O-Alkylation of Sulfinate Anion with a Palladium(II) Trimethylenemethane Intermediate Arising from [Pd{η³-CH₂C(CH₂Cl)CH₂}(η⁵-C₅R₅)]

Saisuke Watanabe and Hideo Kurosawa*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

Received September 15, 1997

Summary: The reaction of $[Pd\{\eta^3-CH_2C(CH_2Cl)CH_2\}(\eta^5-C_5R_5)]$ (1) with NaSO₂Ph initially affords the kinetically preferred O-alkylated complex $[Pd\{\eta^3-CH_2C(CH_2OS(O)-Ph)CH_2\}(\eta^5-C_5R_5)]$ (2), which is subsequently transformed into the thermodynamically preferred S-alkylated complex $[Pd\{\eta^3-CH_2C(CH_2SO_2Ph)CH_2\}(\eta^5-C_5R_5)]$ (3) and the bimolecular reaction product $[Pd\{\eta^3-CH_2C(CH_2C_5R_5)-CH_2\}(\eta^5-C_5R_5)]$ (4). These reactions are rationalized by the intermediacy of a cationic trimethylenemethane—palladium complex.

Introduction

 $(\eta^{3}-2-(\text{Halomethyl}))$ allyl) metal complexes are precursors to electrophilic trimethylenemethane (TMM)metal complexes via C-X bond cleavage. They have been shown to possess reactivities such as facile oxidative addition,^{1,2} methanolysis,³⁻⁶ and isomerization.^{4,6,7} Recently, we reported a novel transformation of [Pd- $\{\eta^3 - CH_2C(CH_2CI)CH_2\}(\eta^5 - C_5H_5)\}$ (1a) to $[Pd\{\eta^3 - CH_2C - \eta^3 - CH_2C]$ $(CH_2C_5H_5)CH_2$ (Cl)]₂ in which a TMM-Pd intermediate is assumed to undergo an intermolecular electrophilic substitution with cyclopentadienyl ligand.⁶ In an attempt to gain more insight into the reactivity of such a TMM-Pd intermediate, we examined reactions of 1a or $[Pd{\eta^3-CH_2C(CH_2Cl)CH_2}(\eta^5-C_5Ph_5)]$ (1b) with the sulfinate anion $PhSO_2^-$. Interest in the use of the sulfinate anion has arisen because this anion is ambident and may undergo alkylation either with the sulfur to yield an S-alkylation product by an S_N2 process⁸ or with oxygen to produce an O-alkylation product by an S_N1 process.⁹ We report here the formation of Oalkylated complex 2 rather than S-alkylated complex 3 in the reaction of 1 with NaSO₂Ph, demonstrating the

 Ehlich, K.; Emerson, G. F. J. Am. Chem. Soc. 1972, 94, 2464.
 Kemmitt, D.; Andrew, W. G. P. J. Chem. Soc., Dalton Trans. 1986, 1603.

(3) Lukas, L.; Kramer, P. A. J. Organomet. Chem. 1971, 31, 111.

(4) Dallas, B. K.; Hughes, R. P.; Schumann, K. J. Am. Chem. Soc. 1982, 104, 5380.

(5) Donaldson, W. A. Tetrahedron Lett. 1987, 43, 2901.

(6) Watanabe, S.; Kurosawa, H. Organometallics 1997, 16, 3601.
 (7) Donaldson, W. A.; North, J. T.; Gruetzmacher, J. A.; Fineley,

(a) For a review, see: Stirling, C. J. M. Int. J. Sulfur Chem., Part B 1971, 6, 277. (b) Kobayashi, M.; Toriyabe, K. Sulphur Lett. 1985, 3, 117. intermediacy of the discrete TMM–Pd species [Pd{ η^3 -CH₂C(CH₂)CH₂}(η^5 -C₅R₅)]⁺.

Results and Discussion

Treatment of **1a** $(1.62 \times 10^{-2} [M])$ with excess NaSO₂-Ph (10 equiv) in CDCl₃ at 25 °C for 23 h resulted in the formation of a mixture of O-alkylated complex **2a** (88%) and S-alkylated complex **3a** (8%) together with **4a** (3%), which is among several products from the spontaneous transformation of **1a**.⁶ A slower isomerization of **2a** to **3a** in the solution will be described later.

