## Using "Anhydrous" Hydrolysis To Favor Formation of Hexamethylcyclotrisiloxane from Dimethyldichlorosilane

Christophe Le Roux,<sup>1</sup> Herman Yang, Stefan Wenzel, Stelian Grigoras,<sup>†</sup> and Michael A. Brook\*

Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1

Received October 31, 1997

The reaction between dimethyl sulfoxide and Me<sub>2</sub>SiCl<sub>2</sub> leads to the formation of cyclic siloxanes, principally the more highly strained six-membered ring hexamethylcyclotrisiloxane (D<sub>3</sub>), via linear  $\alpha, \omega$ -dichlorosiloxanes. At short reaction times (~15 min), the reaction was shown not to be undergoing equilibration reactions (ligand metathesis) to a significant degree. A mechanism for the formation of  $D_3$  and  $D_4$  (octamethylcyclotetrasiloxane) is proposed that invokes conversion of a chlorosilane group into a sulfonium ion intermediate 12. The preferential formation of  $D_3$  over  $D_4$  is attributed to the greater steric encumbrance of the activated chain termini (SiOS<sup>+</sup>Me<sub>2</sub>) than in the corresponding hydrolysis reaction (SiOH). Both the chain extension reactions  $12 \rightarrow 3$  and cyclization reactions  $12 \rightarrow D_3$  are retarded, resulting in a higher selectivity (with DMSO as the oxygen source) for the intramolecular reaction producing  $D_3$  than in the case of hydrolysis. The experimental results are inconsistent with silanone formation.

## Introduction

Cyclic siloxanes constitute an important class of silicone polymers because the most practical method for preparing high molecular weight polysiloxanes is the ring-opening polymerization of cyclic monomers.<sup>2</sup> The polymerization of hexamethylcyclotrisiloxane (D<sub>3</sub>), with its greater ring strain (12-15 kcal/mol<sup>3</sup>), leads to higher molecular weight polymers with lower molecular weight polydispersity than the analogous polymer produced from octamethylcyclotetrasiloxane (D<sub>4</sub>).

The cyclic dimethylsiloxanes D<sub>3</sub>, D<sub>4</sub>, D<sub>5</sub> (decamethylcyclopentasiloxane), etc., are usually made by the hydrolysis of dichlorodimethylsilane.4,5 The formation of cyclic oligomers is generally accompanied by substantial  $(\geq 50\%)$  amounts of linear dimethylsiloxanes, although their formation can be suppressed by the use of organic (co)solvents for the hydrolysis,<sup>2</sup> particularly diethyl ether.<sup>4</sup> Under normal conditions, D<sub>4</sub> is the major cyclic constituent of the hydrolytic products of Me<sub>2</sub>SiCl<sub>2</sub>.<sup>6</sup> Thus, the development of a method to produce primarily D<sub>3</sub> would be advantageous.

Sulfoxides have been shown to react with chlorosilanes.<sup>7-9</sup> Thus, Chan and co-workers<sup>10</sup> demonstrated that HSiCl<sub>3</sub> reduces dimethyl sulfoxide (DMSO) to dimethyl sulfide. While the fate of the oxygen in this reaction involved Si-O bond formation, the structure of the silicon-containing product was not elucidated. Other related reactions have been noted.<sup>11</sup> For instance, Lappert et al.<sup>12</sup> showed that SiO<sub>2</sub> formation accompanied the reaction of DMSO and SiCl<sub>4</sub>.

The conversion of chlorosilanes into disiloxanes, using DMSO as the oxygen source, was reported in a French patent in 1965.<sup>13</sup> This reaction has been subsequently rediscovered by Voronkov and co-workers,<sup>14</sup> Weber et al.,15 and ourselves.16

Voronkov and co-workers described the conversion of Me<sub>2</sub>SiCl<sub>2</sub> to a mixture of cyclic dimethylsiloxanes; the

The Dow Corning Corp., 2200 W. Salzburg Rd., Auburn, MI 48611. (1) Current address: Hétérochimie fondamentale et appliquée (ESA-CNRS 5069), Université Paul Sabatier, 118 route de Narbonne, Toulouse, F-31062 France.

<sup>(2) (</sup>a) Noll, W. Chemistry and Technology of Silicones; Academic: New York, 1968. (b) *Siloxane Polymers*; Clarson S. J.; Semlyen, J. A., Eds.; Prentice Hall: Englewood Cliffs, NJ, 1993.

<sup>(3) (</sup>a) Laita, Z.; Jelinek, M. *Vysokomol. Soed.* **1962**, *6*, 1739. (b) Davidson, I. M. T.; Thompson, J. F. *J. Chem. Soc., Chem. Commun.* **1971**, 251. (c) Piccoli, W. A.; Haberland, G. G.; Merker, R. L. *J. Am. Chem. Soc.* **1960**, *82*, 1883.

<sup>(4)</sup> Eaborn, C. Organosilicon Chemistry, Butterworths: London, 1960.

<sup>(5)</sup> Patnode, W. I.; Wilcock, D. F. J. Am. Chem. Soc. 1946, 68, 358.
(6) Hardman, B. B.; Torkelson, A. Silicones. In Kirk-Othmer Ency-clopaedia of Chemical Technology, 3rd ed.; John Wiley and Sons: New York, 1982; Vol. 20, pp 922-962.

<sup>(7)</sup> Previous workers have described explosive reactions between Ph<sub>2</sub>SO and HSiCl<sub>3</sub>. While no such problems were observed in the many times we have examined the reactions described in this paper, caution must be exercised when attempting these and related reactions.<sup>4</sup>

<sup>(8)</sup> Benkeser, R. A. Chem. Eng. News 1978, 56, 107.

 <sup>(9) (</sup>a) Fritsche, H.; Hasserodt, U.; Korte, F. Chem. Ber. 1964, 97,
 1988. (b) Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969,
 91, 2788. (c) Horner, L.; Balzer, W. D. Tetrahedron Lett. 1965, 1157.
 (10) Chan, T. H.; Melnyk, A.; Harpp, D. H. Tetrahedron Lett. 1969,

<sup>201.</sup> 

<sup>(11)</sup> Schmidt, A. H.; Russ, M. Chem. Ber. 1981, 114, 822

 <sup>(12)</sup> Lappert, M. F.; Smith, J. K. J. Chem. Soc. 1961, 3225.
 (13) Goossens, J. C. French Patent, 1,456,981, 1964; Chem. Abstr.

<sup>1967, 67, 54259.</sup> 

<sup>(14) (</sup>a) Voronkov, M. G. 28th Organosilicon Symposium, Gainesville, Florida, April 1995; Abstract A-21. (b) Basenko, S. V.; Voronkov, M. G. Dokl. Akad. Nauk SSSR **1994**, 339, 486. (c) Voronkov, M. G.;

 <sup>(15)</sup> Lu, P.; Paulasaari, J. K.; Weber, W. P. Organometallics 1996, 15 4649

<sup>(16)</sup> Presented in preliminary form: Le Roux, C.; Yang, H.; Wenzel, S.; Brook, M. A. 28th Organosilicon Symposium, Gainesville, Florida, April 1995; Abstract B-18.



