Trityltitanium Complexes. X-ray Structural Characterization of $[Ti(CO)_4 \{\eta^5 - C(4 - C_6H_4R)_3\}]^-$ (R = H, OCH₃)¹

Paul J. Fischer, Kateri A. Ahrendt, Victor G. Young, Jr., and John E. Ellis*

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Received September 22, 1997[®]

Summary: Reactions of [Ti(CO)₆]²⁻ and chlorotriphenylmethane or chlorotris(4-methoxyphenyl)methane provide the first examples of trityltitanium complexes. These have been shown by IR, NMR, and single-crystal X-ray structural characterizations to have the molecular formula $[Ti(CO)_4 \{\eta^5 - C(4 - C_6 H_4 R)_3\}]^+$ $(R = H, OCH_3).$

Metal carbonyl anions are key precursors to a tremendous variety of organometallic and inorganic compounds.² Their reactions with organic electrophiles are especially useful in the synthesis of new (hydrocarbyl)metal complexes, which, in turn, are often important as catalysts or intermediates in organic syntheses.³ Although hydrocarbyl complexes containing titanium in positive oxidation states, especially II to IV, are numerous and well-established,⁴ relatively few corresponding zerovalent titanium compounds are known, and all of these have contained only cyclopentadienyl type ligands.⁵ Interactions of organic electrophiles with hexacarbonyltitanate(2-), [Ti(CO)₆]^{2-,6a} represent potentially general, but entirely unexplored, routes to novel Ti(0) organometallics. We now report on the first reactions of this type. These involve the interaction of $[Ti(CO)_6]^{2-1}$ with trityl chlorides to generate compounds of the formulation $[Ti(CO)_4 \{C(4-C_6H_4R)_3\}]^-$, (R = H (1), OMe(2)) (eq 1). Compounds 1 and 2 are of interest as the

$$\begin{split} [\text{Ti}(\text{CO})_6]^{2-} + & \text{C}(4\text{-}\text{C}_6\text{H}_4\text{R})_3\text{Cl} \xrightarrow{\text{THF}} \\ & [\text{Ti}(\text{CO})_4\{\text{C}(4\text{-}\text{C}_6\text{H}_4\text{R})_3\}]^- + & \text{Cl}^- + 2\text{CO} (1) \\ & \text{R} = & \text{H} (1), \text{ OMe}, (2) \end{split}$$

first examples of group 4 metal trityl complexes and contain substantially more labile hydrocarbyl ligands than does the related $[Ti(CO)_4(\eta^5-C_5H_5)]^-$, (3).^{6b}

Trityl halides, salts, or substituted versions thereof are often effective one-electron oxidants and usually react with metal carbonyl anions to give metal carbonyl oxidation products and trityl dimer,7a rather than isolable metal trityl complexes. For example, the isoelectronic [V(CO)₆]⁻ reacts with 1 equiv of trityl chloride in CH₂Cl₂ to yield only paramagnetic V(CO)₆ and trityl dimer.^{7b} To our knowledge, the only prior "successful" reaction of this type was that of $[Re(CO)_5]^-$ and $[CPh_3]^-$ [PF₆], which provided a 37% isolated yield of Re(CO)₄- $(\eta^3$ -CPh₃). Structural characterization of the latter species showed that the trityl group was present as a substituted η^3 -benzyl ligand.⁸ Thermolysis of this η^3 trityl complex afforded $\text{Re}(\text{CO})_3(\eta^5\text{-CPh}_3)$, the only previous structurally characterized η^5 -trityl complex.^{8c} Reactions of these two species with $L = P(OCH_2)_3CCH_3$ gave Re(CO)₄L(CPh₃) and Re(CO)₃L₂(CPh₃), respectively, which are believed to contain η^1 -CPh₃ groups.⁹ Trityl-transition-metal complexes are quite rare. Other reported examples include Ni(CPh₃)Cl,¹⁰ Ni(CPh₃)₂,¹⁰ $[Co(\eta^5-CPh_3)(C_5H_5)]^+$,¹¹ M(CPh_3)Cl,¹² and M(η^3-CPh_3)- $(acac)^{12}$ (M = Pd, Pt), only the last two of which have been structurally characterized.¹³