We failed to isolate **2a** in a pure state, since it isomerized into **3a** in the workup stage of isolation. However, the structure of **2a** was supported by comparing its ¹H NMR spectrum with that of the analogous C_5Ph_5 complex **2b**, which was sufficiently more stable with respect to the isomerization to allow isolation (see below). **3a** was synthesized alternatively from the corresponding Cl complex **6**, prepared according to Scheme 1, and TlC₅H₅.

The purple complex **1b** $(1.50 \times 10^{-2} \text{ M})$, prepared readily from $[Pd\{\eta^3-CH_2C(CH_2Cl)CH_2\}(Cl)]_2$ (7) and LiC_5Ph_5 in 77% isolated yield, was reacted with excess $NaSO_2Ph$ (10 equiv) in $CDCl_3$ at 25 °C for 72 h to give exclusively the O-alkylated complex **2b** in 88% NMR yield (conversion of **1b** 95%) (Scheme 1). Pure **2b** could be obtained in 62% isolated yield by recrystallization of the crude product with C_6H_6 /hexane.

The ¹H NMR spectrum of **2b** showed four nonequivalent resonances (δ 2.62, 2.64, 3.48, 3.57) due to syn and anti protons and two doublets (δ 4.01 and 4.55, J = 11.9Hz) due to the diastereotopic protons of the CH₂OS(O)-Ph group. Furthermore, it should be noted that the diastereotopic methylene protons were shifted to the lower fields in comparison to those observed for the isomer **3b** (δ 3.75) because of the CH₂–O bonding. The ¹H NMR spectrum of **2a** also showed four nonequivalent resonances (δ 2.28, 2.32, 3.46, 3.62) and two doublets (δ 4.00 and 4.36, J = 11.3 Hz), similarly to those for **2b**. These data are consistent with their asymmetric structures. The structure of **2b** was also characterized by X-ray diffraction; an ORTEP view is given in Figure 1 along with selected bond lengths and angles. The O atom attached to the S atom was disordered with 67/33

⁽⁹⁾ Hambley, T. W.; Harsanyi, M. C.; Norris, R. K. J. Org. Chem. 1988, 53, 3104.

3a is not a precursor to **4a**. Pure **2b** was stable and unchanged in C_6D_6 at 40 °C for 73 h. In a polar solvent, however, **2b** was found to change to **3b** and **4b**, albeit much more slowly than **2a** (Scheme 1). Thus, when a CD_2Cl_2/CD_3CN (1/1) solution of **2b** (1.29 × 10⁻² M) was allowed to stand at 40 °C for 79 h, formation of **3b** (5%) and **4b** (2%) was observed and 92% of **2b** remained unchanged. Interestingly, treatment of a CH_2Cl_2 solution of **2b** by silica gel column chromatography greatly promoted the transformation to give 28% of **4b** and 23% of a mixture of **2b/3b** (22/78).

We propose that the series of reactions above are rationalized by the intermediacy of the TMM-Pd intermediate formed by C-Cl or C-OS(O) cleavage (Scheme 2). In the reaction of 1 with NaSO₂Ph, the TMM-Pd intermediate arising from 1 is trapped by the O atom of the sulfinate anion to give **2** initially as the kinetically preferred product. 2 also generates the TMM–Pd intermediate which is trapped by the S atom of the sulfinate anion to yield the thermodynamically preferred product **3**. This is in line with the fact that sulfinate esters are known to undergo isomerization to sulfones when the nature of the alkyl moiety is such as to give rise to a comparatively stable carbocation.^{8a,11} The generation of the cationic TMM–Pd species during the isomerization of **2** to **3** is supported by the observation that **2b** was unchanged in C_6H_6 while the trans

Figure 1. ORTEP drawing of complex **2b** with thermal ellipsoids at 50% probability levels (all hydrogen atoms are omitted for clarity). Note that O2 is disordered. Selected bond lengths (Å) and angles (deg): Pd–Cl, 2.068(9); Pd–C2, 2.15(1); Pd–C3, 2.14(1); Pd–C11, 2.315(8); Pd–C12, 2.294(8); Pd–C13, 2.309(8); Pd–C14, 2.346(8), Pd–C15, 2.443(8); S1–O1, 1.619(7); S1–O2, 1.31(1); S1–O2', 1.22(2); S1–C5, 1.81(1); O1–C4, 1.44(1); C1–C2, 1.40(1); C1–C3, 1.37(1); C1–C4, 1.49(1); O1–S1–O2, 117.0(7); O1–S1–O2', 132(1); O1–S1–C5, 92.9(4), O2–S1–O2', 80(1); O2–S1–C5, 110.9(7); O2'–S1–C5, 123(1); S1–O1–C4, 114.6(6); C2–C1–C3, 116(1); O1–C4–C1, 110.5(9).

