Synthesis of M₂Rh₂ Bis(μ_3 -carbon dioxide) Complexes from the Reaction between [Rh(OH)(η^4 -COD)]₂ and Cationic Metal Carbonyls

Stephen M. Tetrick, Chongfu Xu, John R. Pinkes, and Alan R. Cutler*

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180

Received May 29, 1997

The M₂Rh₂ bis(μ_3 -CO₂) complexes [Cp*(CO)(NO)Re(CO₂)Rh(η^4 -cod)]₂ (1) and [Cp*(CO)₂- $MCO_2Rh(\eta^4\text{-cod})]_2$, M = Fe (2) and Ru (3), were synthesized in moderate to high yields from treating $[Rh(OH)(\eta^4-cod)]_2$ (cod = 1,5-cyclooctadiene) with the carbonyl salts $Cp^*(L)(CO)_2M^+$ (L = CO, M = Fe, Ru; L = NO, M = Re) and a base. [An alternative synthesis of 1 and its crystallographic structure determination has been reported.] Although details on using several bases in the synthesis of 2 are reported, the use of volatile EtMe₂N in excess as the base is especially useful. IR and NMR spectral data are in accord with a M_2Rh_2 bis(μ_3 -CO₂) core for **2** and **3**: they retain two μ_3 - $[\eta^1$ -C(M): η^1 -O(Rh): η^1 -O'(Rh')] carboxylate ligands that resemble those that were found for 1 and the Rh(I) carboxylates [(RCO₂)Rh(diene)]₂. Complexes 2 and 3 with their "open-book" structures are not fluxional at room temperature. Complex 2, its norbornadiene analogue, $[Cp^*(CO)_2FeCO_2Rh(\eta^4-nbd)]_2$ (4), and their ¹³Clabeled derivatives also are accessible from reactions of Cp*(CO)₂FeCO₂K [or Cp*(CO)₂- $Fe^{13}CO_2K$] with $[Rh(OSO_2CF_3)(\eta^4-cod)]_x$. $[Cp^*(CO)_2Fe^{(13}CO_2)Rh(\eta^4-diene)]_2$ [diene = cod (2- 13 C); nbd (4- 13 C)] underwent carboxylate-carbonyl label shuttle to yield 1:1 mixtures of [Cp*(CO)(¹³CO)FeCO₂Rh(diene)]₂ (2a-C¹³) and 4a-C¹³. IR spectral assignments for the metallocarboxylate v_{OCO} absorptions are also presented.

Introduction

We recently reported the synthesis and characterization of a new series of carbon dioxide complexes that retain a Re₂Rh₂(μ_3 -CO₂)₂ structural motif in which each of the two rhenium metallocarboxylates bridge two rhodium(I) η^4 -diene moieties.¹ The presence of the two μ_3 -[η^1 -C(Re): η^1 -O(Rh): η^1 -O'(Rh')] carboxylate ligands was established by an X-ray crystallographic structure determination of [Cp*(CO)(NO)Re(CO₂)Rh(η^4 -cod)]₂ (1). Its "open-book" structure, with a 85° angle between the two μ -CO₂Rh₂ carboxylate bridges and a (nonbonding) Rh, Rh separation of 3.24 Å, resembles the catalytically active Rh(I) carboxylates [(RCO₂)Rh(diene)]₂.²

These Re₂Rh₂ bis(μ_3 -CO₂) complexes were synthesized by three synthetic routes starting with either a rhenium metallocarboxylate or its metallocarboxylic acid in the presence of a base. Treatment with the appropriate rhodium(I) precursor, [RhCl(η^4 -cod)]₂, [Rh(OSO₂CF₃)- $(\eta^{4}\text{-cod})]_{x}$, or $[\text{Rh}(\text{OCH}_{3})(\eta^{4}\text{-diene})]_{2}$, provided the products in moderate yields. These syntheses resemble the procedures by which nearly all bi-, tri-, and tetrametallic carbon dioxide complexes³ have been prepared: the μ -CO₂ ligand originates as a preformed monometal CO₂ complex or metallocarboxylic acid derivative. Exceptions include several examples of incorporating CO₂ into a metal-metal bond⁴ or combining a metal oxo compound with a metal carbonyl complex.⁵ We now report a new synthetic procedure for carbon dioxide complexes in which the μ -CO₂ ligand is assembled from a metal carbonyl complex of base.⁶ Details are presented for combining [Rh(OH)- $(\eta^{4}\text{-cod})]_{2}^{7}$ with cationic metal carbonyl complexes and