A typical synthesis of 1 involved the addition of a solution of trityl chloride (0.340 g, 1.22 mmol) in THF (50 mL, -45 °C) with vigorous stirring to a suspension of finely divided [K(15-crown-5)₂]₂[Ti(CO)₆] (1.43 g, 1.22 mmol) in THF (30 mL, -50 °C). The reaction mixture was warmed from -50 to 0 °C over a period of 16 h with efficient stirring. Following filtration at 0 °C, all solvent was removed from the deep red filtrate. Vigorous trituration of the product with diethyl ether (100 mL, 0 °C) caused it to solidify to red microcrystals. These were recrystallized from THF-ether at 0 °C to provide 0.300 g (28% yield) of air-sensitive red microcrystals of pure [K(15-crown-5)₂][1].^{14ab} A very similar procedure gave satisfactorily pure [K(15-crown-5)₂][2] in 30% isolated yield.^{14c} Attempts to obtain 1 by analogous reactions with $[CPh_3][X]$ (X = BF₄, PF₆) were unsuccessful.

[®] Abstract published in Advance ACS Abstracts, December 15, 1997. (1) Highly Reduced Organometallics. 45. Part 44: Seaburg, J. K.; Fischer, P. J.; Young, V. G., Jr.; Ellis, J. E. Angew Chem., Int. Ed., Engl., in press.

⁽²⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, CA, 1987.

 ⁽³⁾ Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules, University Science Books: Mill Valley, CA, 1994.
 (4) Bochmann, M. In Comprehensive Organometallic Chemistry II;

⁽a) Bottmann, M. in Comprehensive Organometante Chemistry II,
Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: New York,
1995; Vol 4, pp 221, 273.
(5) Cloke, F. G. N. In Comprehensive Organometallic Chemistry II;
Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: New York,

^{1995;} Vol 4, p 213. (6) (a) Chi, K.-M.; Frerichs, S. R.; Philson, S. B.; Ellis, J. E. J. Am. Chem. Soc. 1988, 110, 303. (b) Kelsey, B. A.; Ellis, J. E. J. Am. Chem. Soc. 1986, 108, 1344.

^{(7) (}a) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877. (b) Ellis, J. E. J. Organomet. Chem. 1975, 86, 1.

^{(8) (}a) Crocker, L. S.; Mattson, B. M.; Heinekey, D. M.; Schulte, G. K. *Inorg. Chem.* **1988**, *27*, 3722. (b) Crocker, L. S.; Heinekey, D. M.; Schulte, G. K. *J. Am. Chem. Soc.* **1989**, *111*, 405. (c) Structural details for Re(CO)₃(η^5 -trityl) have been presented in: Crocker, L. S. Ph.D. Dissertation, Yale University, 1989, pp 13–43. (9) Crocker, L. S.; Mattson, B. M.; Heinekey, D. M. *Organometallics*

¹⁹⁹⁰, *9*, 1011.

 ⁽¹⁰⁾ Wilke, G.; Schott, G. Angew. Chem., Int. Ed. Engl. 1966, 5, 583.
 (11) Newbound, T. D.; Ernst, R. D. J. Organomet. Chem. 1986, 316, 213

^{(12) (}a) Sonoda, A.; Mann, B. E.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1975, 108. (b) Mann, B. E.; Keasey, A.; Sonoda, A.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1979, 338.

⁽¹³⁾ Sonoda, A.; Bailey, P. M.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1979, 346.

Infrared spectra for **1** and **2** in the ν (CO) region are virtually identical and show nearly the same two-band pattern previously observed for 3.15 NMR spectral data for **1** and **2** are also consistent with the presence of (η^5) dienyl)tetracarbonyltitanate(1-) moieties.14 Comparison of the IR ν (CO) and ¹³C NMR δ (CO) positions of **1** (1932 (m) and 1810 (s) cm⁻¹ (THF) and 279.6 ppm (THF d_8)) with corresponding values of **3** (1921 (m) and 1783 (s) cm⁻¹ (DME) and 289 ppm (DMSO- d_6))¹⁵ indicates that the trityl group is a significantly weaker donor than is the cyclopentadienyl ligand in these titanium complexes. These data suggested that the bound trityl group should be labile. Indeed, treatment of 1 with excess L = 1,4,7-triazacyclononane (tacn; 2 equiv) or hydridotris(1-pyrazolyl)borate (Tp⁻; 3 equiv as the K⁺ salt) in THF gave quantitative conversion (by infrared spectra) within 25 min at 20 °C to the corresponding previously known [Ti(CO)₄L].¹⁶ While 3 does not undergo CO exchange reactions at 20 °C under strictly anaerobic conditions,¹⁷ **1** underwent complete carbonyl exchange with 13 CO within 3 h in THF at -10 °C. 18 In the latter reaction, no spectral evidence for the formation of a higher carbonyl species, such as the presently unknown $[Ti(CO)_5(\eta^3 - CPh_3)]^-$, was obtained.