occupancy (O2 and O2') so as to give a pair of enantiomers. This disorder might have lowered the accuracy of the S=O bond distance (1.31(1) Å; generally, S=O is in the range 1.45-1.48 Å).^{9,10}

When the CDCl₃ solution containing primarily 2a, which was formed as described above, was allowed to stand, the amount of 2a decreased and those of 3a and 4a increased (after 97 h: 2a, 34%; 3a, 52%; 4a, 5%), indicating that 2a isomerized to 3a. Moreover, pure 3a

^{(10) (}a) Kojic-Prodic, B.; Spek, A. L. Acta Crystallogr., Sect. C 1984,
40, 1841. (b) Ponnuswany, M. N.; Trotter, J. Acta Crystallogr., Sect. C
1985, 41, 915. (c) Przybylska, M.; Ahmed, F. R. Acta Crystallogr., Sect. C 1985, 41, 1467. (d) Kucsman, A.; Kapovits, I.; Czugler, M.; Parkanyi, L.; Kalman, A. J. Mol. Struct. 1989, 198, 339. (e) Cherkaoui, M. Z.; Nicoud, J.-F. New J. Chem. 1995, 19, 851.

⁽¹¹⁾ For reviews, see: (a) Tillett, J. G. Chem. Rev. 1976, 76, 747.
(b) Anderson, K. K. In Comprehensive Organic Chemistry, Barton, D., Ollis, W. D., Jones, D. N., Eds.; Pergamon Press: Oxford, U.K., 1979; Vol. 4, p 322.

formation proceeded in CD_2Cl_2/CD_3CN . Furthermore, the cyclopentadienyl ligand of **2** may also have trapped the TMM–Pd intermediate to yield **4**. This process is analogous to that of the decomposition of **1a** into **4a** and **7**.⁶ However, we have not been able to detect a possible byproduct analogous to **7**, $[Pd{\eta^3-CH_2C(CH_2OS(O)Ph) CH_2}]^+(SO_2Ph)^-$.

Finally, it is remarkable that the electron-donating cyclopentadienyl ligand plays a key role in the O-alkylation of the (2-(chloromethyl)ally)palladium complex. Thus, the reaction of **8** having two N-donors of pyrazolylborate, with NaSO₂Ph in CD₂Cl₂, afforded exclusively the S-alkylated complex **9** in 61% NMR yield after 8 days. No O-alkylated complex was seen throughout the reaction. This reaction is explained by an S_N2 process similar to the reaction of alkyl halides with (SO₂Ph)⁻, since the pyrazolylborate ligand is not as electron-donating as the cyclopentadienyl group.

Experimental Section

All manipulations were carried out under argon by the use of standard vacuum-line techniques. Solvents were dried by standard methods and distilled prior to use. 3-Chloro-2-(chloromethyl)-1-propene and NaSO₂Ph were obtained from Aldrich Chemical Co., Ltd., and used without further purification. **1a** and **7** were prepared according to the reported methods.^{3.6} ¹H NMR spectra were recorded on a JEOL JNM-GSX-270 (270 MHz) spectrometer. Chemical shifts in the ¹H NMR are referenced to residual protons of the solvents. All NMR experiments were carried out in sealed NMR tubes.

Synthesis of [Pd(\eta^3-CH₂C(CH₂Cl)CH₂)(\eta^5-C₅Ph₅)] (1b). LiC₅Ph₅ was prepared in situ by dropwise addition of *n*-BuLi in hexane (1.6 M; 0.3 mL, 0.48 mmol) to C₅Ph₅H (206 mg, 0.461 mmol) in dried THF (10 mL) at room temperature. To the solution of LiC₅Ph₅ was added **7** (95 mg, 0.411 mmol), and the mixture was stirred for 5 min. Solvents were removed in vacuo, the residue was extracted with C₆H₆, the solution was filtered to remove the salts, and the filtrate was evaporated under reduced pressure. Recrystallization of the residue from C₆H₆/hexane yielded **1** as purple crystals. Yield: 204 mg (77%). ¹H NMR (CDCl₃): δ 2.68 (s, 2H), 3.59 (s, 2H), 4.06 (s, 2H), 6.9–7.1 (m, 25H). Anal. Calcd for C₃₉H₃₁ClPd: C, 73.02; H, 4.87. Found: C, 73.07; H, 5.06.