^{(1) (}a) Tetrick, S. M.; Tham, F. S.; Cutler, A. R. J. Am. Chem. Soc. **1997**, 119, 6193. (b) A related trimetallic CO₂ compound, (PMe₂Ph)₃Os-(μ -H)₂(μ ₃-CO₂)[Rh(COD)]₂, with μ ₃-[η ¹-C(Os): η ¹-O(Rh): η ¹-O'(Rh)] bound CO₂ was prepared by the addition of CO₂ to (COD)RhH₃Os(PMe₂Ph)₃. An X-ray structure determination established that the Os carboxylate bridges two Rh¹(COD) moieties in the presence of two Os-H-Rh linkages: Lundquist, E. G.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. **1986**, 108, 8309. Lundquist, E. G.; Huffman, J. C.; Folting, K.; Mann, B. E.; Caulton, K. G. Inorg. Chem. **1990**, 29, 128. (2) Rhodium formate complexes have been implicated in Rh(I)catalyzed hydrogenation of CO₂ to formic acid^{2b} and in hydroformyla-

⁽²⁾ Rhodium formate complexes have been implicated in Rh(I)catalyzed hydrogenation of CO_2 to formic $acid^{2b}$ and in hydroformylation catalysis. (a) Leitner, W. Angew. Chem., Int. Ed. Engl. **1995**, 34, 2207. Fornika, R.; Dinjus, E.; Görls, H.; Leitner, W. J. Organomet. Chem. **1996**, 511, 145. (b) Suss-Fink, G.; Soulie, J.-M.; Rheinwald, G.; Stoeckli-Evans, H.; Sasaki, Y. Organometallics **1996**, 15, 3416. (c) Mieczynska, E.; Trzeciak, A. M.; Ziółkowski, J. J.; Lis, T. J. Chem. Soc., Dalton Trans. **1995**, 105.

^{(3) (}a) Gibson, D. H. *Chem. Rev.* **1996**, *96*, 2063. (b) Jessop, P. G.; Ikariya, T.; Noyori, R. *Chem. Rev.* **1995**, *95*, 259.

^{(4) (}a) Kubiak, C. P.; Woodcock, C.; Eisenberg, R. *Inorg. Chem.* **1982**, 21, 2119. (b) Pinkes, J. R.; Steffey, B. D.; Vites, J. C.; Cutler, A. R. *Organometallics* **1994**, *13*, 21. (b) Hanna, T. A.; Baranger, A. M.; Bergman, R. G. *J. Am. Chem. Soc.* **1995**, *117*, 11363.

^{(5) (}a) Audett, J. D.; Collins, T. J.; Santarsiero, B. D.; Spies, G. H. J. Am. Chem. Soc. **1982**, 104, 1352. (b) Pilato, R. S.; Housmekerides, C. E.; Jernakoff, P.; Rubin, D.; Geoffroy, G. L.; Rheingold, A. L. Organometallics **1990**, 9, 2333. (c) Housmekerides, C. E.; Ramage, D. L.; Kretz, C. M.; Shontz, J. T.; Pilato, R. S.; Geoffroy, G. L.; Rheingold, A. L.; Haggerty, B. S. Inorg. Chem. **1992**, 31, 4453. (d) Most of these reactions generate cationic bimetallic complexes in which the μ_3 - $[\eta^1 - C:\eta^2 - O, O]$ CO₂ ligand exhibits significant μ -(dioxocarbene) ligand character, e.g., Cp₂Mo=O + CpFe(CO)₃⁺ \rightarrow Cp(CO)₂Fe⁺=C(O)₂MoCp₂. (6) Bimetallic μ -CO₂ complexes have been prepared by condensation

