Reduction of R₃Ga with Alkali Metals in Aromatic Solvents–Formation of R₃GaAr⁻ and R₃GaH⁻¹

Hui Tang, Ronaldo Fabicon, and Herman G. Richey, Jr.*

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received September 19, 1997[®]

Reduction of trialkylgallium compounds (R_3Ga) in benzene with alkali metals forms R_3GaPh^- and R_3GaH^- anions in addition to the expected R_4Ga^- anions. The portion of the product consisting of R_3GaPh^- and R_3GaH^- decreases as R is changed in the series *sec*-butyl > isobutyl > ethyl > methyl. Only R_4Ga^- is observed when the reducing agent is Li instead of Na/K alloy, K, or Cs. Reductions in a monoalkylbenzene form $R_3Ga(m-alkylphenyl)^-$ and R_3GaH^- . ¹H and ¹³C NMR spectra of *s*-Bu₃Ga, *s*-Bu₄Ga⁻, *s*-Bu₃GaPh⁻, and *s*-Bu₃GaH⁻ show a discrete absorption for each diastereomer for some groupings.

Reductions of trialkylgallium compounds by alkali metals in aromatic solvents produce up to three organogallium ions. One is R_4Ga^- , expected because of reports² of the formation of these ions by reduction of R_3Ga compounds by alkali metals in other solvents. This paper identifies the two new ions, describes the effect of R, the reducing agent, and the solvent on the product composition, and considers possible mechanisms for their formation.

Results and Discussion

¹H NMR spectra of the products from reductions of benzene solutions of *i*-Bu₃Ga with either K or Na/K alloy have three sets of isobutyl absorptions, suggesting three components. ¹H NMR spectra (Figure 1) of the products from similar reductions of *s*-Bu₃Ga have only two sets of *sec*-butyl absorptions. The benzene solutions that result from the reductions are relatively stable for days at ambient temperature. Efforts to isolate individual compounds have been unsuccessful, however. The operations of solvent removal, attempted crystallization of the resulting oils, etc., ultimately seem to cause decomposition. The structures of the products could be established, however, by the comparison of their NMR absorptions to those of compounds prepared by traditional syntheses.

Identification of R₃GaPh⁻. ¹H NMR spectra of the product solutions show the absorptions expected for a phenyl group, with the absorption areas relative to those of one of the sets of isobutyl or *sec*-butyl absorptions,

indicating one phenyl group per three butyl groups. The inference that R_3GaPh^- is one of the products was confirmed by synthesizing the ion, stirring solutions of *i*-Bu₃Ga or *s*-Bu₃Ga with solid PhK,⁴ and finding ¹H NMR and (examined for the *s*-Bu case) ¹³C NMR absorptions identical to those of one of the components of the reductions.

Identification of R₃GaH⁻. ¹H NMR spectra of the product solutions show an additional broad and weak absorption (δ 2.31 in the isobutyl case and δ 2.32 in the *sec*-butyl case).⁵ The inference that R₃GaH⁻ is one of the products was confirmed by synthesizing the ion, stirring a solution of *i*-Bu₃Ga or *s*-Bu₃Ga with solid KH.⁷ and finding ¹H and ¹³C NMR absorptions identical to those of one of the components of the reductions. Surprisingly, the CH₂Ga absorption in the ¹H NMR spectrum of *i*-Bu₃GaH⁻ is a doublet of doublets. One of the splittings is due to the expected coupling with the adjoining CH. A decoupling experiment shows the additional splitting (J = 1.4 Hz) to be due to coupling with the hydrogen (δ 2.31) bonded to gallium.

[®] Abstract published in *Advance ACS Abstracts*, December 15, 1997. (1) Much of this work adapted from Tang, H. Ph.D. Dissertation, The Pennsylvania State University, 1997. Some earlier experiments were done by R. Fabicon (some of these are described in Fabicon, R. M. Ph.D. Dissertation, The Pennsylvania State University, 1991).

⁽²⁾ Wolfrum, R.; Sauermann, G.; Weiss, E. J. Organomet. Chem. 1969, 18, 27. Weibel, A. T.; Oliver, J. P. J. Am. Chem. Soc. 1972, 94, 8590. Parman, M. R. D. A. Dissertation, University of Northern Colorado, 1978; Diss. Abstr. Int. B 1979, 39, 3833. Reference 3. Also see: Gmelin Handbook of Inorganic Chemistry, Organogallium Compounds, 8th ed.; Springer-Verlag: Berlin, 1987; part 1.

<sup>Sci. Christian Handbook of Misland. Berlin, 1987; part 1.
(3) Gavrilenko, V. V.; Kolesov, V. S.; Chekulaeva, L. A.; Antonovich, V. A.; Zakharkin, L. I. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1977, 1127; Izv. Akad. Nauk SSSR, Ser. Khim. 1977, 1227.</sup>

⁽⁴⁾ Reactions of R₃Ga and R'M (M is an alkali metal) have been used before to convert R₃Ga to R₃GaR'⁻. See, for example: Williams, K. C.; Brown, T. L. J. Am. Chem. Soc. **1966**, 88, 4134. Kovar, R. A.; Derr, H.; Brandau, D.; Callaway, J. O. Inorg. Chem. **1975**, 14, 2809. Gavrilenko, V. V.; Kolesov, V. S.; Zakharkin, L. I. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) **1981**, 1937; Izv. Akad. Nauk SSSR, Ser. Khim. **1981**, 2354.

^{(5) &}lt;sup>1</sup>H NMR GaH absorptions were not observed for a benzene solution of $(Me_3SiCH_2)_3GaH^-K^+$ (ref 6). For other types of GaH compounds, ¹H NMR absorptions of GaH are not seen in some instances but are in others, for example, at δ 3.06 for Me₂GaH (Baxter, P. L.; Downs, A. J.; Goode, M. J.; Rankin, D. W. H.; Robertson, H. E. *J. Chem. Soc., Dalton Trans.* **1990**, 2873) and at δ 3.07 for Et₂GaH (Grady, A. S.; Mapplebeck, A. L.; Russell, D. K.; Taylorson, M. G. *J. Chem. Soc., Chem. Commun.* **1990**, 929). both in PhCD₃.