Synthesis of $[Pd(\eta^3-CH_2C(CH_2OS(O)Ph)CH_2)(\eta^5-C_5Ph_5)]$ (2b). To a solution of 1 (451 mg, 0.70 mmol) in CH₂Cl₂ (40 mL) was added NaSO₂Ph (222 mg, 1.35 mmol), and the mixture was stirred for 3 days. Excess NaSO₂Ph and NaCl were removed by filtration, and solvents were removed in vacuo. The residue was extracted with C₆H₆, the solution filtered to remove the salts, and the filtrate evaporated under

Table 1. Crystallographic Data for a	ystallographic Data for 2b
--------------------------------------	----------------------------

v 81	
empirical formula	C45H36O2SPd
fw	687.18
cryst syst	triclinic
space group	<i>P</i> 1 (No. 2)
<i>a</i> , Å	10.674(3)
<i>b</i> , Å	17.117(5)
<i>c</i> , Å	10.032(3)
α, deg	98.18(3)
β , deg	95.67(2)
γ , deg	93.31(3)
V, Å ³	1800.6(10)
Z	2
D_{calc} , g/cm ³	1.267
λ(Μο Κα), Å	0.710 69
μ (Mo K α), cm ⁻¹	6.04
temp, °C	23.0
$2\theta_{\rm max}$, deg	55.1
no. of observns	5217 ($I > 3.00\sigma(I)$)
least-squares weights	$W^{-1} = \sigma^2(F_0)$
R	0.067
$R_{ m w}$	0.084

reduced pressure. Recrystallization of the residue from $C_6H_6/$ hexane yielded the product as purple crystals. Yield: 327 mg (62%). ¹H NMR (CD₂Cl₂): δ 2.62 (s, 1H), 2.64 (s, 1H), 3.48 (d, J = 2.7 Hz, 1H), 3.57 (d, J = 2.7 Hz, 1H), 4.01 (d, J = 11.9 Hz, 1H), 4.55 (d, J = 11.9 Hz, 1H), 6.8–7.1 (m, 25H), 7.4–7.6 (m, 5H). Anal. Calcd for $C_{45}H_{36}O_2SPd$: C, 72.37; H, 4.86. Found: C, 72.28; H, 4.92.

Synthesis of 2-(Chloromethyl)-3-(phenylsulfonyl)propene (5). To a MeOH solution (60 mL) of 3-chloro-2-(chloromethyl)-1-propene (3.64 g, 29.1 mmol) was added PhSO₂Na (4.78 g, 29.1 mmol), and the mixture was refluxed for 24 h. MeOH was removed under reduced pressure, and the residue was extracted with H₂O (50 mL)/CH₂Cl₂ (2 × 30 mL). The CH₂Cl₂ extract was dried (MgSO₄), and the solvent was removed. Recrystallization of the residue from Et₂O/hexane yielded the product as pale yellow crystals. Yield: 3.65 g (55%). ¹H NMR (CDCl₃): δ 3.96 (s, 2H), 4.22 (s, 2H), 5.03 (s, 1H), 5.45 (s, 1H), 7.57 (m, 2H), 7.68 (m, 1H), 7.88 (m, 2H). Anal. Calcd for C₁₀H₁₁ClO₂S: C, 52.06; H, 4.81. Found: C, 52.26; H, 4.79.

Synthesis of $[Pd(\eta^{3}-CH_{2}C(CH_{2}SO_{2}Ph)CH_{2})(Cl)]_{2}$ (6). This compound was prepared from 5 in a manner similar to that for 7.³ Yield: 35%. ¹H NMR (DMSO-*d*₆): δ 3.34 (s, 2H), 3.97 (s, 2H), 4.43 (s, 2H), 7.69 (m, 2H), 7.80 (m, 1H), 7.93 (m, 2H). Anal. Calcd for C₁₀H₁₁ClO₂SPd: C, 35.66; H, 2.99. Found: C, 35.88; H, 3.24.