Figure 1. <sup>1</sup>H NMR spectra (0-1 ppm) of reaction mixtures of Me<sub>2</sub>SiCl<sub>2</sub> and DMSO at 15 min.

product ratio was not disclosed. Weber et al. described the related reaction of  $Ph_2SiCl_2$  with DMSO to give  $D_3^{Ph_2}$  (91%) and  $D_4^{Ph_2}$  (9%). In both cases, the mechanism proposed to lead to these products involved the cyclotrimerization and cyclotetramerization of  $R_2Si=O$  (R = Me or Ph, respectively).

We have independently examined this reaction. Given the wide variety of nucleophiles present in the reaction medium, we were skeptical of the involvement of silanones. We have, therefore, probed the mechanism of the reaction in some depth. As importantly, we have found that under the appropriate reaction conditions, the combination of Me<sub>2</sub>SiCl<sub>2</sub> and DMSO preferentially leads (>85%) to the formation of D<sub>3</sub> in the absence of linear polymers.

## **Results and Discussion**

Basic Reaction. The reaction between a 1:2 ratio of Me<sub>2</sub>SiCl<sub>2</sub> and DMSO in diethyl ether produced an <sup>1</sup>H NMR spectrum displaying only a few singlets. The ability to observe base line separation of the signals for most of the reagents, intermediates, and products in the <sup>1</sup>H NMR spectrum greatly facilitated the mechanistic study outlined below (Figure 1). The signals were subsequently determined, by comparison with authentic samples, to arise from the  $\alpha, \omega$ -dichlorosiloxanes  $(ClSiMe_2(OSiMe_2)_nCl)$  **1** (n = 1), **2** (n = 2), and **3** (n = 3) and  $D_3$  (Scheme 1). Over a short time (typically <30 min), most of these signals collapsed to a clean spectrum containing only 4 peaks arising from D<sub>3</sub>, D<sub>4</sub> (occasionally D<sub>5</sub> and higher homologues), and chloromethyl methyl sulfide 4 (2 peaks). The reactions were accompanied by the formation of variable amounts of a crystalline material subsequently identified to be chlorodimethylsulfonium chloride 5 (Me<sub>2</sub>S<sup>+</sup>ClCl<sup>-</sup>).<sup>12</sup>

The corresponding reaction of  $Me_2SiCl_2$  with water led to  $D_3:D_4$  ratios containing at least 50%  $D_4:^6$  a typical result in diethyl ether was  $D_3: D_4: D_5$  (30:53:17) after 15 min. Further reaction times led to an increase in  $D_4$  at the expense of  $D_3$ . The striking difference between this reaction and the reaction with DMSO in place of water, noted above, was the ratio of  $D_3/D_4$  at the completion of the reaction; with DMSO as the oxygen source, in the optimal case, the product ratio was  $D_3$ :  $D_4$ :  $D_5$  (74:15:11) (some quantities of **1** and **3** were also present, Figure 1).

Several experiments were attempted in order to establish the nature of the reaction mechanism, particularly in light of the proposition that silanones could be involved,<sup>14,15</sup> and better understand the origin of the preferential formation of D<sub>3</sub>. These experiments are described below. In the vast majority of reactions reported, the concentrations of DMSO and Me<sub>2</sub>SiCl<sub>2</sub> were held fixed to facilitate comparison between experiments. Snapshots, in the <sup>1</sup>H NMR, of the progress of the reactions were always taken at 15 min reaction times: all further discussion, unless otherwise noted, refers to this time period.

**Solvent Effects.** The reaction between DMSO and  $Me_2SiCl_2$  was examined neat and in the presence of aprotic solvents of differing polarity. The reaction was very sluggish in the absence of solvents. A 1:1 mixture of DMSO and  $Me_2SiCl_2$  was allowed to react for 15 min, at which point the product distribution was determined by <sup>1</sup>H NMR. A second aliquot of DMSO was added, and the reaction was allowed to proceed for an additional 15 min. This process, repeated three additional times, led to the reaction profile shown in Figure 2 (Table 1). High conversion (complete loss of  $Me_2SiCl_2$ ) was only observed at high DMSO concentrations and longer reaction times. It can be further seen that only toward the end of the observation were cyclic oligomers (D<sub>4</sub>) beginning to form.

In relatively nonpolar solvents,  $CCl_4$ , isopropyl and butyl ether, dioxane and pentane, the reactions were often incomplete after several hours (Table 1, Figure 3). It was immediately clear that polar solvents dramatically, favorably affected the rate of reaction. Thus, the reactions in diethyl ether, acetonitrile, ethyl acetate, and THF were complete within 30 min or less, as was the reaction in xylene. Diethyl ether was found to be the solvent which combined a rapid reaction rate (complete in <20 min) and high  $D_3:D_4$  ratio (maximum 87:13). The remaining experiments examined the details of the reaction in diethyl ether.

**Kinetic Profile.** The early course of the reaction between DMSO and  $Me_2SiCl_2$  was followed closely to further facilitate an understanding of the mechanistic parameters (Figure 4). A precipitous drop in  $[Me_2SiCl_2]$ was accompanied by an increase in the linear siloxane **1–3** concentrations. Subsequently, these too were consumed to form  $D_3$  and  $D_4$ . It can be seen that, with time, the concentration of  $D_3$  increased at the expense of **2** and  $D_4$  at the expense of **3** (see below).

The  $D_3:D_4$  product ratio was also found to depend on the order of addition. When DMSO was added slowly to Me<sub>2</sub>SiCl<sub>2</sub> in diethyl ether, higher  $D_3:D_4$  ratios were observed than when the addition order was reversed (Table 1, entries 20 and 21).

**Effect of Dilution.** There are clearly two processes occurring in the reaction between Me<sub>2</sub>SiCl<sub>2</sub> and DMSO. The first is the oligomerization leading to linear siloxanes Me<sub>2</sub>SiCl<sub>2</sub>  $\rightarrow$  **1**  $\rightarrow$  **2**  $\rightarrow$  **3**. The second process involves the cyclization of **2** and **3**, respectively. The unimolecular cyclization reactions **2**  $\rightarrow$  D<sub>3</sub> (with respect to **2**, see below) are expected to be favored, at lower concentrations of Me<sub>2</sub>SiCl<sub>2</sub>, over the intermolecular bimolecular chain extension process **2** + Me<sub>2</sub>SiCl<sub>2</sub>  $\rightarrow$  **3**.





**Figure 2.** Siloxane distribution in the reaction of DMSO with Me<sub>2</sub>SiCl<sub>2</sub> as a function of DMSO concentration.