Since structural details for a (η^5 -trityl)metal complex have not been previously reported in the scientific literature^{8c} and spectral data did not unambiguously specify the nature of the trityl-titanium interactions present in 1 and 2, single-crystal X-ray structural characterizations were carried out on these species.¹⁹ Only the details of **1** will be described herein, because the structures of 1 (Figure 1) and 2 are very similar. Both anions contain tetracarbonyltitanium units that are best described as being bound to η^5 -dienyl groups (vide infra) and are thereby closely related to the "half sandwich" carbonyl species 3, the only previous structurally characterized (η^5 -dienyl)titanium(0) complex.^{6a} Important average structural parameters for the Ti- $(\dot{CO})_4$ unit in **1** are as follows: \dot{Ti} -C, 2.020(6) Å; C-O, 1.163(7) Å; C-Ti-C (cis), 73(2)°; C-Ti-C (trans), 114-

(17) Fischer, P. J.; Ellis, J. E., unpublished research.

(18) Observed IR ν (¹³CO) of **1**: 1888 (m), 1770 (s) cm⁻¹ (THF). Calcd ν (¹³CO): 1889, 1770 cm⁻¹.

Figure 1. Molecular structure of **1** showing the labeling scheme (50% probability ellipsoids; hydrogens omitted for clarity). Selected bond lengths (Å), and angles (deg): Ti–C(20), 2.024(6); Ti–C(21), 2.017(6); Ti–C(22), 2.022(5); Ti–C(23), 2.016(6); C(20)–O(20), 1.170(7); C(21)–O(21), 1.158-(7); C(22)–O(22), 1.159(6); C(23)–O(23), 1.165(6); Ti–C(2), 2.723(5); Ti–C(3), 2.450(5); Ti–C(4), 2.396(5); Ti–C(5), 2.405(5); Ti–C(6), 2.396(5); Ti–C(7), 2.463(5); C(1)–C(2), 1.387(6); C(1)–C(8), 1.490(7); C(1)–C(14), 1.474(7); C(2)–C(3), 1.458(6); C(2)–C(7), 1.458(7); C(3)–C(4), 1.395(7); C(4)–C(5), 1.394(7); C(5)–C(6), 1.411(8); C(6)–C(7), 1.384-(7); C(3)–C(2)–C(7), 110.3(4); C(1)–C(2)–C(7), 124.2(4); C(1)–C(2)–C(3), 124.1(4); C(2)–C(1)–C(8), 122.4(4); C(2)–C(1)–C(14), 122.2(4); C(8)–C(1)–C(14), 115.4(4); average Ti–C–O, 178.2(8).

(3)°. All of these values are statistically indistinguishable from the corresponding ones reported for **3**, except the Ti–C(carbonyl) distance, which is 0.026 Å (~4 σ) longer than the distance of 1.994(7) Å for **3**.^{6a} Similarly, the average Ti–C(dienyl) distance of 2.42(3) Å for **1** is appreciably longer than the analogous value of 2.36(1) Å for **3**. These data are in accord with the aforementioned spectral data for **1** and **3** and firmly establish that the trityl group is more weakly bound to titanium than the η^5 -cyclopentadienyl group is in these complexes. The coordinated phenyl ring in **1** is folded at C(3) and C(7) with a dihedral angle of only 14.9°, a significantly smaller angle than corresponding values of 46, 33, and 22° reported for Ti(η^5 -dmCh)₂CO (**4**; dmCh = 6,6-dimethylcyclohexadienyl)²⁰ Fe(η^5 -C₅H₅)(η^5 -C₆Me₅-