⁽a) Hallock, R. B.; Beachley, O. T., Jr.; Li, Y.-J.; Sanders, W. M.;
(b) Hallock, R. B.; Beachley, O. T., Jr.; Li, Y.-J.; Sanders, W. M.;
(c) Churchill, M. R.; Hunter, W. E.; Atwood, J. L. *Inorg. Chem.* 1983, 22, 3683.

⁽⁷⁾ Reactions of R₃Ga and MH (M is an alkali metal) have been used before to convert R₃Ga to R₃GaH⁻. For example, refs 3 and 6. Gavrilenko, V. V.; Fatyushina, N. P.; L'vova, V. A.; Kolesov, V. S.; Karaksin, Yu. N.; Zakharkin, L. I. *Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.)* **1972**, 122; *Izv. Akad. Nauk SSSR, Ser. Khim.* **1972**, 126. Beachley, O. T., Jr.; Tessier-Youngs, C.; Simmons, R. G.; Hallock, R. B. *Inorg. Chem.* **1982**, *21*, 1970.

 Table 1. NMR Absorptions Possible for

 Organogallium Compounds Containing sec-Butyl

 Groups Bonded to Gallium

no. of <i>s</i> -Bu groups	max no. of absorptions	relative intensities
1	1	1
2	2	1:1
3 (planar structure)	3	1:2:1
3 (nonplanar structure)	4	1:1:1:1
4	4	1:3:3:1

Identification of R₄Ga⁻. The ¹H NMR spectrum in benzene-*d*₆ of *i*-Bu₄Ga⁻ K⁺, synthesized from a reaction⁴ of *i*-BuK and *i*-Bu₃Ga, is identical to that of one of the products of the reductions of *i*-Bu₃Ga. The same spectrum is produced by reducing *i*-Bu₃Ga in THF with Na/K alloy or K, these reductions in THF producing neither of the additional products that result in benzene. Addition of 18-crown-6 to a benzene solution of the presumed *i*-Bu₄Ga⁻K⁺ leads to formation of a second liquid phase, an indication that the products are ionic since some ionic compounds in benzene form a dense second phase⁸ that contains much of the solute. The ¹H NMR spectrum of the lower phase shows one set of isobutyl absorptions and one crown ether absorption, in a position (δ ca. 3.0) expected for a crown ether coordinated to K⁺; the absorption intensities indicate a 4:1 ratio of isobutyl groups to crown ether residues.

s-Bu₄Ga⁻Li⁺ was synthesized from *s*-BuLi and *s*-Bu₃Ga.⁴ Reduction of *s*-Bu₃Ga in benzene with Li gives a solution having the same ¹H NMR spectrum. *s*-Bu₄Ga⁻K⁺ could not be prepared from a reaction of *i*-Bu₃Ga with *s*-BuK because *s*-BuK rapidly metalated the benzene. A reaction of *s*-Bu₂Hg, *s*-Bu₃Ga, and K was tried in hopes that (1) reduction of *s*-Bu₂Hg to form *s*-BuK would be more rapid than that of *s*-Bu₃Ga to form *s*-Bu₃GaPh⁻ and *s*-Bu₃GaH⁻ and (2) *s*-BuK would react more rapidly with *s*-Bu₃Ga than with benzene. The ¹H NMR spectrum of the product indicates the presence of a considerable amount of *s*-Bu₄Ga⁻K⁺ but also of residual *s*-Bu₂Hg and other species. *s*-Bu₄Ga⁻K⁺ was prepared more cleanly from *s*-Bu₃Ga and K in THF.

Other Evidence for Structures of Products. Adding 1 equiv of 18-crown-6 to a solution resulting from the reduction of *i*-Bu₃Ga or *s*-Bu₃Ga with Na/K alloy causes the formation of a second liquid layer, an indication that the products are ionic.⁸ ¹H NMR spectra show the lower layer to have essentially all of the solute. The ¹H NMR spectrum of the lower layer from the *s*-Bu₃Ga reaction exhibits two sets of *sec*-butyl absorptions, slightly shifted from those observed before addition of the crown ether, and one crown ether absorption, in a position (δ 2.95) expected for a crown ether coordinated to K⁺.

Me₃NH⁺Cl⁻ (approximately 1 equiv per *s*-Bu₃Ga initially used) was added to a solution obtained from reaction of *s*-Bu₃Ga and K. The ¹H NMR spectrum of the solution remaining after centrifugation of a precipitate that formed is the same as that of a solution of equimolar amounts of *s*-Bu₃Ga and Me₃N. This result suggests that both of the products of the reduction have three *sec*-butyl groups bonded to a gallium.

Figure 1. ¹H NMR spectrum (300 MHz, benzene-*d*₆) of the material obtained from a reaction of *s*-Bu₃Ga and potassium in benzene. Absorptions of *s*-Bu₃GaPh⁻ are labeled A and those of *s*-Bu₃GaH⁻ are labeled B.

NMR Observations of Stereoisomers. NMR spectra can indicate the number of alkyl groups bonded to a Ga when the alkyl group is chiral. Although not needed to identify the products in this work, some observations are presented since similar stereochemical behavior will appear in other chemical systems. Because *sec*-butyl groups are chiral, stereoisomeric compounds exist for structures containing them. While NMR spectra of enantiomers are identical (in the absence of chiral influences such as chiral solvents), spectra of diastereomers are inherently different,⁹ although differences will not be observed if they are too small or if the exchange of groups or inversion of configuration at the chiral carbon is rapid on the NMR time scale.

A structure with two identically placed *s*-Bu groups should have two sets of NMR absorptions: one for the RR and SS isomers and the other for the RS isomer. Three identically placed groups provide isomers (R_3 and R_2S and their enantiomers), and the R_2S (or S_2R) isomer should have two sets of absorptions since its R and Sgroups have different environments. As a further complication, if the structure is nonplanar (certainly the case if a fourth group of any sort is bonded to the gallium), then the two R (or S) groups of the R_2S (or S_2R) isomer are diastereotopic and may exhibit different absorptions. With four identically placed groups, the *R* and *S* groups in the R_3S (or S_3R) isomer are different. Table 1 lists the maximum number of absorptions (assuming structural placement of the sec-butyl groups to be identical) and the relative absorption intensities (assuming *R* and *S* groups to be distributed randomly) for (s-Bu)_nGa structures.