Synthesis of $[Pd(\eta^3-CH_2C(CH_2SO_2Ph)CH_2)(\eta^5-C_5H_5)]$ (3a). This compound was prepared from **6** in a manner similar to that for **1a**.⁶ Yield: 55%. ¹H NMR (CDCl₃): δ 2.24 (s, 2H), 3.40 (s, 2H), 3.71 (s, 2H), 5.72 (s, 5H), 7.57 (m, 2H), 7.68 (m, 1H), 7.89 (m, 2H). Anal. Calcd for C₁₅H₁₇O₂SPd: C, 48.99; H, 4.66. Found: C, 49.22; H, 4.54. **Synthesis of** [Pd(η^3 -CH₂C(CH₂SO₂Ph)CH₂)(η^5 -C₅Ph₅)] (3b). This compound was prepared from **6** in a manner similar to that for **1b**. Yield: 37%. ¹H NMR (CD₂Cl₂): δ 2.57 (s, 2H), 3.29 (s, 2H), 3.75 (s, 2H), 6.85–7.0 (m, 25H), 7.57 (m, 2H), 7.69 (m, 1H), 7.85 (m, 2H). Anal. Calcd for C₄₅H₃₆O₂SPd: C, 72.37; H, 4.86. Found: C, 72.95; H, 5.12.

Synthesis of [$Pd(\eta^3$ - $CH_2C(CH_2C_5Ph_5)CH_2)(\eta^5$ - C_5Ph_5)] (4b). A CH₂Cl₂ solution (0.5 mL) of **2b** (158 mg, 0.211 mmol) was subjected to flash column chromatography with silica gel (Wako gel C-300, 12 g), yielding **4b** (63 mg, 28%, R_f 0.54) and a **2b/3b** mixture (22/78) (36 mg, 23%, R_f 0.45). Recrystallization with C₆H₆/hexane gave purple crystals of **4b**. Yield: 42 mg (19%). ¹H NMR (CD₂Cl₂): δ 2.51 (s, 2H), 3.23 (s, 2H), 3.24 (s, 2H), 6.7–7.3 (m, 50H). Anal. Calcd for C₇₄H₅₆Pd: C, 84.51; H, 5.37. Found: C, 84.38; H, 5.87.

Synthesis of [Pd{\eta^3-CH₂C(CH₂Cl)CH₂}(BPz₄)] (8). To a suspension of 7 (266 mg, 1.15 mmol) in CH₂Cl₂ (5 mL) was added KBPz₄ (391 mg, 1.23 mmol) at room temperature, and the mixture was stirred for 5 min. KCl was removed by filtration, and the yellow solution was concentrated. Recrystallization from CH₂Cl₂/hexane yielded yellow crystals of **8**. Yield: 377 mg (69%). ¹H NMR (CD₂Cl₂): δ 2.91 (s, 2H), 3.73 (s, 2H), 3.77 (s, 2H), 6.26 (t, J = 2.4 Hz, 4H), 6.97 (d, J = 2.4 Hz, 4H), 7.64 (d, J = 0.8 Hz, 4H). Anal. Calcd for C₁₆H₁₈-BClN₅Pd: C, 40.43; H, 3.82; N, 24.14. Found: C, 40.48; H, 3.70; N, 23.58.

Synthesis of $[Pd(\eta^3-CH_2C(CH_2SO_2Ph)CH_2)(BPz_4)]$ (9). This compound was prepared from **6** in a manner similar to that for **8**. Yield: 75%. ¹H NMR (CDCl₃): δ 2.84 (s, 2H), 3.30 (s, 2H), 3.48 (s, 2H), 6.23 (t, J = 2.4 Hz, 4H), 6.98 (br s, 4H), 7.60 (m, 6H), 7.71 (m, 1H), 7.86 (m, 2H). Anal. Calcd for $C_{22}H_{23}BN_8O_2SPd:$ C, 45.50; H, 3.99; N, 19.29. Found: C, 45.15; H, 3.96; N, 18.92.

X-ray Structure Determination for 2b. A crystal (0.2 \times 0.2 \times 0.2 mm) suitable for X-ray diffraction was mounted on a glass fiber. The data were obtained on a Rigaku AFC-5R diffractometer with graphite-monochromated Mo K α radiation. The calculation was carried out with the TEXSAN crystallographic software package of Molecular Structure Corp. The structure was solved by direct methods and refined by full-matrix least-squares procedures, the function minimized being $\Sigma w(|F_o| - |F_c|)^2$. The non-hydrogen atoms were refined anisotropically. The crystallographic data are summarized in Table 1.

Acknowledgment. This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan. We thank Dr. Nobuko Kanehisa for advice on X-ray crystallography.

Supporting Information Available: Figures giving additional views and tables of positional and thermal parameters and bond lengths and angles for **2b** (17 pages). Ordering information is given on any current masthead page.

OM9708135