^{(14) (}a) Satisfactory elemental analyses were obtained for 1 and 2 as unsolvated [K(15-crown-5)₂]⁺ salts. (b) Selected spectral data for 1: IR ν (CO) (Nujol mull) 1927 (m), 1836 (m, sh), 1794 (s) cm⁻¹; ¹H NMR (300 MHz, THF- d_8 , 0 °C) δ 7.09 (d, J = 7.5 Hz, 4H, ρ -H, free ring), 6.94 (t, J = 7.5 Hz, 4H, m-H, free ring), 6.65 (t, J = 7.8 Hz, 2H, p-H, free ring), 5.40 (d, J = 7.8 Hz, 2H, o-H, bound ring), 5.07 (t, J = 7.8Here Fingly, 3.40 (d, 3 = 7.8 Hz, 211, 511, 514, bound ring), 3.07 (t, 3 = 7.8 Hz, 214, m-H, bound ring), 3.53 (s, 40H, 15-crown-5) ppm; ${}^{13}C{}^{1}H{}$ NMR (75 MHz, THF- d_8 , 0 °C) δ 279.6 (CO), 147.7 (*ipso*-C, free ring), 131.2 (ρ -C, free ring), 131.1 (α -C), 128.3 (*m*-C, free ring), 122.1 (p-C, free ring), 111.1 (*m*-C, bound ring), 96.9 (*ipso*-C, bound ring), 92.3 (ρ -C, coord ring), 86.0 (p-C, bound ring), 92.4 (ρ -C, ree ring), 110.1 (α -C), 128.5 (α ring), 69.5 (15-crown-5) ppm. Heteronuclear chemical shift correlation (HETCOR) spectroscopy was used to assign carbon resonances of bound and free rings. (c) Selected spectral data for 2: IR ν (CO) (THF) 1932 (m), 1812 (s) cm⁻¹; ¹H NMR (300 MHz, THF- d_8 , 0 °C) δ 6.98 (d, J =8.4 Hz, 4H, m-H, free ring), 6.54 (d, J = 8.5 Hz, 4H, o-H, free ring), 5.08 (m, 4H, *o*/*m*-H, bound ring), 3.60 (s, 6H, OCH₃, free ring), 3.53 (s, 40H, 15-crown-5), 3.43 (s, 3H, OCH₃, bound ring) ppm; ^{13}C {¹H} NMR (75 MHz, THF-d₈, 0 °C) & 278.5 (CO), 155.2 (p-C, free ring), 140.7 (ipso-C, free ring), 135.3 (*p*-C, bound ring), 131.4 (*m*-C, free ring), 129.4 (*c*-C), 113.8 (*o*-C, free ring), 98.7 (*m*-C, bound ring), 91.2 (*ipso*-C, bound ring), 84.3 (o-C, bound ring), 69.7 (15-crown-5), 55.6 (OCH₃, bound ring), 55.0 (OCH₃, free ring). HETCOR NMR spectroscopy was used to assign the carbon resonances of bound and free rings

⁽¹⁵⁾ Ellis, J. E.; Frerichs, S. R.; Stein, B. K. Organometallics **1993**, *12*, 1048.

^{(16) (}a) L = tacn: Ellis, J. E.; DiMaio, A. J.; Rheingold, A. L.; Haggerty, B. S. *J. Am. Chem. Soc.* **1992**, *114*, 10676. (b) L = Tp^{-1} : Chi, K.-M.; Frerichs, S. R.; Stein, B. K.; Blackburn, D. W.; Ellis, J. E. *J. Am. Chem. Soc.* **1988**, *110*, 163.