For example, the ¹H NMR spectrum of *s*-Bu₃Ga (Figure 2) shows three triplets having 1:2:1 intensities for CH₃CH₂ and the ¹³C NMR spectrum (Figure 3) shows three absorptions having 1:2:1 intensities for each of the CH₃ groups and for the CH group. Such groups of absorptions sometimes have essentially equal spacing between the components (the CH₃CH₂ absorptions of

⁽⁸⁾ Atwood, J. L. in *Inclusion Compounds*; Atwood, J. L, Davies, J. E. D., MacNicol, D. D., Eds.; Academic: London, 1984; Vol. 1, Chapter 9.

⁽⁹⁾ For an example of the use of such differences to define structure, see: Hanawalt, E. M.; Richey, H. G., Jr. *J. Am. Chem. Soc.* **1990**, *112*, 4983.

Figure 2. ¹H NMR spectrum (360 MHz, benzene- d_6) of the CH₃CH₂ absorption of *s*-Bu₃Ga.

Figure 3. 13 C NMR spectrum (75 MHz, proton-decoupled, benzene- d_6) of *s*-Bu₃Ga.

s-Bu₃Ga are an example) and appear like a first-order multiplet; this is fortuitous, however, since there is no inherent reason for spacings between the absorptions of diastereomers to be equal.

The spectrum of s-Bu₃GaPh⁻ has a 1:1:1:1 set of doublets for CH₃CH, indicating three *sec*-butyl groups bonded to Ga. The spectrum of *s*-Bu₃GaH⁻ has a 1:2:1 set of doublets for CH₃CH, also a possibility when three sec-butyl groups are bonded to Ga. Different absorptions for the diastereotopic sec-butyl groups in the R_2S (and S_2R) isomers that would lead to the 1:1:1:1 pattern observed for s-Bu₃GaPh⁻ are not evident. It is reasonable that the differences in NMR environments of the diastereotopic sec-butyl groups are less when the fourth group is hydrogen rather than the much larger phenyl. The spectrum of s-Bu₄Ga⁻Li⁺ shows the 1:3:3:1 set of CH₃CH doublets (Figure 4) possible for a species having four sec-butyl groups bonded to gallium. The CH₃CH absorptions of s-Bu₄Ga⁻K⁺ look like three 1:3:4 doublets, however, since two of the stereoisomers have a similar position for this absorption.

Yields of Products. The oil remaining from the reaction of *s*-Bu₃Ga and K after filtration and removal of solvent contains only *s*-Bu₃GaPh⁻K⁺and *s*-Bu₃-GaH⁻K⁺, in equal amounts. Its weight indicates that this oil contains about 87% of the *sec*-butyl groups and gallium atoms of the reactant. Therefore, the reaction

Figure 4. ¹H NMR spectrum (300 MHz, benzene- d_6) of the CH₃CH (left) and CH₃CH₂ absorptions of *s*-Bu₄Ga⁻ Li⁺ obtained from a reaction of *s*-Bu₃Ga and *s*-BuLi.

in eq 1 is almost quantitative.

$$2R_{3}Ga + PhH + 2K \rightarrow R_{3}GaPh^{-}K^{+} + R_{3}GaH^{-}K^{+}$$
(1)

Effect of R in R₃Ga on Product Composition. ¹H and ¹³C NMR spectra of solutions obtained from reduction of s-Bu₃Ga with Na/K alloy or K show only absorptions of *s*-Bu₃GaPh⁻ and *s*-Bu₃GaH⁻ (1:1 ratio). Similar reductions of *i*-Bu₃Ga give solutions whose ¹H NMR spectra show absorptions of *i*-Bu₃GaPh⁻, *i*-Bu₃GaH⁻ and *i*-Bu₄Ga⁻ (1:1:0.8). By contrast, the ¹H NMR spectrum of the solution obtained by reduction of Me₃Ga with K has a single absorption; the lack of absorptions due to a phenyl group or to a hydrogen bonded to gallium indicate this to be Me₄Ga⁻. Similarly, reduction of Et₃Ga gives solutions with one principal set of ethyl absorptions, attributed to Et₄Ga⁻; small amounts (ca. 5%) of Et₃GaPh⁻ and Et₃GaH⁻ are indicated, however, by weak absorptions similar to those of R₃GaPh⁻ and R_3GaH^- when R is isobutyl or *sec*-butyl. The portion of R_3GaPh^- and R_3GaH^- in the products formed by reduction of R₃Ga, therefore, increases in the series Me < Et < i-Bu < s-Bu.

Effect of Reducing Agent and Solvent on Product Composition. Experiments with *s*-Bu₃Ga show that identical product mixtures result from reactions using amounts of Na/K alloy containing one, two, or several equivalents of K. The reaction is slower, but the product mixture is identical when K metal is used instead of Na/K alloy. Cs produces a similar product mixture, but Li produces mainly *s*-Bu₄Ga⁻. In contrast to the reactions in benzene, reduction in THF of *i*-Bu₃Ga or *s*-Bu₃Ga with K furnishes only R₄Ga⁻. Therefore, use of Li instead of a more polar alkali metal and use of THF instead of benzene favor R₄Ga⁻ formation.

Figure 5. ¹H NMR spectrum (300 MHz, benzene- d_6) of the material obtained from a reaction of s-Bu₃Ga and potassium in *tert*-butylbenzene. Absorptions of s-Bu₃Ga(m*t*-butylphenyl)⁻ (**2b**) are labeled A and those of *s*-Bu₃GaH⁻ are labeled B.

Effect of the Aromatic Solvent on Product Structure and Composition. ¹H NMR spectra of products obtained from reactions of s-Bu₃Ga and K in anisole (PhOCH₃) instead of benzene as the solvent also indicate the formation of equal amounts of two products. One is s-Bu₃GaH⁻; the second is s-Bu₃GaAn⁻ (1), the aryl absorptions indicating an ortho-substituted anisyl ring.

