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Summary: Reactions of [Ti(CO)6]2- and chlorotriphenyl-
methane or chlorotris(4-methoxyphenyl)methane provide
the first examples of trityltitanium complexes. These
have been shown by IR, NMR, and single-crystal X-ray
structural characterizations to have the molecular for-
mula [Ti(CO)4{η5-C(4-C6H4R)3}]- (R ) H, OCH3).

Metal carbonyl anions are key precursors to a tre-
mendous variety of organometallic and inorganic com-
pounds.2 Their reactions with organic electrophiles are
especially useful in the synthesis of new (hydrocarbyl)-
metal complexes, which, in turn, are often important
as catalysts or intermediates in organic syntheses.3
Although hydrocarbyl complexes containing titanium in
positive oxidation states, especially II to IV, are numer-
ous and well-established,4 relatively few corresponding
zerovalent titanium compounds are known, and all of
these have contained only cyclopentadienyl type ligands.5
Interactions of organic electrophiles with hexacarbon-
yltitanate(2-), [Ti(CO)6]2-,6a represent potentially gen-
eral, but entirely unexplored, routes to novel Ti(0)
organometallics. We now report on the first reactions
of this type. These involve the interaction of [Ti(CO)6]2-

with trityl chlorides to generate compounds of the
formulation [Ti(CO)4{C(4-C6H4R)3}]-, (R ) H (1), OMe
(2)) (eq 1). Compounds 1 and 2 are of interest as the

first examples of group 4 metal trityl complexes and
contain substantially more labile hydrocarbyl ligands
than does the related [Ti(CO)4(η5-C5H5)]-, (3).6b
Trityl halides, salts, or substituted versions thereof

are often effective one-electron oxidants and usually

react with metal carbonyl anions to give metal carbonyl
oxidation products and trityl dimer,7a rather than
isolable metal trityl complexes. For example, the iso-
electronic [V(CO)6]- reacts with 1 equiv of trityl chloride
in CH2Cl2 to yield only paramagnetic V(CO)6 and trityl
dimer.7b To our knowledge, the only prior “successful”
reaction of this type was that of [Re(CO)5]- and [CPh3]-
[PF6], which provided a 37% isolated yield of Re(CO)4-
(η3-CPh3). Structural characterization of the latter
species showed that the trityl group was present as a
substituted η3-benzyl ligand.8 Thermolysis of this η3-
trityl complex afforded Re(CO)3(η5-CPh3), the only pre-
vious structurally characterized η5-trityl complex.8c
Reactions of these two species with L ) P(OCH2)3CCH3
gave Re(CO)4L(CPh3) and Re(CO)3L2(CPh3), respec-
tively, which are believed to contain η1-CPh3 groups.9
Trityl-transition-metal complexes are quite rare. Other
reported examples include Ni(CPh3)Cl,10 Ni(CPh3)2,10
[Co(η5-CPh3)(C5H5)]+,11 M(CPh3)Cl,12 and M(η3-CPh3)-
(acac)12 (M ) Pd, Pt), only the last two of which have
been structurally characterized.13

A typical synthesis of 1 involved the addition of a
solution of trityl chloride (0.340 g, 1.22 mmol) in THF
(50 mL, -45 °C) with vigorous stirring to a suspension
of finely divided [K(15-crown-5)2]2[Ti(CO)6] (1.43 g, 1.22
mmol) in THF (30 mL, -50 °C). The reaction mixture
was warmed from -50 to 0 °C over a period of 16 h with
efficient stirring. Following filtration at 0 °C, all solvent
was removed from the deep red filtrate. Vigorous
trituration of the product with diethyl ether (100 mL, 0
°C) caused it to solidify to red microcrystals. These were
recrystallized from THF-ether at 0 °C to provide 0.300
g (28% yield) of air-sensitive red microcrystals of pure
[K(15-crown-5)2][1].14ab A very similar procedure gave
satisfactorily pure [K(15-crown-5)2][2] in 30% isolated
yield.14c Attempts to obtain 1 by analogous reactions
with [CPh3][X] (X ) BF4, PF6) were unsuccessful.
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[Ti(CO)6]
2- + C(4-C6H4R)3Cl98