^{(19) (}a) Crystal data for [K(15-crown-5)₂][1]·¹/₂C₆H₁₂: C₄₆H₆₁KO₁₄-Ti, $M_r = 924.95$, triclinic, PI, red plate, a = 9.4520(2) Å, b = 12.7290-(3) Å, c = 20.0869(5) Å, $\alpha = 73.330(1)^{\circ}$, $\beta = 85.727(1)^{\circ}$, $\gamma = 86.243(1)^{\circ}$, V = 2306.27(9)Å³, Z = 2, final residual R = 0.0800, GOF = 1.030 on P^2 . The asymmetric unit contained half of a molecule of the solvent cyclohexane. The sandwich bis(15-crown-5)potassium cations are split over two half-occupied units on special positions. One is ordered with an average K–O distance of 2.90(7) Å, which compares well with previous values (cf.: Fischer, P. J.; Young, V. G., Jr.; Ellis, J. E. *Chem. Commun.* **1997**, 1249), but the other is rotationally disordered along its 5-fold axis. The ordered cation was used as a model for the second for restraints. Only the potassium atom was allowed to be anisotropic, while all partially occupied bis(15-crown-5) groups were refined as isotropic groups. (b) Crystal data for [K(15-crown-5)₂][2]: C₄₆H₆₁KO₁₇-Ti, $M_r = 972.95$, triclinic, PI, irregular red block, a = 9.1205(1) Å, b =12.2694(1) Å, c = 22.7257(1) Å, $\alpha = 76.382(1)^{\circ}$, $\beta = 86.007(1)^{\circ}$, $\gamma =$ 83.965(1)°, V = 2455.23(4) Å³, Z = 2, final residual R = 0.0766, GOF = 1.014 on F^2 . One bis(15-crown-5)potassium cation is ordered well, while the other is disordered in a 50:50 ratio. Both potassium ions reside on inversion centers. For further details, see the Supporting Information.

⁽²⁰⁾ DiMauro, P. T.; Wolczanski, P. T. Organometallics 1987, 6, 1947.

CH₂) (5),²¹ and Re(CO)₃(η^{5} -CPh₃)^{8c} (6), respectively. The large nonbonded Ph₂C group in close proximity to the seven-coordinate titanium center undoubtedly contributes to a partial η^5 - to η^3 -ring slippage present in **1**; i.e., the titanium is 0.057 Å ($\sim 10\sigma$) closer to carbons C(4)-C(6) than to C(3) and C(7) in the bound phenyl group. However, since the five bound carbons, C(3)-C(7), lie in a plane with an average C-C distance of 1.40(1) Å, which is not significantly different than the corresponding value of 1.37(2) Å found for **3**^{6a} **1** is clearly best described as a η^5 - rather than a η^3 -hydrocarbyl complex. NMR data for 1 are also entirely consistent with this formulation.¹⁴ Compound **4**, which contains two rather bulky η^{5} -6,6-dimethylcyclohexadienyl ligands bound to seven-coordinate Ti(II), is even more "ring slipped" than **1**, where the difference in corresponding average Ti–C distances is 0.096 Å ($\sim 10\sigma$).²⁰ In contrast, the related Ti(II) species Ti(η^5 -dmp)₂(PF₃) (dmp = 2,4-dimethylpentadienyl)²² has more uniform Ti-C distances, where the analogous difference is only 0.019 Å ($\sim 6\sigma$).

Compounds **1** and **5**²¹ are rare examples of substituted η^5 -benzyl complexes and contain exocyclic double bonds,

defined by C(1)–C(2), of virtually identical lengths, i.e. 1.387(6) and 1.376(9) Å, respectively. Another similarity in the structures of **1** and **5** is that the trigonalplanar exocyclic carbons, i.e., C(1), are both slightly bent upward by 10° relative to the C(2)–C(3)–C(7) plane. Anions **1** and **2** are well-separated from the [K(15crown-5)₂]⁺ cations in their respective crystalline lattices. Reactions of $[Ti(CO)_6]^{2-}$ with other organic electrophiles are under examination and will be reported on separately.

Acknowledgment. We thank the National Science Foundation and donors of the Petroleum Research Fund for financial support of this research. K.A.A. thanks the Lando NSF REU program for a 1996 Summer Fellowship for undergraduate research. We are grateful to Professor D. Michael Heinekey for a copy of the relevant thesis chapter involving Re(CO)₃(η^5 -trityl)^{8c} and Ms. Christine Lundby for expert assistance in the preparation of this paper.

Supporting Information Available: Complete crystallographic data for **1** and **2**, including structural details of the counterions (18 pages). Ordering information is given on any current masthead page.

OM970832E

⁽²¹⁾ Hamon, J.-R.; Astruc, D.; Roman, E. J. Am. Chem. Soc. 1981, 103, 2431.

⁽²²⁾ Ernst, R. D.; Freeman, J. W.; Stahl, L.; Wilson, D. R.; Arif, A. M.; Nuber, B.; Ziegler, M. L. J. Am. Chem. Soc. **1995**, *117*, 5075.