Similar reactions in toluene and tert-butylbenzene also give s-Bu₃GaH⁻ and s-Bu₃GaAr⁻, but the aryl ¹H NMR absorptions (Figure 5) indicate meta-substituted rings (2). More than 5 % of the ortho or para isomers should have been detected if they had been present.

The relative reactivities of the aromatic compounds were determined by reducing s-Bu₃Ga with K in equimolar mixtures of two aromatic compounds. In anisolebenzene, the *s*-Bu₃GaAn⁻ to *s*-Bu₃GaPh⁻ ratio was 2.5. In toluene-benzene or *tert*-butylbenzene-benzene, only s-Bu₃GaPh⁻ absorptions were observed, indicating a preference exceeding 20:1 for benzene incorporation.

Reaction of the Naphthalene Radical Anion with R₃Ga. A likely pathway for R₃GaAr⁻ and R₃GaH⁻ formation involves reaction of the radical anion (Ar^{-•}) of the aromatic solvent with R₃Ga. If Ar^{-•} is involved, then a solution of it that contains no alkali metal should react with R₃Ga to produce R₃GaAr⁻ and R₃GaH⁻. Such an experiment cannot be done with the aromatic compounds we used since their conversion by alkali metals to radical anions is far from complete, and so the alkali metal remains as an alternate reactant. An experiment with naphthalene is possible, however, since its reaction with K can incorporate all of the metal into K⁺ Naph^{-•}. In fact, a solution of K⁺ Naph^{-•} reacts

rapidly with s-Bu₃Ga. A ¹H NMR spectrum shows onehalf of the product to be s-Bu₃GaH⁻; the other absorptions are reasonable for s-Bu₃Ga(Naph)⁻, but the component responsible for these absorptions did not survive further workup efforts.

Mechanism. The equal amounts of R₃GaH⁻ and R₃GaPh⁻ suggests their formation to be linked. The initial step in likely processes (Scheme 1) is formation of either (1) a reactive organogallium species, such as $R_3Ga^{-\bullet}$, which then attacks the aromatic ring or (2) the radical anion¹⁰ of the aromatic compound which then (or after further reduction) attacks R₃Ga. Either process would lead to a species having an aryl ring attached to gallium, further reaction of which could furnish the products. Further reduction as in Scheme 1, for example, would give a dianion which by transferring a hydride to R₃Ga would produce equal amounts of R₃GaH⁻ and R₃GaPh⁻.

Formation of R₃GaPh⁻ and R₃GaH⁻ in reactions with K or Cs but not Li and a report that K and Cs but not Li react with benzene to form a radical anion¹¹ provide particularly compelling evidence for the radical anion pathway. Li, K, and Cs can produce R₄Ga⁻, however, suggesting a different key step in the pathway leading to R₄Ga^{-•}. Moreover, a solution of Naph^{-•} K⁺ (containing no K metal) reacts with s-Bu₃Ga to produce products of the type observed with benzene.

The effects of the substituents on the benzene ring provide clues about the mechanism. Since the effect of methoxyl could be due to coordination¹² of organogallium species to the oxygen rather than to an electronic effect, we will discuss only the alkyl substituents. The effects of a substituent on the benzene ring on the rate and position of attack by a free radical depends on the electrophilic-nucleophilic character of the radical.¹³ We are not aware of information about R₃Ga^{-•} species. Somewhat related, however, are R₃Si[•] radicals,¹⁴ which attack toluene with only small positional selectivities¹⁵ and at rates¹⁶ similar to attack on benzene. The

⁽¹⁰⁾ Evidence has been presented for attack by a naphthalene radical anion on (neopentyl)2GaCl (Beachley, O. T.; Pazik, J. C.; Noble, M. J. Organometallics 1994, 13, 2885).

 ⁽¹¹⁾ Jones, M. T.; Kuechler, T. C. J. Phys. Chem. 1977, 81, 360.
 (12) Beak, P.; Meyers, A. I. Acc. Chem. Res. 1986, 19, 356.

⁽¹³⁾ Nonhebel, D. C.; Walton, J. C. Free Radical Chemistry, Cambridge: Cambridge, 1974; Chapter 11. Perkins, M. J. In Free Radicals; Kochi, J. K., Ed.; John Wiley and Sons: New York, 1973; Vol. 2, Chapter 16.

⁽¹⁴⁾ For overviews, see: Sakurai, H. In *Free Radicals*; Kochi, J. K., Ed.; John Wiley and Sons: New York, 1973; Vol. 2, Chapter 25. Dohmaru, T. In Chemical Kinetics of Small Organic Radicals, Alfassi, Z. B., Ed.; CRC Press: Boca Raton, 1988; Vol. 3, Chapter 16.

Reduction of R₃Ga with Alkali Metals

electronegativities of Ga and Si are similar, but the negative charge of R₃Ga^{-•} should enhance nucleophilicity. R₃Ga^{-•}, therefore, may exhibit a preference for benzene over alkylbenzenes and for meta substitution of alkylbenzenes. Because the σ values of alkyl groups are small,¹⁷ however, unusually large ρ values would be required to cause the large rate differences and positional selectivities that are observed.

Alkyl substitution makes the reduction¹⁸ of aromatic compounds to radical anions less favorable in a thermodynamic sense and probably slower. Positional selectivity in attachment to a radical anion is probably related to some combination of (1) electron densities of its carbons and (2) stabilities of the intermediates that would result from forming bonds at these carbons. Electron spin densities in toluene and tert-butylbenzene are greatest at the meta positions, ¹⁹ but overall electron density, available only from calculations, may be more critical.²⁰ There seems to be little experimental information about the positions at which radical anions react. A recent study finds protonation of the anisole radical anion to have a meta-to-ortho ratio of about 3,20 but protonation of the toluene radical anion only is known to be ortho or meta (or some combination).²⁰

R effects the product composition as expected if the factor favoring R₃GaPh⁻ and R₃GaH⁻ over R₄Ga⁻ is the increasing steric demand of R, increasing stability of R[•], or decreasing stability of R⁻. Reduction of R₃Ga must initiate R_4Ga^- formation. If this reduction were also the initial step in R₃GaPh⁻ and R₃GaH⁻ formation, then product composition would probably be related to the relative rates of loss of R from and attack by R₃Ga^{-•} on the aromatic ring. R. loss should increase with increasing $\,R^{\scriptscriptstyle\bullet}\,stability,\,in\,contrast\,to\,the\,results.^{21}\,$ If reduction of the aromatic compound is the initial step in R₃GaPh⁻ and R₃GaH⁻ formation, however, then the relative ease of reducing R₃Ga and PhH will influence the product balance (rates of subsequent reactions may also have an effect if the reduction step is reversible). The rate of reduction of R₃Ga by metals probably decreases with the increasing size of R, a prediction consistent with the product compositions.