THF

-50 to +20 °C

[Ti(CO)4{C(4-C6H4R)3}]
-

R ) H (1), OMe, (2)
+ Cl- + 2CO (1)
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Infrared spectra for 1 and 2 in the ν(CO) region are
virtually identical and show nearly the same two-band
pattern previously observed for 3.15 NMR spectral data
for 1 and 2 are also consistent with the presence of (η5-
dienyl)tetracarbonyltitanate(1-) moieties.14 Compari-
son of the IR ν(CO) and 13C NMR δ(CO) positions of 1
(1932 (m) and 1810 (s) cm-1 (THF) and 279.6 ppm (THF-
d8)) with corresponding values of 3 (1921 (m) and 1783
(s) cm-1 (DME) and 289 ppm (DMSO-d6))15 indicates
that the trityl group is a significantly weaker donor than
is the cyclopentadienyl ligand in these titanium com-
plexes. These data suggested that the bound trityl
group should be labile. Indeed, treatment of 1 with
excess L ) 1,4,7-triazacyclononane (tacn; 2 equiv) or
hydridotris(1-pyrazolyl)borate (Tp-; 3 equiv as the K+

salt) in THF gave quantitative conversion (by infrared
spectra) within 25 min at 20 °C to the corresponding
previously known [Ti(CO)4L].16 While 3 does not un-
dergo CO exchange reactions at 20 °C under strictly
anaerobic conditions,17 1 underwent complete carbonyl
exchange with 13CO within 3 h in THF at -10 °C.18 In
the latter reaction, no spectral evidence for the forma-
tion of a higher carbonyl species, such as the presently
unknown [Ti(CO)5(η3-CPh3)]-, was obtained.
Since structural details for a (η5-trityl)metal complex

have not been previously reported in the scientific
literature8c and spectral data did not unambiguously
specify the nature of the trityl-titanium interactions
present in 1 and 2, single-crystal X-ray structural
characterizations were carried out on these species.19
Only the details of 1 will be described herein, because
the structures of 1 (Figure 1) and 2 are very similar.
Both anions contain tetracarbonyltitanium units that
are best described as being bound to η5-dienyl groups
(vide infra) and are thereby closely related to the “half
sandwich” carbonyl species 3, the only previous struc-
turally characterized (η5-dienyl)titanium(0) complex.6a
Important average structural parameters for the Ti-
(CO)4 unit in 1 are as follows: Ti-C, 2.020(6) Å; C-O,
1.163(7) Å; C-Ti-C (cis), 73(2)°; C-Ti-C (trans), 114-

(3)°. All of these values are statistically indistinguish-
able from the corresponding ones reported for 3, except
the Ti-C(carbonyl) distance, which is 0.026 Å (∼4σ)
longer than the distance of 1.994(7) Å for 3.6a Similarly,
the average Ti-C(dienyl) distance of 2.42(3) Å for 1 is
appreciably longer than the analogous value of 2.36(1)
Å for 3. These data are in accord with the aforemen-
tioned spectral data for 1 and 3 and firmly establish
that the trityl group is more weakly bound to titanium
than the η5-cyclopentadienyl group is in these com-
plexes. The coordinated phenyl ring in 1 is folded at
C(3) and C(7) with a dihedral angle of only 14.9°, a
significantly smaller angle than corresponding values
of 46, 33, and 22° reported for Ti(η5-dmCh)2CO (4; dmCh
) 6,6-dimethylcyclohexadienyl)20 Fe(η5-C5H5)(η5-C6Me5-