⁽⁶⁾ Bimetallic µ-CO₂ complexes have been prepared by condensation of a metal hydroxide or alkoxide¹ and a metallocarboxylic acid: (a) Beck, W.; Raab, K.; Nagel, V.; Steimann, M. Angew. Chem., Int. Ed. Engl. **1982**, 21, 526. (b) Bennett, M. A.; Robertson, G. B.; Rokicki, A.; Wickramasinghe, W. A. J. Am. Chem. Soc. **1988**, 110, 7098. (c) Torresan, I.; Michelin, R. A.; Zanardo, A.; Pinna, F.; Strukul, G. Organometallics **1991**, 10, 623. (7) Uson B: Cons. LA: Cohem. LA: Cohem.

⁽⁷⁾ Uson, R.; Oro, L. A.; Cabeza, J. A. *Inorg. Synth.* **1985**, *23*, 123. Selent, D.; Ramm, M. *J. Organomet. Chem.* **1995**, *485*, 135.

a base in the efficient syntheses of **1** and [Cp*(CO)₂MCO₂- $Rh(\eta^4$ -cod)]₂, M = Fe (2) and Ru (3). Complex 2, its norbornadiene analogue, $[Cp^*(CO)_2FeCO_2Rh(\eta^4-nbd)]_2$ (4), and their ¹³C-labeled derivatives also are accessed from reactions of Cp*(CO)₂FeCO₂K [or Cp*(CO)₂-Fe¹³CO₂K] with [Rh(OSO₂CF₃)(η^4 -cod)]_x.

Experimental Section

Synthetic manipulations were performed in a nitrogen atmosphere using a combination of standard Schlenk, glovebox, and vacuum line procedures.⁸ Infrared spectra were recorded with a Perkin-Elmer model 1600 spectrometer. ¹H and ${}^{13}C{}^{1}H$ NMR spectra were recorded in benzene- d_6 or toluene- d_8 (both dried over 3A molecular sieves) using a Varian Unity 500 or a Varian INOVA 300 spectrometer, and the data were reported relative to residual C₆D₅H (¹H, δ 7.15; ¹³C, δ 128.00) or C₆D₅¹³CD₂H (¹H, δ 2.09; ¹³C, δ 20.4). Combustion microanalyses were done by Quantitative Technologies, Inc., Whitehouse, NJ.

Tetrahydrofuran (THF), hexane, ether, and toluene were distilled from sodium benzophenone ketyl; dichloromethane was distilled from phosphorus pentoxide. Acetone and acetonitrile were dried over 3A molecular sieves and deoxygenated by sparging with nitrogen prior to use. Ethanol was deoxygenated by sparging with nitrogen prior to use. Matheson "bone dry" carbon dioxide was dried further by passage through a 1 cm \times 1 m glass column that was packed with a 25% P₂O₅ powder dispersion on activated silica gel (70-200 mesh) containing 1% Congo Red indicator. Before using, carbon dioxide and 99% ¹³C-labeled CO₂ were frozen (-196 °C) and pumped on to remove noncondensable materials. All other reagents were purchased from commercial sources and used as received.

Silver triflate (AgOTf) was recrystallized from acetone and dried under vacuum at 95 °C. [Cp*(CO)₂Fe]₂,^{9a,b} Fp*COPF₆,^{9b} Cp*Ru(CO)₃PF₆,^{9c} Cp*Re(NO)(CO)₂BF₄,^{9d,e} [Rh(cod)Cl]₂, [Rh-(nbd)Cl]₂,¹⁰ [Rh(cod)OH]₂,⁷ and [Rh(*µ*-CH₃CO₂)(cod)]₂¹¹ were prepared by literature procedures and judged pure by IR and ¹H NMR spectroscopy. IR spectra of Cp*(CO)₂FeK,^{9b,12a} generated by sonication of $[Cp*Fe(CO)_2]_2$ with potassium,¹³ routinely exhibited the presence of only negligible concentrations of hydride Cp*(CO)₂FeH^{9a,12b,c} [ν (CO) 1993, 1932 cm⁻¹] or of $[Cp*Fe(CO)_2]_2$ [$\nu(CO)$ 1923, 1754 cm⁻¹]. The apparatus and vacuum line procedure for treating THF solutions of Cp*- $(CO)_2 Fe^- K^+$ with 1.0 equiv of CO_2 or of 99% C¹³-labeled \hat{CO}_2 (-78 °C) have been described.14