This was tested by decreasing the concentration of the solution, which should favor the unimolecular cyclization over the bimolecular process. As the initial Me<sub>2</sub>-SiCl<sub>2</sub> concentration in ether was increased, the proportion of  $D_3$  in the reaction mixture decreased. The benefit of increased  $D_3$  production at high dilution is somewhat offset, in a practical sense, by the necessity to use large volumes of diethyl ether (Figure 5).

**Discounting Redistribution under Thermodynamic Control.** Silanes possessing reactive groups undergo redistribution (ligand metathesis) reactions.<sup>17–21</sup> The metathesis reaction of halides and siloxy groups usually requires catalysts such as acids,<sup>22,23</sup> quaternary ammonium halides,<sup>24</sup> silicon-selective nucleophiles,<sup>25</sup> organometallic species, or high temperatures.<sup>26,27</sup>

The addition of gaseous HCl to the 50:50  $D_3/D_4$ mixture led to rapid redistribution (10 min) to give a  $D_3:D_4$  ratio of 3:97. This final ratio is very different than that generated in the reaction between Me<sub>2</sub>SiCl<sub>2</sub> and DMSO. Thus, HCl, an effective redistribution catalyst<sup>2</sup> in the absence of DMSO, cannot be present in significant quantities in these reactions: where both HCl and DMSO are present, redistribution occurs over several hours. These observations are consistent with HCl being removed from the reaction as it is formed. It is presumably sequestered as the sulfonium salt **5**.

**Direct Cyclizations of 1–3 and 6.** The initial products of the reaction were shown to be the  $\alpha, \omega$ -dichlorosiloxanes **1–3**. The direct cyclization of each of these compounds with DMSO was attempted to establish if ligand redistribution/metathesis reactions were occurring on the time scale of the cyclic oligomer formation.

The reaction of tetrasiloxane **3** with DMSO or water in  $Et_2O$  led primarily to  $D_4$ . Disiloxane **1** gave a mixture of **3** and  $D_4$  with either reagent but none of the trisiloxane species **2** and little  $D_3$  (Scheme 2).

It was possible to prepare a small amount of 1,11dichlorododecamethylhexasiloxane (6). The reaction of 6 in ether with DMSO led slowly to D<sub>6</sub> (7; dodecamethylcyclohexasiloxane). After longer reaction times (overnight), there was still no D<sub>3</sub>; the amount of D<sub>4</sub> produced was <2%. This provides additional support for the postulate that redistribution is not an important mechanism under these conditions.

When trisiloxane **2** was reacted in diethyl ether with DMSO or water, respectively, the predominant siliconcontaining product (>95%) of the reaction was  $D_3$ . This suggests that the challenge of producing  $D_3$  is reduced to the selective synthesis of **2**. Preparing large quantities of **2** exclusively, however, is a rather difficult task: the maximum yield of **2** from Me<sub>2</sub>SiCl<sub>2</sub> using water or DMSO that we were able to obtain was about 15% (of the silicon-containing species).

Condensation reactions between **1** or **2** and DMSO in the presence of  $D_3$  or  $D_4$  were undertaken to deter-

<sup>(17)</sup> Scott, D. W. J. Am. Chem. Soc. 1946, 68, 2294.

 <sup>(18) (</sup>a) Vondracek, P.; Gent, A. N. J. Appl. Polym. Sci. 1982, 27,
 (15) (a) Vondracek, P.; Gent, A. N. J. Appl. Polym. Sci. 1982, 27,
 (17) (b) Chojnowski, J.; Rubinsztajn, S.; Wilczek, L. Macromolecules
 1987, 20, 2345. (c) Cypryk, M.; Rubinsztajn, S.; Chojnowski, J. J. Organomet. Chem. 1993, 446, 91. (d) Mayo, F. R. J. Polym. Sci. 1961, 55, 57.

<sup>(19)</sup> Carmichael, J. B.; Winger, R. J. Polym. Sci. 1965, A3, 1971.

<sup>(20) (</sup>a) Brown, J. F.; Lusarczuk, G. M. J. J. Am. Chem. Soc. 1965, 87, 931. (b) Kantor, S. W.; Grubb, W. T.; Osthoff, R. C. J. Am. Chem. Soc. 1954, 76, 5190.

<sup>(21)</sup> Lambert, J. B.; Kania, L.; Schulz, W. J., Jr. J. Polym. Sci., Part A: Polym. Chem. **1993**, 31, 1697.

<sup>(22)</sup> Jiang, J.; Brook, M. A.; Dickson, J. M. *Heteroatom Chem.* **1994**, *220*, 145.

<sup>(23)</sup> Niedrutzer, J.; Van Wazer, J. R. J. Am. Chem. Soc. 1964, 86, 802.

<sup>(24) (</sup>a) Weyenberg, D. R. (Dow Corning Corp.) U.S. Patent 3399223, 1968; *Chem. Abstr.* **1968**, *69*, 87173. (b) Weyenberg, D. R.; Bey, A. E.; Stewart, H. F.; Atwell, W. H. *J. Organomet. Chem.* **1966**, *65*, 583. (c) Atwell, W. H.; Weyenberg, D. R. *J. Organomet. Chem.* **1967**, *7*, 71.

<sup>(25)</sup> Sonnek, G.; Engelbrecht, L. East German Patent 217520, 1985; *Chem. Abstr.* **1985**, *103*, 196229. (b) Engelbrecht, L.; Sonnek, G. *Plaste Kautsch.* **1983**, *30*, 362.

<sup>(26)</sup> Rubinsztajn, S.; Cypryk, M.; Chojnowski, J. J. Organomet. Chem. 1989, 367, 27.

<sup>(27)</sup> Bourgoin, J. A.; Freeburne, S. K.; Halm, R. L; Naasz, B. M.; Niswonger, D. S.; VanKoevering, D. G. U.S. Patent 5068383, 1991; *Chem. Abstr.* **1991**, *116*, 130373.

