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Summary: The synthesis and characterization of the
mono- and bis(N-isopropyl-2-(isopropylamino)tropon-
iminato)yttrium amides [(iPr)2ATI]Y[N(SiMe3)2]2 and
[(iPr)2ATI]2Y[N(SiMe3)2], with the corresponding chloro
precursors [[(iPr)2ATI]YCl2(THF)2]2 and [(iPr)2ATI]2YCl
as starting materials, is reported together with their
application as precatalysts for the hydroamination/
cyclization of aminoalkynes.

Metallocenes of lanthanides1 have proven to be highly
efficient catalysts2 for a variety of olefin transforma-
tions, including hydrogenation,3 polymerization,4 hy-
droamination,5,6 hydrosilylation,7 hydroboration,8 and
reductive or silylative cyclization of R,ω-dienes.9 Re-
cently, there has been significant research effort to
substitute the cyclopentadienyl ligand10 by anionic
nitrogen-based bidentate ligand systems such as ben-

zamidinates or (alkoxysilyl)amides for catalytic applica-
tions.11 Lately, aminotroponiminates ([ATI]-), which
are known to stabilize coordinatively unsaturated main-
group-metal complexes,12 have been introduced as cy-
clopentadienyl alternatives for group 3,13 group 4,14 and
the lanthanide elements.13 The neutral ligand system
is obtained in high yields in a three-step synthesis
starting from tropolone. We report herein the synthesis
and characterization of mono- and bis(N-isopropyl-2-
(isopropylamino)troponiminato)yttrium amides, [(iPr)2-
ATI]xY[N(SiMe3)2]y (x ) 1, or 2; y ) 3 - x), together with
their application as catalysts for the hydroamination/
cyclization of aminoalkynes, and some initial results
regarding the mechanism. To our knowledge these
complexes are the first cyclopentadienyl-free catalysts
for the hydroamination/cyclization reaction.
The straightforward synthesis of the new catalysts

is shown in Scheme 1. Transmetalation of the recently
reported yttrium chloro complex [[(iPr)2ATI]YCl2(THF)2]2
(1) with an excess of KN(SiMe3)2 in toluene, followed
by workup in pentane, afforded the corresponding
yttrium bis(amido) complex [(iPr)2ATI]Y[N(SiMe3)2]2 (2)
as a yellow crystalline solid. The new complex has been
characterized by standard analytical/spectroscopic tech-
niques,15 and the solid-state structure was established
by single-crystal X-ray diffraction.16 The structure
(Figure 1) reveals a distorted-tetrahedral arrangement
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of the ligands around the yttrium atom. The molecule
features C2 symmetry along the Y-C(4) axis. The
Y-N(1) distance (2.31(6) Å) is slightly shorter than in
[(iPr)2ATI]YCp2* (N-Y ) 2.398(2) and 2.390(3) Å)17
(Cp* ) C5Me5) and in [(Ph)NdC(Ph)C(Ph)dN(Ph)]-
YCp2* (2.408(4) Å).18 The Y-N(2) distance (2.236(3) Å)
is in agreement with other Y-N(SiMe3)2 compounds,
like the homoleptic amide Y[N(SiMe3)]319 (2.211(9) Å)
and [tBu(Ar)2SiO]Y[N(SiMe3)2]2 (Ar ) 2-C6H4(CH2-
NMe2)) (2.237(9) Å).20 In comparison to these two
compounds the N(2)-Y-N(2A) angle (121.56(14)°) is
about 8° larger, thus showing a smaller steric demand

of the rigid and planar [(iPr)2ATI]- ligand (N(1)-Y-
N(1A) ) 69.00(14)°).
Transmetalation of [(iPr)2ATI]K with anhydrous

yttrium trichloride in THF in a 2:1 molar ratio does not
lead selectively to a product of composition [(iPr)2ATI]2-
YCl (3). Usually traces of [(iPr)2ATI]3Y and 1 are also
formed during the course of the reaction. Recrystalli-
zation of the crude product does not yield pure 3 but
instead increases the ratio of 1. In contrast, when the
reaction is run with a 10% excess of [(iPr)2ATI]K, only
3 and homoleptic [(iPr)2ATI]3Y are formed. In this case,
3 can be obtained after recrystallization as analytically
pure product. Subsequent reaction of 3 with KN-
(SiMe3)2 in toluene yields [(iPr)2ATI]2Y[N(SiMe3)2] (4)
as a yellow crystalline powder (Scheme 1). Both com-
plexes 3 and 4 have been characterized by standard
analytical/spectroscopic techniques.21,22 Complex 4 ex-
hibits a dynamic behavior in solution, which is caused
by a rearrangement between a pseudo-square-pyrami-
dal23 and a pseudo-trigonal-bipyramidal24 coordination
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Scheme 1