It may be interesting for someone to investigate reactions of aromatic radical anions with polar, maingroup organometallic compounds.

(20) Zimmerman, H. E.; Wang, P. A. J. Am. Chem. Soc. 1993, 115, 2205.

Experimental Section

All NMR spectra were taken in benzene- d_6 . ¹H NMR absorptions are reported in parts per million (δ) downfield from internal benzene (C₆D₅H), taken as δ 7.15 ppm, and using the following notations: s, singlet; d, doublet; t, triplet; q, quartet; m, a more complex multiplet; c, complex overlapping absorptions; b, broad. ¹³C NMR spectra are reported in parts per million (δ) downfield from internal benzene (C₆D₆), taken as δ 128.0 ppm. Some products containing *sec*-butyl groups consist of several stereoisomers; in some instances, discrete absorptions for a particular structural feature, although with only slightly different chemical shifts, are seen for each stereoisomer. These absorptions are described by listing the chemical shift of the most upfield absorption and then the shift downfield from this peak of each of the other absorptions and the approximate relative areas. The NMR tubes had an extension of routine glass tubing to facilitate sealing with a flame after the contents had been added.

The procedures involving the organometallic compounds were performed under a nitrogen atmosphere using Schlenk techniques, a glovebox, and a vacuum line. Nitrogen was purified by passing through columns of manganese oxide oxygen scavenger and molecular sieves (4 Å). Glassware was dried in an oven at 200 °C.

Hydrocarbon solvents, TMEDA (tetramethylethylenediamine), and anisole were distilled from CaH_2 and stored over molecular sieves (4 Å). Diethyl ether and THF (tetrahydrofuran) were distilled from sodium benzophenone ketyl immediately prior to use. Benzene- d_6 was stored over molecular sieves (4 Å). Ga (99.9%), Li, Cs, and NaF were used as obtained (Aldrich). Na and K were ingots in mineral oil (Aldrich). Immediately before use, large pieces were washed repeatedly with hexane and then cut into smaller pieces. KH was a dispersion in mineral oil (Aldrich); it was washed repeatedly with hexane and heated under vacuum (60 °C, 10^{-3} Torr) prior to use.

Preparation of Trialkylgallium Compounds. Trimethylgallium was prepared following a literature procedure.²² The crude product (bp 55-60 °C) was redistilled (bp 57 °C; lit.22 bp 55.7 °C) over NaF. The other trialkylgallium compounds were generally prepared from reactions of a Grignard reagent and GaCl₃ using the following procedure. In the glovebox, a Et₂O solution of the Grignard reagent (1.0 M, 100 mL, 0.1 mol) was added dropwise to a stirred solution of GaCl₃ (freshly sublimed, 5.3 g, 0.03 mol) in Et₂O (20 mL). The reaction was then stirred for 12 h. The products were isolated by fractional distillation. To reduce residual diethyl ether, the distillates then were carefully subjected to a vacuum at 0 °C and then to a vacuum transfer. Et₃Ga still contained 1 equiv of Et₂O. i-Bu₃Ga also was prepared by stirring a mixture of i-Bu₂Hg (15.7 g, 0.05 mol), Ga (5.6 g, 0.08 mol), and a crystal of $HgCl_2$ at 150–170 $^\circ C$ for 48 $h.^{23}$ The mixture was cooled and decanted from the Hg, and the product was distilled (88-90 °C, 10 Torr). Yield: 89% (based on *i*-Bu₂Hg).

Trimethylgallium: ¹H NMR (360 MHz) δ -0.18 (s, CH₃). **Triethylgallium (Et₃Ga(OEt₂)):** ¹H NMR (200 MHz) δ 0.60 (q, J = 8.1 Hz, 2, CH₂Ga), 1.09 (t, J = 8.0 Hz, 3, CH₃CH₂O), 1.41 (t, J = 8.0 Hz, 3, CH₃CH₂Ga), 3.26 (q, J = 8.1 Hz, 2, CH₂O).

Triisobutylgallium: ¹H NMR (360 MHz) δ 0.74 (d, J = 7.0 Hz, 2, CH₂), 1.00 (d, J = 6.6 Hz, 6, CH₃), 2.06 (sept, J = 6.7 Hz, 1, CH). ¹³C NMR (75 MHz) δ 27.0 (CH₂), 27.8 (CH₃), 32.8 (CH).

⁽¹⁵⁾ Bennett, S. W.; Eaborn, C.; Jackson, R. A.; Pearce, R. J. Organomet. Chem. **1971**, 28, 59. The reversibility of addition of R_3Si° may somewhat influence the results (Kira, M.; Sugiyama, H.; Sakurai, H. J.. Am. Chem. Soc. **1983**, 105, 6436). Similar results are observed with the pentamethyldisilanyl radical (R_3SiSiR_2) (Sakurai, H.; Hosomi, A. J. Am. Chem. Soc. **1971**, 93, 1709).

⁽¹⁶⁾ Chatgilialoglu, C.; Ingold, K. U.; Scaiano, J. C. J. Am. Chem. Soc. 1983, 105, 3292.

⁽¹⁷⁾ March, J. Advanced Organic Chemistry, 4th ed.; John Wiley and Sons: New York, 1992; Chapter 9.

⁽¹⁸⁾ For example, the effects of methyl groups on the reduction of naphthalene (Klemm, L. H.; Kohlik, A. J. *J. Org. Chem.* **1963**, *28*, 2044) or nitrobenzenes (Allendoerfer, R. D.; Rieger, P. H. *J. Am. Chem. Soc.* **1966**, *88*, 3711).