Table 1. Product Distributions in the Production of α,ω-Dichlorosiloxanes and Cyclic Siloxanes

| ontru | conditions                                                                                                                                  | Mo.SiCl   | 1  | 9  | 2  | D.    | D.    | $\mathbf{D} \perp \mathbf{D}$ |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|----|----|-------|-------|-------------------------------|
| entry | conditions"                                                                                                                                 | wie2SICI2 | 1  | 4  | 3  | $D_3$ | $D_4$ | $D_5 + D_6$                   |
| 1     | 2 H <sub>2</sub> O:3 Me <sub>2</sub> SiCl <sub>2</sub> , 3 h                                                                                | 47        | 7  | 5  | 10 | 2     | 21    | 9                             |
| 2     | neat DMSO (1 equiv), 15 min                                                                                                                 | 75        | 24 | 2  | 0  | 0     | 0     | 0                             |
| 3     | neat DMSO (2 equiv), 30 min                                                                                                                 | 55        | 39 | 6  | 1  | 0     | 0     | 0                             |
| 4     | neat DMSO (3 equiv), 45 min                                                                                                                 | 33        | 51 | 13 | 3  | 0     | 0     | 0                             |
| 5     | neat DMSO (4 equiv), 60 min                                                                                                                 | 5         | 59 | 28 | 7  | 0     | 1     | 0                             |
| 6     | neat DMSO (5 equiv), 75 min                                                                                                                 | 0         | 43 | 32 | 12 | 0     | 8     | 0                             |
| 7     | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , CCl4, 1 h                                                                                      | 7         | 54 | 21 | 7  | 9     | 2     | 0                             |
| 8     | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , pentane, 1 h                                                                                   | 63        | 21 | 5  | 5  | 6     | 2     |                               |
| 9     | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , dibutyl ether, 3 h                                                                             | 17        | 42 | 18 | 4  | 14    | 6     |                               |
| 10    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , diisopropyl ether, 2 h                                                                         | 17        | 30 | 31 | 4  | 15    | 3     |                               |
| 11    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , CH3CN, 30 min                                                                                  | 0         | 7  | 5  | 9  | 13    | 43    | 24                            |
| 12    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , xylene, 15 min                                                                                 | 0         | 4  | 6  | 5  | 44    | 36    | 5                             |
| 13    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , THF, 1 h                                                                                       | 0         | 5  | 3  | 2  | 48    | 36    | 7                             |
| 14    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , EtOAc, 3 h                                                                                     | 0         | 10 | 15 | 8  | 20    | 30    | 17                            |
| 15    | DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , Et <sub>2</sub> O, 5 mL, 15 min                                                                  | 0         | 16 | 9  | 7  | 40    | 27    | 2                             |
| 16    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , Et <sub>2</sub> O, 20 mL, 15 min                                                               | 0         | 26 | 9  | 8  | 43    | 13    | 0                             |
| 17    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , Et <sub>2</sub> O, 50 mL, 15 min                                                               | 0         | 23 | 0  | 14 | 50    | 11    | 3                             |
| 18    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , Et <sub>2</sub> O, 100 mL, 15 min                                                              | 0         | 18 | 0  | 16 | 54    | 9     | 2                             |
| 19    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , Et <sub>2</sub> O, 200 mL, 15 min                                                              | 0         | 8  | 0  | 10 | 60    | 14    | 7                             |
| 20    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , Et <sub>2</sub> O, 20 mL, 15 min; order of addition: DMSO to Me <sub>2</sub> SiCl <sub>2</sub> | 0         | 6  | 0  | 8  | 75    | 8     | 2                             |
| 21    | 2 DMSO:1 Me <sub>2</sub> SiCl <sub>2</sub> , Et <sub>2</sub> O, 20 mL, 15 min; order of addition: $Me_2SiCl_2$ to DMSO                      | 0         | 14 | 0  | 4  | 50    | 21    | 6                             |

<sup>a</sup> Reaction time: 3 h.



**Figure 3.** Distribution of linear and cyclic siloxanes formed from DMSO and Me<sub>2</sub>SiCl<sub>2</sub> in different solvents.



**Figure 4.** Evolution of siloxanes from DMSO and Me<sub>2</sub>-SiCl<sub>2</sub> in diethyl ether.

mine if the conversion of the linear chlorosiloxanes to cyclic siloxanes was accompanied by conversion of  $D_3$  to  $D_4$  or vice versa. The reaction of **1** with DMSO and  $D_4$  led primarily to  $D_4$ , suggesting direct conversion of  $\mathbf{1} \rightarrow \mathbf{3} \rightarrow D_4$ : little  $D_3$  was observed. The reaction of  $\mathbf{1}$  with DMSO in the presence of  $D_3$  led mostly to  $\mathbf{1} \rightarrow \mathbf{3} \rightarrow D_4$ ; the  $D_3$  concentration changed little. Analogous

results were observed with **2**. **2** (+  $D_3$  + DMSO) was converted to  $D_3$  without formation of  $D_4$ ; **2** (+  $D_4$  + DMSO) gave  $D_3$  without changing the  $D_4$  concentration (Scheme 2).

The absence of significant ligand redistribution/metathesis reactions of  $D_3$  or  $D_4$  in the presence of HCl + DMSO, DMSO, **4** or **5**, or in the presence of the  $\alpha, \omega$ dichlorosiloxanes, within the time frame of the experiments (<1 h), leads us to conclude that the reactions leading to linear and cyclic oligomers in the presence of DMSO are occurring under kinetic control.

Competition Reactions. The relative rates of some of the sequential reactions involved in the conversion of Me<sub>2</sub>SiCl<sub>2</sub> to cyclic siloxanes were established by allowing mixtures of 1-3 to react with DMSO and following the reactions by <sup>1</sup>H NMR. The competition reaction between a 1:1 mixture of 1 and 2 for DMSO showed very little change in the concentration of **1**; the small decrease in [1] was accompanied by the formation of a small amount of **3**. The major change was the loss of **2** with concomitant formation of  $D_3$  (1:2 (50:50)  $\rightarrow$ 1:2:3:D<sub>3</sub>:D<sub>4</sub> (46:21:9:24:0 (not detected))). Thus, cyclization of  $\mathbf{2} \rightarrow D_3$  is faster than bimolecular condensation between 1 + 1 or 1 + 2. By contrast, under identical conditions with H<sub>2</sub>O as the oxygen source, the product ratio was **1**:**2**:**3**:D<sub>3</sub>:D<sub>4</sub> (20:33:22:20:5). Thus, the rate ratio of (linear condensation)/(cyclization) is higher with water than with DMSO.

The analogous competitive cyclization between **2** and **3** similarly showed a dependence on the oxygen source. A 1:1 mixture of **2** and **3** led to the mixtures **1:2:3:**D<sub>3</sub>: D<sub>4</sub> (4:22:38:24:12) with DMSO but to **1:2:3:**D<sub>3</sub>:D<sub>4</sub> (3:13: 32:24:28) with water. In both cases, the relative rates of cyclic oligomer formation are more favorable to D<sub>3</sub> production:  $k(\mathbf{2} \rightarrow D_3)/k(\mathbf{3} \rightarrow D_4) > 1$ . However, with water, but not with DMSO, there is the additional redistribution of D<sub>3</sub>  $\rightarrow$  D<sub>4</sub>, presumably caused by HCl, which depletes D<sub>3</sub> at a competitive rate to cyclization.

Cyclization versus Linear Extension: Effect of Additional Me<sub>2</sub>SiCl<sub>2</sub>. The relative rates of cyclization versus chain extension were established by examining the efficacy of cyclization of 2 to D<sub>3</sub> in the presence of varying amounts of Me<sub>2</sub>SiCl<sub>2</sub>. As the initial ratio of



Figure 5. Effect of concentration on the  $D_3/D_4$  ratio: (A) as a function of  $[Me_2SiCl_2]$ ; (B) as a function of  $Et_2O$  volume.