Preparation of $[(\eta^5-C_5Me_5)(CO)(NO)ReCO_2Rh(cod)]_2$ (1). Cp*Re(NO)(CO)₂BF₄ (198 mg, 0.40 mmol) and [Rh(OH)-(cod)]₂ (91 mg, 0.20 mmol) were mixed in 25 mL of THF (5 °C), and Me2EtN (0.24 mL, 2.2 mmol) was injected. IR spectra after 10 min indicated that all of the starting Cp*Re(NO)-

(9) (a) King, R. B. J. Organomet. Chem. 1967, 8, 287. (b) Catheline, D.; Astruc, D. Organometallics **1984**, *3*, 1094. (c) Nelson, G. O. Organometallics **1983**, *2*, 1474. (d) Graham, W. A. G.; Sweet, J. R. J. Am. Chem. Soc. 1982, 104, 2811. (e) Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 5804.

(10) (a) Venanzi, L. M.; Chatt, J. J. Chem. Soc. 1957, 4735. Giordano, G.; Crabtree, R. H. *Inorg. Synth* **1979**, *19*, 218. (b) Abel, E. W.; Bennet, M. A.; Wilkinson, G. J. Chem. Soc. **1959**, 3178.

(11) (a) Chatt, J.; Venanzi, L. M. J. Chem. Soc. 1957, 4735. (a) Lahoz,
 F. J.; Martin, A.; Esteruelas, M. A.; Sola, E.; Serrano, J. L.; Oro, L. A.

Organometallics 1991, 10, 1794.
 (12) (a) Roger, C.; Tudoret, M.-J.; Guerchais, V.; Lapinte, C. J.
 Organomet. Chem. 1989, 365, 347. (b) Lapinte, C.; Catheline, D.;
 Astruc, D. Organometallics 1988, 7, 1683. (c) Bullock, R. M.; Samsel,
 E. G. J. Am. Chem. Soc. 1990, 112, 6886.
 (10) E. H. D. M. Chem. Soc. 1990, 112, 6886.

 (13) Pinkes, J. R.; Masi, C. J.; Chiulli, R.; Steffey, B. D.; Cutler, A. R. *Inorg. Chem.* 1997, *36*, 70.
 (14) (a) Vites, J. C.; Steffey, B. D.; Giuseppetti-Dery, M. E.; Cutler, A. R. *Organometallics* 1991, *10*, 2827. (b) Pinkes, J. R.; Cutler, A. R. Inorg. Chem. 1994, 33, 759.

(CO)₂BF₄ had been converted to 1. The solvent and residual Me₂EtN were evaporated (10⁻² mm, 30 min), and the redbrown solvent was solid was extracted with 3 imes 5 mL of cold (5 °C) benzene. The combined red extracts were evaporated $(10^{-2} \text{ mm}, 1 \text{ h})$ [frozen immediately with an acetone-dry ice bath], re-extracted with 3 imes 5 mL of cold benzene, and evaporated and dried on the vacuum line for 6 h. A brick red solid (252 mg) was obtained that corresponded to spectroscopically pure $\mathbf{1}^{\overline{1}}$ (99% yield).