⁽¹⁹⁾ de Boer, E.; Colpa, J. P. J. Phys. Chem. 1967, 71, 21. Gerson, F.; Moshuk, G.; Schwyzer, M. Helv. Chim. Acta 1971, 54, 361. Jones, M. T.; Metz, S.; Kuechler, T. C. Mol. Phys. 1977, 33, 717. Additional values for toluene are listed in Numerical Data and Functional Relationships in Science and Technology, New Series; Springer-Verlag: Berlin, 1980; Vol. 9, Part d1, pp 850–851.

⁽²¹⁾ It seems less likely that loss of R^- is involved, although that would agree with the effects of R on product composition.

⁽²²⁾ Gaines, D. F.; Borlin, J.; Fody, E. P. Inorg. Synth. 1979, 15, 203.

⁽²³⁾ Reactions of organomercury compounds and Ga metal have been used before to prepare organogallium compounds. For example, see: Oliver, J. P.; Stevens, L. G. *J. Inorg. Nucl. Chem.* **1962**, *24*, 953. Haran, R.; Laurent, J.-P. *Bull. Soc. Chim. Fr.* **1966**, 3454.

Tri-s-butylgallium: ¹H NMR (360 MHz) δ 0.93 (+0.008, +0.015; three triplets, 1:2:1, $J \cong 7.4$ Hz, 9, CH₃CH₂), 1.20–1.22 (c, 4, CH₃CH), 1.69 (m, 2, CH₂), ¹³C NMR (75 MHz) 16.05 (+0.046, +0.104; three absorptions, 1:2:1, CH₃), 16.94 (+0.065, +0.127; three absorptions, 1:2:1, CH₃), 28.94 (+0.031; two absorptions, 1:2, CH₂), 29.62 (the larger of three 1:2:1 absorptions, CH).

Preparation of Phenylpotassium. This compound was prepared by metalation of benzene by EtK.²⁴ K (0.4 g, 0.01 mol), Et₂Hg (1.5 g, 0.006 mol), and benzene (8 g) were stirred under nitrogen for 48 h. The solvent and any residual Et₂Hg were removed at reduced pressure (0.1 Torr, ambient temperature) from the suspension, leaving a gray-blue solid. One equivalent of TMEDA was used to make the PhK sufficiently soluble in benzene-*d*₆ for a routine ¹H NMR spectrum (200 MHz): δ 2.10 (s, 6, CH₃ of TMEDA), 2.34 (s, 4, CH₂ of TMEDA), 7.06 (d, *J* = 7.2 Hz, 2, *o*-H), 7.10 (t, *J* = 7.3 Hz, 1, *p*-H), 7.31 (t, *J* = 7.6 Hz, 2, *m*-H).

Reactions of R₃Ga with Alkali Metals in Benzene or THF. The alkali metal (0.6–0.8 mmol) was added to a solution of the organogallium compound (0.3 mmol) in the solvent (0.6 mL), and the mixture was stirred for 24 h. When Na/K alloy was used, the K content was 2–3 times the amount of organogallium compound. Then the solution was filtered, the solvent was removed at reduced pressure, and the remaining oil was dissolved in benzene- d_6 for NMR spectroscopy.

s-Bu₃Ga and K in Benzene. The ¹H and ¹³C NMR spectra were essentially identical to the superposition of the spectra of *s*-Bu₃GaPh⁻K⁺ and *s*-Bu₃GaH⁻K⁺. The fact that particular s-Bu absorptions belong to the same s-Bu group was verified by decoupling experiments. The weight remaining after thorough removal of the solvent from a reaction corresponded to incorporation of 87% of the sec-butyl groups and Ga atoms of the reactant into the two products; the ¹H NMR spectrum then verified that solvent removal had been complete and that s-Bu₃GaPh⁻ and s-Bu₃GaH⁻ were the only significant components present. Addition to the benzene- d_6 solution obtained from a typical reaction of Me₃NH⁺Cl⁻ (freshly sublimed at 80 °C, 10 Torr, approximately 1 mol/mol of s-Bu₃Ga used) led to the formation of a precipitate. ¹H NMR spectrum of the solution remaining (300 MHz): δ 0.71 (m, 3, CH), 1.15 (t, 9, J = 6.9 Hz, CH₃CH₂), 1.33 (d, J = 6.9 Hz, 9, CH₃CH), 1.55 (m, 3, CHH), 1.81 (s, 9, CH₃N), 1.88 (m, 3 CHH). In a reaction using only 1 mol of K/mol of s-Bu₃Ga, all of the metal dissolved but the NMR spectrum of the product was identical to those of the products of reactions using more K.

s-Bu₃Ga and Na/K Alloy (60% K by Weight) in Benzene. The ¹H NMR spectrum of the product was identical to the superposition of the spectra of s-Bu₃GaPh⁻K⁺ and s-Bu₃-GaH⁻K⁺.

s-Bu₃Ga and Cs in Benzene. ¹H NMR (360 MHz): *s*-Bu₃GaH⁻ absorptions δ 0.55 (m, 3, CH), 1.34 (t, J = 7.3 Hz, 9, CH₃CH₂), 1.48 (+0.003, +0.007, +0.010; four doublets, 1:1: 1:1, $J \cong 7.5$ Hz, 9, CH₃CH), 1.69 (m, 3, CHH), 1.90 (m, 3, CHH), 3.78 (bs, <1, GaH); *s*-Bu₃GaPh⁻ absorptions δ 0.87 (m, 3, CH), 1.42 (t, J = 7.2 Hz, 9, CH₃CH₂), 1.60 (+0.004, +0.012, +0.016; four doublets, 1:1:1:1, $J \cong 7.4$ Hz, 9, CH₃CH), 1.98 (m, 3, CHH), 2.20 (m, 3, CHH), 6.92 (t, J = 7.2 Hz, 1, *p*-H), 7.05 (t, J = 7.2 Hz, 2, *m*-H), 7.89 (d, J = 7.2 Hz, 2, *o*-H).