 $[Me_2SiCl_2]/[2]$  increased from 0.0 to 1.5, the product ratio  $3/D_3$  dramatically increased (Figure 6), indicating that the bimolecular chain extension process is competitive with cyclization at higher Me\_2SiCl\_2 concentrations.

**The Proposed Mechanism. Sulfur-Containing Products.** Prior to discussing the mechanism of siloxane formation in the presence of DMSO, it is appropriate to comment on the structures of the sulfurcontaining products. The formation of **5** arises from the reaction of DMSO with HCl and is accompanied by the production of water (Scheme 3, D).<sup>12</sup> The other sulfurbased product was chloromethyl methyl sulfide (**4**), a compound whose production has previously been described in related reactions (Scheme 3, C).<sup>12,28</sup> Its



**Figure 6.** Formation of  $D_3$  from **2** as a function of starting  $Me_2SiCl_2$  concentration.

formation likely involves intermediate **8**, analogues of which have previously been described in Pummerer rearrangements<sup>29</sup> and redox reactions using a chlorosilane/sulfoxide system.<sup>30</sup> Similar intermediates are inferred or known in a variety of alcohol oxidation procedures (e.g., Swern) using DMSO (Scheme 3, A).<sup>28</sup> The decomposition of **8** could lead directly to **1** + **5** or to **4** and the silicone precursor **9**.<sup>31</sup> Although **8** could, in principle, decompose through a sila-Pummerer rearrangement (Scheme 3, B), this was not observed.

**Stepwise Progression of the Reaction.** In the reaction between Me<sub>2</sub>SiCl<sub>2</sub> and DMSO, the DMSO may

<sup>(28)</sup> Tidwell, T. T. Synthesis 1990, 857.

<sup>(29)</sup> Wolfe, S.; Kazmaier, P. M. Can. J. Chem. 1979, 57, 2388, 2397.
(30) (a) Numata, T.; Togo, H.; Oai, S. Chem. Lett. 1979, 329. (b) Akaji, K.; Tatsumi, T.; Yashida, M.; Kimura, T.; Fujiwara, Y.; Kist, T. J. Am. Chem. Soc. 1992, 114, 4137.

<sup>(31)</sup> This compound has not been isolated according to Chemical Abstracts, although there are several references to its intermediacy in a variety of hydrolysis reactions of Me<sub>2</sub>SiCl<sub>2</sub>; some spectral data has been accumulated: (a) Graalmann, O.; Klingebiel, U. J. Organomet. Chem. **1984**, 275, C1. (b) Ogawa, T.; Suzuki, T.; Mita, I. Macromol. Chem. Phys. **1994**, 195, 1973. (c) Lehnert, R. In Organo-silicon Chemistry: From Molecules to Materials; Auner, N., Weis, J., Eds.; VCH: Weinheim, Germany, 1994; pp 71–73.



serve as a source of oxygen in two ways: (i) as a source of  $H_2O$  (Scheme 3, D) and (ii) as an end group from which a nucleophile is generated. The rate of these reactions is clearly accelerated by polar solvents, suggesting polar intermediates (Figure 3).

The progression of the reaction is rather obvious from the evolution of species, as shown in Figure 4. Starting from Me<sub>2</sub>SiCl<sub>2</sub>, the first observed products are the linear siloxanes in order,  $\mathbf{1} \rightarrow \mathbf{2} \rightarrow \mathbf{3}$ . Thus, one important sequence in the presence of DMSO involves homologous linear chain extension. A mechanistic proposal for cyclic siloxane formation involves deviation from the linear homologation once the chain reaches the minimum practical length for cyclization (i.e., the six atoms in  $\mathbf{2}$ ,  $D_2$  is a highly energetic species<sup>32</sup>),  $\mathbf{2} \rightarrow D_3$  and  $\mathbf{3} \rightarrow D_4$  (Scheme 4, A–C).

In these events, we believe that a relatively bulky  $Me_2S^+O$  group is the reactive terminus of the linear chain 10-12 (Scheme 4). As noted above, such intermediates are commonly invoked in DMSO-mediated oxidations. Liberation of the sulfur could be induced during unimolecular cyclization (Scheme 5, A) or, more likely, with concomitant attack by chloride (Scheme 5,

B).<sup>33</sup> These two pathways account for both sulfurcontaining products **4** and **5** that, however, may also arise from different reactions (Scheme 3).

Thus, conversion of 2 to an activated-species sulfonium ion **12** (Scheme 4, E) is followed by a competition between chain extension with Me<sub>2</sub>SiCl<sub>2</sub> giving 3 (Scheme 4, G) or the favored intramolecular cyclization to  $D_3$ (Scheme 4, F). The presence of the bulky group at the chain termini should engender larger steric interactions upon reaction both intermolecularly with Me<sub>2</sub>SiCl<sub>2</sub> or intramolecularly. By slowing down both reactions, the natural preference for the intramolecular reaction (higher local concentration, fewer degrees of freedom) over the intermolecular condensation is amplified. This is particularly true at lower concentrations of Me<sub>2</sub>SiCl<sub>2</sub>. Such a proposal also explains the even higher D3 selectivity in the case of cyclization of Ph<sub>2</sub>SiCl<sub>2</sub>. The analogous, but more hindered, compound ROSiPh<sub>2</sub>OS<sup>+</sup>Me<sub>2</sub> will react more slowly and selectively than 12 in an intramolecular fashion to give  $D_3^{Ph_2}$  in high yield (91%).<sup>15</sup>

One must account for the difference in  $D_3/D_4$  formation when water and DMSO are used as the oxygen source. The rates of linear chain extension with DMSO were found to be slower than cyclization for the reactions: the rates for  $1 + 1 \rightarrow 3$  and  $1 + 2 \rightarrow 1.9$ 

<sup>(32) (</sup>a) McKillop, K. L.; Gillette, G. R.; Powell, D. R.; West, R. *J. Am. Chem. Soc.* **1992**, *114*, 5203. (b) Yokelson, H. B.; Millevolte, A. J.; Adams, B. R.; West, R. *J. Am. Chem. Soc.* **1987**, *109*, 4116. (c) Somogyi, A.; Tamas, J.; Csaszar, A. G. *THEOCHEM* **1991**, *78*, 123.

<sup>(33)</sup> We thank a referee for this much clearer modification of our initial proposal.