(14) (a) Satisfactory elemental analyses were obtained for 1 and 2
as unsolvated [K(15-crown-5)2]+ salts. (b) Selected spectral data for 1:
IR ν(CO) (Nujol mull) 1927 (m), 1836 (m, sh), 1794 (s) cm-1; 1H NMR
(300 MHz, THF-d8, 0 °C) δ 7.09 (d, J ) 7.5 Hz, 4H, o-H, free ring),
6.94 (t, J ) 7.5 Hz, 4H, m-H, free ring), 6.65 (t, J ) 7.8 Hz, 2H, p-H,
free ring), 5.40 (d, J ) 7.8 Hz, 2H, o-H, bound ring), 5.07 (t, J ) 7.8
Hz, 2H, m-H, bound ring), 4.51 (t, J ) 6.3 Hz, 1H, p-H, bound ring),
3.53 (s, 40H, 15-crown-5) ppm; 13C{1H} NMR (75 MHz, THF-d8, 0 °C)
δ 279.6 (CO), 147.7 (ipso-C, free ring), 131.2 (o-C, free ring), 131.1 (R-
C), 128.3 (m-C, free ring), 122.1 (p-C, free ring), 111.1 (m-C, bound
ring), 96.9 (ipso-C, bound ring), 92.3 (o-C, coord ring), 86.0 (p-C, bound
ring), 69.5 (15-crown-5) ppm. Heteronuclear chemical shift correlation
(HETCOR) spectroscopy was used to assign carbon resonances of bound
and free rings. (c) Selected spectral data for 2: IR ν(CO) (THF) 1932
(m), 1812 (s) cm-1; 1H NMR (300 MHz, THF-d8, 0 °C) δ 6.98 (d, J )
8.4 Hz, 4H, m-H, free ring), 6.54 (d, J ) 8.5 Hz, 4H, o-H, free ring),
5.08 (m, 4H, o-/m-H, bound ring), 3.60 (s, 6H, OCH3, free ring), 3.53
(s, 40H, 15-crown-5), 3.43 (s, 3H, OCH3, bound ring) ppm; 13C{1H} NMR
(75 MHz, THF-d8, 0 °C) δ 278.5 (CO), 155.2 (p-C, free ring), 140.7 (ipso-
C, free ring), 135.3 (p-C, bound ring), 131.4 (m-C, free ring), 129.4 (R-
C), 113.8 (o-C, free ring), 98.7 (m-C, bound ring), 91.2 (ipso-C, bound
ring), 84.3 (o-C, bound ring), 69.7 (15-crown-5), 55.6 (OCH3, bound
ring), 55.0 (OCH3, free ring). HETCOR NMR spectroscopy was used
to assign the carbon resonances of bound and free rings.
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(19) (a) Crystal data for [K(15-crown-5)2][1]‚1/2C6H12: C46H61KO14-
Ti, Mr ) 924.95, triclinic, P1h, red plate, a ) 9.4520(2) Å, b ) 12.7290-
(3) Å, c ) 20.0869(5) Å, R ) 73.330(1)°, â ) 85.727(1)°, γ ) 86.243(1)°,
V ) 2306.27(9)Å3, Z ) 2, final residual R ) 0.0800, GOF ) 1.030 on
F2. The asymmetric unit contained half of a molecule of the solvent
cyclohexane. The sandwich bis(15-crown-5)potassium cations are split
over two half-occupied units on special positions. One is ordered with
an average K-O distance of 2.90(7) Å,which compares well with
previous values (cf.: Fischer, P. J.; Young, V. G., Jr.; Ellis, J. E. Chem.
Commun. 1997, 1249), but the other is rotationally disordered along
its 5-fold axis. The ordered cation was used as a model for the second
for restraints. Only the potassium atom was allowed to be anisotropic,
while all partially occupied bis(15-crown-5) groups were refined as
isotropic groups. (b) Crystal data for [K(15-crown-5)2][2]: C46H61KO17-
Ti,Mr ) 972.95, triclinic, P1h, irregular red block, a ) 9.1205(1) Å, b )
12.2694(1) Å, c ) 22.7257(1) Å, R ) 76.382(1)°, â ) 86.007(1)°, γ )
83.965(1)°, V ) 2455.23(4) Å3, Z ) 2, final residual R ) 0.0766, GOF
) 1.014 on F2. One bis(15-crown-5)potassium cation is ordered well,
while the other is disordered in a 50:50 ratio. Both potassium ions
reside on inversion centers. For further details, see the Supporting
Information.