s-Bu₃Ga and Li in Benzene; Preparation of Li⁺*s*-Bu₄Ga⁻. Lithium metal powder (5–6 equiv) was used. ¹H NMR (300 MHz): δ 0.05 (m, 1, CH), 1.13 (t, J = 7.2 Hz, 3, CH₃CH₂), 1.22 (+0.007, +0.013, +0.017; four doublets, 1:1:1: 1, $J \cong 7.6$ Hz, 3, CH₃CH), 1.45 (m, 1, CHH), 1.77 (m, 1, CHH). ¹³C NMR (75 MHz): δ 15.04 (CH₃CH₂), 18.48 (CH₃CH), 20.07 (b, CH), 29.69 (CH₂).

s-Bu₃Ga and K in THF; Preparation of *s*-Bu₄Ga⁻K⁺. ¹H NMR (300 MHz): δ 0.23 (m, 1, CH), 1.32 (t, J = 7.2 Hz, 3,

 CH_3CH_2), 1.52 (+0.004, +0.011; three doublets, 4:3:1, $J \cong 7.5$ Hz, 3, CH_3CH), 1.81 (m, 1, CHH), 2.14 (m, 1, CHH).

i-Bu₃Ga and K in Benzene. The ¹H NMR spectrum was essentially identical to the superposition of the spectra of *i*-Bu₃GaPh⁻K⁺, *i*-Bu₃GaH⁻K⁺, and *i*-Bu₄Ga⁻K⁺ in 1:1:0.8 portions. The fact that particular *i*-Bu absorptions belong to the same *i*-Bu group was verified by decoupling experiments.

i-Bu₃Ga and K or Na/K Alloy (72% K by Weight) in THF; Preparation of K⁺*i*-Bu₄Ga⁻. ¹H NMR of the product from the reaction with K (300 MHz): δ –0.07 (d, J = 6.9 Hz, 2, CH₂), 1.24 (d, J = 6.5 Hz, 6, CH₃), 2.08 (sept, J = 6.5 Hz, 1, CH). An identical spectrum resulted from using Na/K alloy.

Et₃Ga(OEt₂) and K in Benzene. ¹H NMR (200 MHz): δ 0.11 (q, J = 8.0 Hz, 2, CH₂), 1.44 (t, J = 8.0 Hz, 3, CH₃); these absorptions constituted most of the total absorption, but there were additional weak absorptions similar to the Ph and GaH absorptions of R₃GaPh⁻ and R₃GaH⁻ when R is *i*-Bu or *s*-Bu.

Me₃Ga and K in Benzene. ¹H NMR (200 MHz): δ –0.50 (s, CH₃).

Reactions of R₃Ga with PhK and KH; Preparations of R₃GaPh⁻K⁺ and R₃GaH⁻K⁺. A typical procedure to prepare R₃GaPh⁻ was to stir R₃Ga (0.3 mmol) with PhK (0.4 mmol) in benzene- d_6 (0.6 mL) for 24 h. The mixture then was filtered to remove excess PhK and transferred to an NMR tube. The procedure to prepare R₃GaH⁻ was similar except that a larger excess of KH (1.0 mmol) was used.

i-Bu₃GaPh⁻K⁺: ¹H NMR (300 MHz) δ 0.31 (d, J = 6.9 Hz, 6, CH₂), 1.37 (d, J = 6.5 Hz, 18, CH₃), 2.30 (sept, J = 6.6 Hz, 3, CH of *i*-Bu), 6.97 (t, J = 7.3 Hz, 1, *p*-H), 7.08 (t, J = 7.5 Hz, 2, *m*-H), 7.74 (d, J = 7.6 Hz, 2, *o*-H).

s-Bu₃GaPh⁻K⁺: ¹H NMR (360 MHz) δ 0.81 (m, 3, CH of s-Bu), 1.39 (t, J = 7.5 Hz, 9, CH₃), 1.55 (+0.005, +0.011, +0.019; four doublets, 1:1:1:1, $J \simeq 7.5$ Hz, 9, CH₃CH), 1.86 (m, 3, CHH), 2.16 (m, 3, CHH), 6.83 (t, J = 7.3 Hz, 1, p-H), 6.97 (t, J = 7.2 Hz, 2, m-H), 7.81 (d, J = 7.6 Hz, 2, o-H); ¹³C NMR (90 MHz) δ 15.9 (CH₃CH₂), 20.3 (CH₃CH), 21.5 (CH), 31.2 (CH₂), 124.0 (p-C), 126.9 (m-C), 139.7 (o-C), 171.2 (CGa).

i-Bu₃GaH⁻K⁺: ¹H NMR (300 MHz) δ 0.13 (d of d, J = 6.9 and 1.4 Hz, 6, CH₂), 1.22 (d, J = 6.5 Hz, 18, CH₃), δ 2.00 (sept, J = 6.6 Hz, 3, CH), 2.49 (bs, <1, GaH).

s-Bu₃GaH⁻K⁺: ¹H NMR (300 MHz) δ 0.39 (m, 3, CH of *s*-Bu), 1.24 (t, J = 7.2 Hz, 9, CH₃CH₂), 1.34 (+0.008, +0.017; three doublets, 1:2:1, $J \cong 7.5$ Hz, 9, CH₃CH), 1.60 (m, 3, CHH), 1.86 (m, 3, CHH), 2.31 (bs, <1, GaH); ¹³C NMR (90 MHz) δ 15.6 (CH₃CH₂), 21.1 (CH₃CH), 21.3 (CH), 31.8 (CH₂).

Reactions of R₃Ga with RK or RLi; Preparations of $R_4Ga^-K^+$ and $R_4Ga^-Li^+$. *i*-Bu₄Ga⁻K⁺. *i*-BuK was prepared in situ from stirring *i*-Bu₂Hg (0.4 mmol) and K (0.8 mmol) in benzene-*d*₆ (0.5 mL) for 12 h. Excess K was removed using a spatula, *i*-Bu₃Ga (0.3 mmol) was added, and the mixture was stirred for 12 h and then filtered and transferred to an NMR tube. The ¹H NMR spectrum was identical to that of the product of the reaction of *i*-Bu₃Ga and K in THF. Upon addition of 18-crown-6, a second layer formed. The ¹H NMR spectrum of the lower layer showed one set of isobutyl absorptions and one crown ether absorption, the intensities indicating a 4:1 ratio.

s-Bu₄Ga⁻Li⁺. The procedure was similar to that used with *i*-Bu₃Ga. The ¹H NMR spectrum was identical to that of the product of the reaction of *s*-Bu₃Ga and Li in benzene.