<sup>1</sup>/<sup>Si</sup> o<sup>-Si</sup> o<sup>-Si</sup> ci <sup>?</sup> √ √ + O II "Si Si ⊂ 0 Si ➡ 1/3

dichlorodecamethylpentasiloxane were slower than cyclization  $\mathbf{2} \rightarrow D_3$ . However, the reaction  $\mathbf{2} \rightarrow D_3$  is competitive with linear extension of  $\mathbf{2} + Me_2SiCl_2 \rightarrow \mathbf{3}$ (Figure 6). Overall, except at high [Me<sub>2</sub>SiCl<sub>2</sub>], these factors favor D<sub>3</sub> formation. With water as the oxygen source, the rates of linear extension  $1 + 1 \rightarrow 3$  are comparable to cyclization  $\mathbf{2} \rightarrow D_3$ . Linear extension  $\mathbf{2}$  $\rightarrow$  **3** by Me<sub>2</sub>SiCl<sub>2</sub> might be expected to be even faster. This is likely a consequence of both the reduced steric hindrance at the nucleophilic oxygen and the ability of the hydroxyl group to attack the chlorosilane (Scheme 5, C,D) without the requirement for intervention by an additional nucleophile such as chloride (Scheme 5, B).

Another important difference between the water- and DMSO-initiated reactions is the presence of HCl, a potent redistribution catalyst in the former case. Gaseous HCl led to immediate redistribution favoring D<sub>4</sub>  $(D_3 + D_4 (1:1) + HCl(g) \rightarrow D_3 + D_4 (3:97))$ . It should similarly facilitate redistribution in all the reactions. By contrast, with DMSO as the oxygen source, HCl is sequestered as 5.

The Question of Silanone Involvement. No role is given to silanones, the intermediates favored by Voronkov<sup>14</sup> and Weber,<sup>15</sup> in the mechanistic suggestions made above. The bulk of the present knowledge of silanone properties<sup>34</sup> originates primarily from studies on transients,35 although silanones have been observed in argon matrices.<sup>36</sup> The intermediacy of free silanones has been proposed for many reactions which primarily involve gas-phase, high-temperature conditions<sup>37-43</sup> but has been questioned in some of these processes.<sup>44</sup> Much of the evidence for silanone formation is inferred from the presence of small silicone cyclics in reaction mixtures,45-52 as in the reaction between DMSO and  $R_2 SiCl_2.^{14,15}$ 

Silanones have been calculated to be exceptionally reactive toward nucleophilic attack. The addition of water was calculated to be essentially without barrier and with a  $\Delta H$  of -73 kcal/mol.<sup>53</sup> In the highly polar media in the reactions described above, it seems unlikely that the lifetime of the silanone would be sufficient to allow it to undergo oligomerization prior to interception by one of the many types of nucleophiles present in solution (Cl<sup>-</sup>, H<sub>2</sub>O, R<sub>3</sub>SiOH, DMSO, MeSCH<sub>2</sub>-Cl. etc.).

There is further data, from the experiments described above, that is inconsistent with the intermediacy of silanones. First,  $\alpha, \omega$ -dichlorosiloxanes **2** and **3** were converted by DMSO directly to cyclic siloxanes D<sub>3</sub> and  $D_4$  (Scheme 2). It seems unlikely that dimethylsilanone could be involved is such a process, which would involve a depolymerization to form silanones followed by reoligomerization (Scheme 6). If the cyclization can occur without silanone intervention, it is difficult to see why linear homologation cannot proceed similarly without silanones. Second, we have observed that the unimolecular (first order in 2, see above) cyclization reaction of  $\mathbf{2} \rightarrow D_3$  is competitive with the second-order linear extension of  $\mathbf{2} + Me_2SiCl_2 \rightarrow \mathbf{3}$  and that formation of  $\mathbf{1}$ from Me<sub>2</sub>SiCl<sub>2</sub> is faster than the cyclization of **2** (Figure 6).

(35) Gusel'nikov, L. E.; Nametkin, N. S. *Chem. Rev.* 1979, 79, 529.
(36) (a) Withnall, R.; Andrews, L. J. Am. Chem. Soc. 1986, 108, 8118. (b) Arrington, C. A.; West, R.; Michl, J. J. Am. Chem. Soc. 1983, 105, 6176

(37) (a) Barton, T. J.; Wulff, W. D. J. Am. Chem. Soc. 1979, 101, 2735. (b) Goure, W. F.; Barton, T. J. J. Organomet. Chem. 1980, 199, 33

. (38) Tzeng, D.; Weber, W. P. *J. Am. Chem. Soc.* **1980**, *102*, 1451. (39) Davidson, I. M. T.; Wood, I. T. J. *J. Chem. Soc., Chem. Commun.* 1982, 550.

(40) Wiberg, N. J. Organomet. Chem. 1984, 273, 141.

(41) Manuel, G.; Bertrand, G.; Weber, W. P.; Kazoura, S. A. Organometallics 1984, 3, 1340.

(42) Trommer, M.; Sander, W.; Patyk, A. J. Am. Chem. Soc. 1993, 115, 11775.

(43) Brook, A. G.; Nyburg, S. C.; Abdesaken, F.; Gutekunst, B.;
 Gutekunst, G.; Krishna, R.; Kallury, P. K. M. R.; Poon, Y. C.; Chang,
 Y.-M.; Wong-Ng, W. *J. Am. Chem. Soc.* **1982**, *104*, 5667.
 (44) Barton, T. J.; Hoekman, S. K.; Burns, S. A. Organometallics

1982. 1. 721.

(45) Barton, T. J.; Groh, B. L. J. Am. Chem. Soc. 1985, 107, 7221. (46) Tomadze, A. V.; Yablokova, N. V.; Yablokov, V. A.; Razuvaev,

G. A. J. Organomet. Chem. 1981, 212, 43.

(47) Gusel'nikov, L. E.; Kerzina, Z. A.; Polyakov, Yu. P.; Nametkin, N. S. Zh. Obshch. Chim. 1982, 52, 457.

(48) Barton, T. J.; Bain, S. Organometallics 1988, 7, 528

 (49) (a) Wiberg, N.; Preiner, G.; Schieda, O. *Chem. Ber.* 1981, *114*, 3518. (b) Märkl, G.; Horn, M. *Tetrahedron Lett.* 1983, 1477. (c) Brook, A. G.; Chatterton, W. J.; Sawyer, J. F.; Hughes, D. W.; Vorspohl, K. Organometallics 1987, 6, 1246.

(50) (a) Davidson, I. M.; Thompson J. F. J. Chem. Soc., Chem. Commun. 1971, 251. (b) Davidson, I. M.; Thompson J. F. J. Chem. Soc., Faraday Trans. 1 1975, 2260.

(51) Goure, W. F.; Barton, T. J. J. Organomet. Chem. 1980, 199, 33.

(52) Hussmann, G.; Wulff, W. D.; Barton, T. J. J. Am. Chem. Soc. 1983, 105, 1263.

(53) Kudo, T.; Nagase, S. J. Am. Chem. Soc. 1985, 107, 2589.

