(1a) = 111.9^{\circ}$, Si(2)-N(2)-Mg(1): 98.8°), while the t-Bu moieties are bent away from the magnesium centers $(C(3)-N(1)-N(1a) = 130.1^{\circ}, C(6)-N(2)-Mg(1) =$ 136.8°, Figure 5, Table 3). The nearly perfect coplanarity of the H(2)-Si(2) and the N(2)-Mg(1) bonds (H(2)-Si(2)-N(2)-Mg(1): 0.8°, Figure 5, Table 3) favors short Si-H···Mg distances especially for the terminally bonded amido groups.

In accord with the two distinct Me₂SiH moieties in the X-ray crystal structure of [Mg₂{Me₂Si(H)N-*t*-Bu}₄] (Figure 5), two distinct Si–H stretching frequencies are observed in the IR spectrum of **6-Mg**. The lowering of these frequencies (Table 4) can be attributed to Si–H···--Mg interactions, which are weaker in the bridging (*t*-BuN)Me₂SiH groups (slightly reduced ν (Si–H) 2040 cm⁻¹) and stronger in the terminally bonded (*t*-BuN)Me₂-SiH moieties (strongly decreased ν (Si–H) 1880 cm⁻¹).

Conclusions

The reason why agostic electrostatic Si-H···M interactions develop in **6-Mg** rather than in **6-Li** appears to

⁽²⁶⁾ The partial (NPA) charge on Mg in magnesium amides (e. g. $HMgNMe_2)$ is ca. ± 1.5 au: Goldfuss, B.; Schleyer, P. v. R. Unpublished results.

Table 4. Experimental v(Si-H) Frequencies (cm⁻¹)

compd	ν (Si-H)	compd	ν (Si-H)
3-H, 3-F	1912, 1998ª	6-H	2120, ^b 2111, ^c 2107 ^a
4	1858 ^c	6-Li	2060 ^d
5	1804 ^e	6-Mg	2040, 1880 ^d

^a C₆H₆ solution.¹⁹ ^b Neat (this work). ^c C₆D₆ solution.²⁰ ^d Nujol mull (this work). ^e Reference 21.

be due to the higher partial charge of Mg^{"2+"} vs Li^{"1+"}. In general, we conclude that the metal charges are crucial in determining the formation of electrostatic Si-H····M arrangements, which are for higher positive metal charges (e.g. Mg^{"2+"}) more readily established than for lower positive charges (e.g. Li^{"1+"}).

Experimental Section

The experiments were carried out under an argon atmosphere by using standard Schlenk as well as needle/septum techniques. The solvents were distilled from sodium/benzophenone and stored on Na/Pb alloy. Chlorodimethylsilane (Me₂SiHCl), tert-butylamine (t-BuNH₂) and dibutylmagnesium (MgBu₂, 1.0 M in heptane) were purchased from Acros. A hexane solution of 6Li-enriched n-Bu6Li was prepared as described by Seebach et al.²⁷ The NMR spectra were recorded on a JEOL GX 400 spectrometer (1H, 400 MHz; 13C, 100.6 MHz; ⁶Li, 58.9 MHz). ¹H and ¹³C spectra were referenced to the solvent signals (toluene). IR spectra were determined as neat samples or as Nujol mulls between NaCl disks on a Perkin-Elmer 1420 spectrometer. Mass spectral data were obtained on a Varian MAT 311A spectrometer and elemental analyses (C, H) on a Heraeus micro automaton. The X-ray crystal data were collected with a Nonius Mach3 diffractometer using ω/θ -scans. The structures were solved by direct methods using SHELXTL Plus 4.11. The parameters were refined with all data by full-matrix least squares on F^2 using SHELXL93 (G. M. Sheldrick, Göttingen, Germany, 1993). Non-hydrogen atoms were refined anisotropically. The (Si)H atoms were localized and refined free isotropically; the hydrogen atoms of methyl groups were fixed in idealized positions using a riding model. R1= $\Sigma |F_0 - F_c| / \Sigma F_0$ and wR2 = $\Sigma w |(F_0^2 - F_c^2)^2| / \Sigma (w(F_0^2)^2)^{0.5}$. Further details are available on request from the Director of the Cambridge Crystallographic Data Center, Lensfield Road, GB-Cambridge CB2 1EW, by U.K. quoting the journal citation.

Me₂Si(H)N(H)-t-Bu (6-H) was prepared according to the literature procedure.²⁸ [Li{Me₂Si(H)N-t-Bu}] (6-Li). To a stirred solution of 0.24 g (1.8 mmol) of 6-H was added 1.1 mL of 1.6 M n-BuLi at 0 °C. After it was stirred at room temperature for 5 min, the solution was frozen with liquid nitrogen (-196 °C), brought to room temperature for 15 s, and then cooled to -20 °C, yielding colorless crystals of 6-Li: 1H NMR (toluene-*d*₈, +25 °C) δ 4.70 (m, *H*Si), 1.20 (s, C*H*₃ *t*-Bu), 0.10 (d, $(CH_3)_2$ Si); ¹³C{¹H} NMR (toluene- d_8 , +25 °C) δ 52.55 (C, t-Bu), 37.31 (CH₃, t-Bu), 5.27 (CH₃, Si); ⁶Li NMR (toluene d_6 , +25 °C) δ (⁶Li) singlet; δ (⁶Li) was arbitrarily set to zero; ⁶Li NMR (toluene- d_6 , -80 °C) δ +0.12, 0.00, -0.16; IR (Nujol mull, cm⁻¹) 2060 (v(Si-H)); MS (6-7Li, EI, 70 eV, 90 °C) m/e 411 [Li{Me₂Si(H)N-t-Bu}]₃. Anal. Calcd for C₆H₁₆LiNSi: C, 52.6, H, 11.7. Found: C, 51.8; H, 12.5.