Reactions of *s***-Bu**₃**Ga and K in Other Aromatic Solvents.** The typical procedure was to add K (0.5 mmol) to a solution of *s*-Bu₃Ga (0.24 mmol) in the aromatic compound (0.5 mL) and stir the mixture for 24 h. Equimolar amounts (5.0 mmol of each) were used in reactions involving two aromatic compounds. The mixture then was filtered, the solvent was removed under reduced pressure, and the remaining viscous oil was dissolved in benzene- d_6 for NMR spectroscopy.

Anisole. The ¹H NMR spectrum (300 MHz) shows the characteristic absorptions of *s*-Bu₃GaH⁻K⁺ and absorptions assigned to *s*-Bu₃Ga(o-C₆H₄OCH₃)⁻K⁺ (**1**): δ 0.53 (m, 3, CH),

⁽²⁴⁾ Gilman, H.; Kirby, R. H. J. Am. Chem. Soc. 1936, 58, 2074.

1.33 (t overlapping with t of *s*-Bu₃GaH⁻, 9, **CH**₃CH₂), 1.49 (+0.010, +0.014, +0.022; four doublets, 1:1:1:1, $J \cong 7.4$ Hz, 9, **CH**₃CH), 1.78 (m, 3, CHH), 2.07 (m, 3, CHH), 3.38 (s, 3, CH₃O), 6.50 (d, J = 7.9 Hz, 1, H₄), 6.81 (t, J = 6.8 Hz, 1, H₃), 6.95 (t, J = 7.6 Hz, 1, H₂), 7.81 (d, J = 6.8 Hz, 1, H₁).

tert-**Butylbenzene.** The ¹H NMR spectrum (300 MHz) shows the characteristic absorptions of *s*-Bu₃GaH⁻K⁺ and absorptions assigned to *s*-Bu₃Ga(*m*-C₆H₄CMe₃)⁻K⁺ (**2b**): δ 0.78 (m, 3, CH of *s*-Bu), 1.25 (s overlapping with a t of *s*-Bu₃GaH⁻, 9, C(CH₃)₃), 1.36 (t overlapping with a d of *s*-Bu₃GaH⁻, 9, CH₃CH₂), 1.56 (+0.005, +0.009; three doublets, 2:1:1, $J \cong$ 7.5 Hz, 9, CH₃CH), 1.86 (m overlaps with CHH of *s*-Bu₃GaH⁻, 3, CHH), 2.12 (m, 3, CHH), 7.00 (d, J = 7.8 Hz, 1, H₁), 7.07 (t, J = 7.2 Hz, 1, H₂), 7.66 (d, J = 6.7 Hz, 1, H₃), 7.99 (s, 1, H₄).

Toluene. The ¹H NMR spectrum (300 MHz) shows the characteristic absorptions of *s*-Bu₃GaH⁻K⁺ and absorptions assigned to *s*-Bu₃Ga(*m*-C₆H₄Me)⁻ K⁺ (**2a**): δ 0.80 (m, 1, CH of *s*-Bu), 1.38 (t overlapping with a d of *s*-Bu₃GaH⁻, 9, CH₃CH₂), 1.61 (+0.006, +0.007, +0.016; four doublets, 1:1:1:1, $J \cong 7.4$ Hz, 9, CH₃CH), 1.86 (m overlapping with a m of CHH of *s*-Bu₃GaH⁻, CHH), 2.11 (s, *m*-C₆H₄CH₃), 2.19 (m, 3, CHH), 6.60 (d, J = 6.8 Hz, 1, H₁), 6.84 (t, J = 7.2 Hz, 1, H₂), 7.61 (d, J = 6.9 Hz, 1, H₃), 7.71 (s, 1, H₄).

Anisole–Benzene. The ¹H NMR spectrum shows only the absorptions of *s*-Bu₃GaH⁻K⁺ and in 2.5:1 ratio of *s*-Bu₃Ga(*o*-C₆H₄OCH₃)⁻K⁺ and *s*-Bu₃GaPh⁻K⁺.

tert-**Butylbenzene**–**Benzene.** The ¹H NMR spectrum shows only the absorptions of *s*-Bu₃GaH⁻K⁺ and *s*-Bu₃GaPh⁻K⁺.

 $\label{eq:total_total} \begin{array}{l} \textbf{Toluene-Benzene.} & \mbox{The 1H NMR spectrum shows only the} \\ absorptions of s-Bu_3GaH^-K^+$ and s-Bu_3GaPh^-K^+$. \end{array}$

Reaction of s-Bu₃Ga and Potasssium Naphthalenide. Naphthalene (70 mg, 0.55 mmol) and K (20 mg, 0.51 mmol) were stirred in THF (0.6 g) for 12 h. *s*-Bu₃Ga (60 mg, 0.25 mmol) was added, and the solution was stirred for an additional 24 h. The ¹H NMR spectrum (300 MHz) shows the characteristic absorptions of *s*-Bu₃GaH⁻K⁺ and absorptions that can be attributed to *s*-Bu₃Ga(Naph)⁻K⁺: δ -0.02 (m, 3, CH of *s*-Bu), 1.25 (t overlapping with a t of *s*-Bu₃GaH⁻, CH₃CH₂), 1.32 (d overlapping with a d of *s*-Bu₃GaH⁻, CH₃CH), 1.46 (m, 3, CHH), 1.92 (m overlapping with a m of *s*-Bu₃GaH⁻, CH₄CH), 7.00-7.80 (bc, 7, Naph H's).

Acknowledgment. We thank the National Science Foundation for support of this research. H.G.R. also acknowledges a NATO Collaborative Research Grant that made possible valuable discussions with Prof. Friedrich Bickelhaupt of the Free University in Amsterdam. We thank Prof. Przemyslaw Maslak for a helpful discussion.

OM970824Y