<sup>(34)</sup> Raabe, G.; Michl, J. Chem. Rev. 1985, 85, 419.

In the reaction mixture of  $Me_2SiCl_2$  and **2**, highly reactive  $Me_2Si=O$ , if formed from  $Me_2SiCl_2$ , should competitively oligomerize and insert into **2** giving **3** (and  $D_3$  giving  $D_4$ ). That is, one would expect much higher product concentrations of **3** and  $D_4$  as a result of these reactions than were observed (Figure 6). In fact, the distribution of linear and cyclic siloxanes originating from  $Me_2SiCl_2$  and the cyclization process of **2** giving  $D_3$  may be more readily explained as the sum of two relatively independent processes:  $\mathbf{2} \rightarrow D_3$  and  $Me_2SiCl_2$  $\rightarrow$  linear + cyclic siloxanes.

## **Experimental Section**

**Instrumentation.** The <sup>1</sup>H NMR spectra were recorded on a Bruker AM-500 (at 500 MHz for protons) spectrometer or Bruker AC-200 (at 200 MHz for protons) spectrometer. <sup>13</sup>C and <sup>29</sup>Si NMR were performed on a Bruker AC-200 (at 50.3 MHz for carbon) and Bruker AC-300 (at 59.6 MHz for carbon and 59.6 MHz for silicon). Chemical shifts are reported with respect to tetramethylsilane, as the standard, set to 0 ppm.

**Preparation of 1–3 and 6.** The linear  $\alpha, \omega$ -dichlorosiloxanes **1–3** were initially isolated by careful distillation from an old bottle of Me<sub>2</sub>SiCl<sub>2</sub>. They are readily prepared in acceptable yield by the method of Patnode and Wilcock,<sup>5</sup> the method that was used to generate hexasiloxane **6** (1,11dichlorododecamethylhexasiloxane, bp 161 °C at 20 mmHg, lit.<sup>5</sup> 245 °C). **1–3** are also commercially available.

1: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.47 (s, 12H).

**2**: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.12 (s, 6H), 0.43 (s, 12H).

**3**: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.09 (s, 12H), 0.41 (s, 12H).

**6**: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.08 (s, 12H), 0.13 (s, 12H), 0.43 (s, 12H).

For comparison, the <sup>1</sup>H NMR chemical shifts of the related cyclic siloxanes and other materials including ClCH<sub>2</sub>SMe are provided. D<sub>3</sub> 0.15; D<sub>4</sub> 0.08; D<sub>5</sub> 0.06; D<sub>6</sub> 0.077; ClCH<sub>2</sub>SMe (**4**) 2.18 (s, 3H), 4.61 (s, 2H); **5** 3.13.

**Preparation of D<sub>3</sub>/D<sub>4</sub> from Me<sub>2</sub>SiCl<sub>2</sub> with H<sub>2</sub>O.** To a solution of Me<sub>2</sub>SiCl<sub>2</sub> (1.7 mL, 14 mmol) in diethyl ether (50 mL) was added H<sub>2</sub>O (0.5 mL, 28 mmol). After 15 min, the <sup>1</sup>H NMR showed a mixture of D<sub>3</sub>:D<sub>4</sub>:D<sub>5</sub> (30:53:17) (Table 1, entry 1). Only small quantities of starting and other materials were observed (<2%).

Siloxanes from Me<sub>2</sub>SiCl<sub>2</sub> and DMSO in the Absence of Solvents. To Me<sub>2</sub>SiCl<sub>2</sub> (8.49 mL, 70 mmol) was added DMSO (1.0 mL, 14 mmol). The <sup>1</sup>H NMR was taken after 15 min. To the reaction mixture was added a second aliquot of DMSO (1.0 mL, 14 mmol). This process was repeated a further 3 times (Figure 2, Table 1, entries 2–6).

**General Procedure I:** Siloxanes from Me<sub>2</sub>SiCl<sub>2</sub> and DMSO in Different Solvents. To a solution of Me<sub>2</sub>SiCl<sub>2</sub> (1.7 mL, 14 mmol) in solvent (20 mL) was added DMSO (2 mL, 28 mmol). The mixture was stirred at ambient temperature. <sup>1</sup>H NMR spectra were generally obtained at 15 min. However, in some cases, reaction was too slow and longer reaction times were utilized (Table 1, entries 7–14, Figure 3).

**Product Distributions in Ether.** General procedure I was used to prepare the siloxanes in  $Et_2O$ . A high ratio of  $D_3:D_4$  was obtained (87:13). Therefore, detailed investigation of the reaction in this solvent was undertaken. The kinetics of the process were followed over several hours. The results are shown in Figure 4.

**Dilution Effects.** The effect of concentration was probed in the reaction by holding the DMSO:Me<sub>2</sub>SiCl<sub>2</sub> ratio constant and varying the dilution volume of ether (Figure 5, Table 1, Entries 15–19): DMSO (2 mL, 28 mmol), Me<sub>2</sub>SiCl<sub>2</sub> (1.7 mL, 14 mmol).

**Effect of Order of Addition of Me<sub>2</sub>SiCl<sub>2</sub> to DMSO.** To a solution of DMSO (2.0 mL, 28 mmol) in Et<sub>2</sub>O (40 mL) was added Me<sub>2</sub>SiCl<sub>2</sub> (1.7 mL, 14 mmol), dropwise. After 1 h, <sup>1</sup>H

NMR showed the distribution of the reaction products strongly favored  $D_3$ . By contrast, the identical reagents, but with the reverse order of reagent addition, led to diminished  $D_3$  production (Table 1, entries 20 and 21).

**Redistribution Reactions in the Presence of DMSO, 4, 5, and HCl.** A 50:50 mixture of  $D_3:D_4$  (5.6 g, 28 mmol ( $D_3$ ); 8.3 g, 28 mmol ( $D_4$ )) was dissolved in diethyl ether (30 mL). In separate reactions, each of the following reagents was added to the  $D_3/D_4$  mixture and the course of redistribution was followed over time by <sup>1</sup>H NMR.

4 (0.27 g, 2.8 mmol): 4 h, D<sub>3</sub>/D<sub>4</sub> (50:50).

5 (0.38 g, 2.8 mmol): 2 h, D<sub>3</sub>/D<sub>4</sub> (48:52).

DMSO (0.4 mL, 5.6 mmol): 20 min,  $D_3/D_4$  (45:55); 18 h,  $D_3/D_4$  (43:57).

HCl(g): 10 min, D<sub>3</sub>/D<sub>4</sub> (3:97).

**Redistribution Reactions between Cyclic and Linear Siloxanes.** The reaction of  $D_3$  or  $D_4$  with 1, 2, or 3 in the presence of DMSO allows one to establish the relative rates of redistribution of the cyclic siloxane under these conditions.