(20) DiMauro, P. T.; Wolczanski, P. T. Organometallics 1987, 6,
1947.

Figure 1. Molecular structure of 1 showing the labeling
scheme (50% probability ellipsoids; hydrogens omitted for
clarity). Selected bond lengths (Å), and angles (deg): Ti-
C(20), 2.024(6); Ti-C(21), 2.017(6); Ti-C(22), 2.022(5); Ti-
C(23), 2.016(6); C(20)-O(20), 1.170(7); C(21)-O(21), 1.158-
(7); C(22)-O(22), 1.159(6); C(23)-O(23), 1.165(6); Ti-C(2),
2.723(5); Ti-C(3), 2.450(5); Ti-C(4), 2.396(5); Ti-C(5),
2.405(5); Ti-C(6), 2.396(5); Ti-C(7), 2.463(5); C(1)-C(2),
1.387(6); C(1)-C(8), 1.490(7); C(1)-C(14), 1.474(7); C(2)-
C(3), 1.458(6); C(2)-C(7), 1.458(7); C(3)-C(4), 1.395(7);
C(4)-C(5), 1.394(7); C(5)-C(6), 1.411(8); C(6)-C(7), 1.384-
(7); C(3)-C(2)-C(7), 110.3(4); C(1)-C(2)-C(7), 124.2(4);
C(1)-C(2)-C(3), 124.1(4); C(2)-C(1)-C(8), 122.4(4); C(2)-
C(1)-C(14), 122.2(4); C(8)-C(1)-C(14), 115.4(4); average
Ti-C-O, 178.2(8).

14 Organometallics, Vol. 17, No. 1, 1998 Communications
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CH2) (5),21 and Re(CO)3(η5-CPh3)8c (6), respectively. The
large nonbonded Ph2C group in close proximity to the
seven-coordinate titanium center undoubtedly contrib-
utes to a partial η5- to η3-ring slippage present in 1; i.e.,
the titanium is 0.057 Å (∼10σ) closer to carbons C(4)-
C(6) than to C(3) and C(7) in the bound phenyl group.
However, since the five bound carbons, C(3)-C(7), lie
in a plane with an average C-C distance of 1.40(1) Å,
which is not significantly different than the correspond-
ing value of 1.37(2) Å found for 3,6a 1 is clearly best
described as a η5- rather than a η3-hydrocarbyl complex.
NMR data for 1 are also entirely consistent with this
formulation.14 Compound 4, which contains two rather
bulky η5-6,6-dimethylcyclohexadienyl ligands bound to
seven-coordinate Ti(II), is even more “ring slipped” than
1, where the difference in corresponding average Ti-C
distances is 0.096 Å (∼10σ).20 In contrast, the related
Ti(II) species Ti(η5-dmp)2(PF3) (dmp ) 2,4-dimethyl-
pentadienyl)22 has more uniform Ti-C distances, where
the analogous difference is only 0.019 Å (∼6σ).
Compounds 1 and 521 are rare examples of substituted

η5-benzyl complexes and contain exocyclic double bonds,

defined by C(1)-C(2), of virtually identical lengths, i.e.
1.387(6) and 1.376(9) Å, respectively. Another similar-
ity in the structures of 1 and 5 is that the trigonal-
planar exocyclic carbons, i.e., C(1), are both slightly bent
upward by 10° relative to the C(2)-C(3)-C(7) plane.
Anions 1 and 2 are well-separated from the [K(15-
crown-5)2]+ cations in their respective crystalline lat-
tices. Reactions of [Ti(CO)6]2- with other organic elec-
trophiles are under examination and will be reported
on separately.
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Supporting Information Available: Complete crystal-
lographic data for 1 and 2, including structural details of the
counterions (18 pages). Ordering information is given on any
current masthead page.
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