Figure 1. Perspective ORTEP view of the molecular
structure of 2. Thermal ellipsoids are drawn to encompass
50% probability. Important bond distances (Å) and angles
[deg] are as follows: Y(1)-N(1), 2.315(3); Y(1)-N(2),
2.236(3); N(1)-Y(1)-N(1A), 69.00(14); N(2)-Y(1)-N(2A),
121.56(14); N(1A)-Y(1)-N(2), 101.98(10); N(1)-Y(1)-N(2),
126.66(9).

Communications Organometallics, Vol. 17, No. 8, 1998 1453

D
ow

nl
oa

de
d 

by
 C

A
R

L
I 

C
O

N
SO

R
T

IU
M

 o
n 

Ju
ne

 3
0,

 2
00

9
Pu

bl
is

he
d 

on
 M

ar
ch

 2
0,

 1
99

8 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

om
97

11
07

7



sphere around the yttrium atom. At low temperatures
(223 K) both isomers are observed in about a 1:1 ratio.
In the pseudo-trigonal-bypyramidal-coordinated isomer
each bidentate ligand occupies an axial and an equato-
rial site,12c thus showing two different signals for the
isopropyl groups in the 1H NMR spectra. Additionally,
a third signal for the isopropyl groups of the pseudo-
square-pyramidal-coordinated isomer is observed. These
signals start to coalesce with rising temperature and
have a coalescence temperature of about Tc ) 263 K.
At even higher temperatures (up from 313 K) the signals
due to the isopropyl groups appear as one doublet,
indicating a rapid pseudorotation.
The catalytic hydroamination/cyclization of amino-

olefins and aminoalkynes has been pioneered by Marks
et al. with a variety of lanthanocene catalysts.5 For this
reaction the catalytic activity of the new cyclopentadi-
enyl-free complexes was investigated and a comparison
made between 2, 4, and Cp2*YCH(SiMe3)2 (5).25 The
rigorously anaerobic reaction of the catalysts with dry,
degassed aminoolefin and aminoalkynes (catalyst:sub-
strate . 1:50) proceeds regiospecifically (>95%) to
completion in benzene, as shown in Table 1. Catalytic
rate measurements and product characterization pro-
cedures were as described previously.5
The catalytic activity of 4 for the catalytic hydroami-

nation/cyclization of aminoalkynes is about a factor of
5-7 slower than for the established analogous Cp2*
system (entries 1 and 2). Since the rate of the catalysis
mostly depends on the steric demands of the ligand,5 a
further tuning of 4 may result in a more competitive
system. To our surprise even 2 shows a significant
catalytic activity in the hydroamination/cyclization re-
action. To our knowledge none of the few established
Cp*LnR2 (Ln ) La, Ce, Lu; R ) alkyl, amide)26 com-
pounds were ever used as precatalysts in this reaction.
Under the same reaction conditions the chloro com-
pounds 1 and 3 were also used as catalysts, but the

catalytic activities as well as the product yields are
significantly lower than the one observed for 2 and 4.
Kinetic studies of both 2 and 4 indicate zero-order
behavior in substrate over a 10-fold concentration range,
and so we suggest a mechanism for 4 close to the
established one of Cp2*LnCH(SiMe3)2.5b,e Thus, the
turnover limiting step is intramolecular alkyne insertion
into the Y-N bond followed by rapid protonolysis of the
resulting Y-C bond (Scheme 2). Since the hydroami-
nation of aminoalkynes is >35 kcal/mol more exothermic
and thus faster than for aminoolefins,5 it might be
expected that no conversion is observed at room tem-
perature for aminoolefins with 2 and 4 as catalysts
(entry 3).
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Table 1. Catalytic Hydroamination/Cyclization
Resultsa

a Conditions: temperature, 21 °C; reaction in benzene; quan-
titative conversion. b Isolated yield 73%.

Scheme 2
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