 $D_3$  (1.57 g, 7.06 mmol), **1** (1.38 mL, 7.06 mmol), and DMSO (1 mL, 14 mmol) were allowed to react in Et<sub>2</sub>O (20 mL). After 15 min, the <sup>1</sup>H NMR spectrum showed a ratio of **1:2:3**: $D_3:D_4$  (10:0:3:66:21).

 $D_3$  (1.57 g, 7.06 mmol), **2** (1.94 mL, 7 mmol), and DMSO (1 mL, 14 mmol) were allowed to react in Et<sub>2</sub>O (20 mL). After 15 min, the <sup>1</sup>H NMR spectrum showed only  $D_3$ .

 $D_4$  (2.2 mL, 7 mmol), **1** (1.37 mL, 7 mmol), and DMSO (1 mL, 14 mmol) were allowed to react in Et<sub>2</sub>O (20 mL). After 15 min, the <sup>1</sup>H NMR spectrum showed ratio of **1:2:3:** $D_3:D_4$  (12: 0:5:2:80). Essentially no  $D_3$  was formed in this process. The proportions indicated the direct conversion of **1** to  $D_4$ .

 $D_4$  (2.2 mL, 7 mmol), **2** (1.94 mL, 7 mmol), and DMSO (1 mL, 14 mmol) were allowed to react in Et<sub>2</sub>O (20 mL). After 15 min, the <sup>1</sup>H NMR spectrum showed a ratio of **1:2:3**:D<sub>3</sub>:D<sub>4</sub> (2:4:0:44:51). The proportions indicated the direct conversion of **2** to D<sub>3</sub> without the participation of D<sub>4</sub>.

**Cyclization Reactions of 1–3 and 6.** To disiloxane **1** (2.7 mL, 14.0 mmol) was added DMSO (2 mL, 28 mmol) in ether (20 mL). After 30 min, the <sup>1</sup>H NMR spectrum showed a ratio of **1:3**:D<sub>3</sub>:D<sub>4</sub> (29:18:17:36) (the major siloxane products >95%).

To disiloxane **1** (2.7 mL, 14.0 mmol) was added  $H_2O$  (1 mL, 55 mmol) at room temperature in  $Et_2O$  (mL). After 60 min, the <sup>1</sup>H NMR spectrum showed a ratio of  $D_3:D_4:D_5$  (11:74:15) (the only siloxane products).  $D_3$  and **2** were present in <1% in the product mixture.

To trisiloxane **2** (1.9 mL, 7.0 mmol) was added DMSO (1.0 mL, 14.0 mmol) at room temperature in  $Et_2O$  (10 mL). After 15 min, the <sup>1</sup>H NMR spectrum showed a ratio of  $D_3:D_4$  (the major products >95%) to be 86:14. This ratio was unchanged after 1 h!

To trisiloxane **2** (1.9 mL, 7.0 mmol) was added water (0.26 g, 14.0 mmol) at room temperature in  $Et_2O$  (10 mL). After 15 min, the <sup>1</sup>H NMR spectrum showed a ratio of **2**:D<sub>3</sub>:D<sub>4</sub> (8:88:4) (the major products >95%). This ratio was unchanged after 1 night!

To disiloxane **3** (1.21 mL, 3.5 mmol) was added DMSO (0.5 mL, 7 mmol) in ether (10 mL). After 30 min, the <sup>1</sup>H NMR spectrum showed a ratio of  $D_3:D_4$  (12:88) (the major siloxane products >95%).

To 1,11-Dichlorododecamethylhexasiloxane **6** (1 mL, 2 mmol) was added DMSO (2 equiv, 285 mL, 4 mmol) in diethyl ether (5 mL). After 15 min at room temperature, the <sup>1</sup>H NMR spectrum showed a ratio of 58% starting material and 40% D<sub>6</sub>, 0.077 ppm. Other siloxanes were present in very small amounts (<5%).

**Competitive Cyclization/Linear Extension of 1–3 in the Presence of Me<sub>2</sub>SiCl<sub>2</sub>.** The relative rate of chain extension versus cyclization was gauged by the competitive reaction of **2** with Me<sub>2</sub>SiCl<sub>2</sub>.

General procedure I was implemented for the cohydrolysis of **2** and Me<sub>2</sub>SiCl<sub>2</sub>. The concentration of **2** (1.9 mL, 7.0 mmol)

 
 Table 2. Siloxane Production from 2 as a Function of Me<sub>2</sub>SiCl<sub>2</sub> in the Reaction Mixture

| Me <sub>2</sub> SiCl <sub>2</sub> (equiv) | 1  | 2  | 3  | $D_3$ | $D_4 + D_5 \\$ |
|-------------------------------------------|----|----|----|-------|----------------|
| 0                                         | 0  | 0  | 0  | 100   | 0              |
| 0.5                                       | 14 | 19 | 8  | 53    | 6              |
| 1                                         | 20 | 29 | 10 | 37    | 5              |
| 1.5                                       | 28 | 36 | 10 | 23    | 4              |

and DMSO (1.0 mL, 14.0 mmol) and the volume of diethyl ether (10 mL) were held constant. The number of equivalents of  $Me_2SiCl_2$  was varied from 0-2 in 0.5 equiv increments (1.7 mL, 14 mmol/equiv). The data after 15 min is shown in Table 2 and Figure 6.

**Competitive Dimerization of 1 versus Cyclization of 2.** To a mixture of **1** (1.38 mL, 7 mmol) and **2** (1.8 mL, 7 mmol) in diethyl ether (20 mL) was added DMSO (0.5 mL, 7 mmol). After 15 min, the distribution of products was  $1:2:3:D_3:D_4$  (46: 21:9:24:0).

To a mixture of **1** (1.38 mL, 7 mmol) and **2** (1.8 mL, 7 mmol) in diethyl ether (20 mL) was added  $H_{2O}$  (0.13 mL, 7 mmol). After 15 min, the distribution of products was **1**:**2**:**3**: $D_3:D_4$  (20: 33:22:20:5).

**Competitive Cyclization of 2 and 3.** To a mixture of **3** (2.43 mL, 7 mmol) and **2** (1.8 mL, 7 mmol) in diethyl ether (20 mL) was added DMSO (0.5 mL, 7 mmol). After 15 min, the distribution of products was  $1:2:3:D_3:D_4$  (4:22:38:24:12).

To a mixture of **3** (2.43 mL, 7 mmol) and **2** (1.8 mL, 7 mmol) in diethyl ether (20 mL) was added  $H_2O$  (0.13 mL, 7 mmol). After 15 min, the distribution of products was **1**:**2**:**3**: $D_3:D_4$  (3: 13:32:24:28).

Acknowledgment. We gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada for financial support of this research, the Deutscher Akademischer Austauschdienst (DAAD) for providing a McMaster University–Universität Duisburg Exchange Fellowship to S.W., and Dow Corning Corp., Canada, for providing the methylchlorosilanes used in this study.

OM970953E