X-ray crystal data for (**6-Li**)₃: $M_r = 137.23$; monoclinic; space group C2/c; a = 17.910(3) Å, b = 10.410(2) Å, c = 15.829(2) Å, $\bar{\beta} = 102.08(2)^{\circ}$; V = 2885.9(7) Å³; $D_{calc} = 0.948$ Mg m⁻³; Z =12; F(000) = 912; Mo K α ($\lambda = 0.710$ 73 Å); T = 193(2) K; crystal size $0.20 \times 0.20 \times 0.20$ mm; $4^{\circ} < 2\theta < 54^{\circ}$. There were 3232 reflections collected, of which 3134 were independent and 1127 had $I > 2\sigma(I)$; there were 171 refined parameters. The final *R* values were R1 = 0.0839 (*I* > $2\sigma(I)$) and wR2 = 0.13151 (all data). GOF = 1.008; the largest peak and hole were 0.286 and -0.293 e Å⁻³, respectively.

The *t*-Bu and SiMe₂ moieties in the X-ray crystal structure of 6-Li are statistically disordered. A refinement in the acentric space group Cc, as suggested by a reviewer, was attempted but failed. All data are consistent with C2/c.

[Mg{Me₂Si(H)N-t-Bu}₂] (6-Mg). A 0.24 g (1.8 mmol) amount of 6-H and 1.8 mL of MgBu₂ (1.0 M in heptane) were stirred at 25 °C for 3 days. The solution was frozen with liquid nitrogen (-196 °C) and subsequently warmed to room temperature several times. Storing the sample at 4 °C for 6 weeks yielded colorless crystals of 6-Mg: ¹H NMR (toluene-d₈, +25 ^oC) δ 4.86 (m, *H*Si), 1.46 (s, CH₃ *t*-Bu), 0.40 (d, (CH₃)₂Si); ¹³C-{¹H} NMR (toluene- d_8 , +25 °C) δ 54.47 (C, t-Bu), 37.78 (CH₃, t-Bu), 5.31 (CH₃, Si); IR (Nujol mull, cm⁻¹) 2040, 1880 (v(Si-H)); MS (EI, 70 eV, 90 °C) m/e 569 [Mg₂{Me₂Si(H)N-t-Bu}₄], 439 $[Mg_2{Me_2Si(H)N-t-Bu}_3]$, 309 $[Mg_2{Me_2Si(H)N-t-Bu}_2]$. Anal. Calcd for C₁₂H₃₂MgN₂Si₂: C, 50.7; H, 11.3. Found: C, 49.9; H, 12.1.

X-ray crystal data for $(6-Mg)_2$: $M_r = 284.89$; monoclinic; space group $P2_1/c$; a = 11.371(2) Å, b = 13.497(2) Å, c = 12.168-(3) Å, $\beta = 106.58(2)^\circ$; V = 1789.8(5) Å³; $D_{\text{calc}} = 1.057$ Mg m⁻³; Z = 4; F(000) = 632; Mo K α ($\lambda = 0.710$ 73 Å); T = 173(2) K; crystal size $0.40 \times 0.40 \times 0.30$ mm; $4^{\circ} < 2\theta < 52^{\circ}$. There were 3662 reflections collected, of which 3623 were independent and 2866 had $I > 2\sigma(I)$; there were 282 refined parameters. The final *R* values were R1 = 0.0319 ($I > 2\sigma(I)$) and wR2 = 0.0922 (all data). GOF = 1.023; the largest peak and hole were 0.364 and -0.206 e Å⁻³, respectively.

Computational Methods. All theoretical structures were optimized using the gradient techniques implemented in GAUSSIAN 94²⁹ with Becke's three-parameter hybrid functional incorporating the Lee-Yang-Parr correlation term (Becke3LYP)³⁰ and the 6-311+G** basis set. The character of the stationary points and the zero-point energy corrections were obtained from analytical frequency calculations. All partial charges are based on the natural population analysis (NPA)³¹ of the Becke3LYP electron density. Absolute chemical shieldings were computed with the B3LYP/6-311+G**-GIAO32 method.

Acknowledgment. This work was supported by the Fonds der Chemischen Industrie (also through a scholarship to B.G.), the Stiftung Volkswagenwerk, and the Deutsche Forschungsgemeinschaft.

Supporting Information Available: Further details on the X-ray crystal structures of 6-Li and 6-Mg, including tables of atomic coordinates, bond lengths and angles, and thermal parameters (15 pages). Ordering information is given on any current masthead page.

OM970656+

⁽²⁷⁾ Seebach, D.; Hässig, R.; Gabriel, J. Helv. Chim. Acta 1983, 66, 308.

^{(28) (}a) Wiseman, G. H.; Wheeler, D. R.; Seyferth, D. Organometallics 1986, 5, 146. (b) Jarvie, S. W.; Lewis, D. J. Chem. Soc. 1963, 4758.

⁽²⁹⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision C.3; Gaussian, Inc., Pittsburgh, PA, 1995.

^{(30) (}a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang,

 ^{(31) (}a) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 88, 899.
 (b) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 58, 899. 112, 1434.

^{(32) (}a) Wolinski, R. F. W.; Hilton, F. J.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251. (b) Dodds, J. L.; McWeeney, R.; Sadlej, A. J. Mol. Phys. 1980, 41, 1419. (c) Ditchfield, R. Mol. Phys. 1974, 27, 789. (d) McWeeny, R. *Phys. Rev.* **1962**, *126*, 1028. (e) London, F. *J. Phys. Radium* **1937**, *8*, 397.