Synthesis of $[(\eta^5-C_5Me_5)(CO)_2FeCO_2Rh(cod)]_2$ (1). Reaction between (n⁵-C₅Me₅)Fe(CO)₃PF₆ and [Rh(OH)-(cod)]2 in the Presence of Dimethylethylamine. A suspension of Cp*Fe(CO)₃PF₆ (252 mg, 0.60 mmol) and [RhOH-(cod)]2 (137 mg, 0.30 mmol) in 50 mL of THF (5 °C) was treated with Me₂EtN (0.30 mL, 2.8 mmol). An IR spectrum of the clear orange solution after 10 min indicated that 85% of the starting Cp*Fe(CO)₃PF₆ had converted to [Cp*(CO)₂FeCO₂Rh(cod)]₂ (2), ν (CO) 1999, 1944 cm⁻¹. All subsequent operations were carried out at or below 5 °C. The solvent and excess Me2EtN were evaporated, and the red-brown solid was extracted with 3×5 mL of cold benzene. The combined filtrates were frozen (-78 °C); then the benzene was evaporated at 5 °C. Another benzene extraction (3 \times 5 mL) and removal of solvent on the vacuum line left 201 mg of a red-brown solid that was identified as [Cp*(CO)₂FeCO₂Rh(cod)]₂ (2) (67% yield): IR (THF) ν_{asym} (OCO) 1470 (br, m) cm⁻¹, ν_{sym} (OCO) 1262 (m), 1230 (m) cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 4.40 (br m, 4H, =CH), 4.24 (br m, 4H, =CH), 2.79 (mult, 4H, exo-CHH), 2.38 (mult, 4H, exo-CHH), 1.67 (mult, 4H, endo-CHH), 1.62 (s, 30H, C_5Me_5 , 1.55 (br, 4H, endo-C*H*H); ¹³C{¹H} NMR (C₆D₆) δ 217.39 (FeCO₂), 214.67 (FeCO), 96.18 (C₅Me₅), 80.59, 75.80 (br, =C), 31.56, 31.00 (allylic C), 9.78 (C₅Me₅). The ¹H NMR endo-CH₂ spectral assignments were made on the basis of a COSY NMR experiment. Anal. Calcd for C42H54Fe2O8Rh2: C, 50.23; H, 5.42. Found: C, 49.98; H, 5.30.

Reaction of (η^5 -C₅Me₅)Fe(CO)₃PF₆ and [RhOH(cod)]₂ with 2,6-Lutidine. A stirred suspension of Cp*Fe(CO)₃PF₆ (84 mg, 0.20 mmol) and [Rh(OH)(cod)]₂ (46 mg, 0.10 mmol) in 20 mL of THF (5 °C) was treated with 2,6-lutidine (0.022 g, 0.2 mmol). IR spectral monitoring of the clear red-brown solution that resulted within 1 h indicated 70% conversion of the reactants to $[Cp^*(CO)_2FeCO_2Rh(cod)]_2$ (2) along with <2% [Cp*Fe(CO)₂]₂. The reaction was evaporated (5 °C), the redbrown residue was extracted with 3×3 mL of cold benzene, and the orange-brown filtrate was frozen (-78 °C). Removal of solvent on a vacuum line (5 °C) left 62 mg of a gummy brown solid, which by IR and ¹H NMR spectral examination consisted of 70% **1** and 30% $[Cp*Fe(CO)_2]_2$ [¹H NMR (C₆D₆): δ 1.60 (s,Cp*)], 2-5% lutidine, and residual THF.

Reaction of $[(\eta^5-C_5Me_5)(CO)_2FeCO_2Rh(cod)]_2$ (2) with Ph₃SnCl. A solution of 2 (40 mg, 0.040 mmol) in 20 mL of THF (5 °C) that had been treated with Ph₃SnCl (31 mg, 0.080 mmol) changed from light brown to orange over 30 min. IR spectral monitoring indicated complete conversion of 2 to Cp*- $(CO)_2$ FeCO₂SnPh₃, $\nu(CO)$ 2013, 1960 cm⁻¹. The reaction was evaporated, the residue was extracted with 10 imes 5 mL hexane, and the combined orange filtrates were evaporated. This left 42 mg of a brown solid that was identified by ¹H and ¹³C NMR spectroscopy as $Cp^*(CO)_2FeCO_2SnPh_3^{14b,15}$ (60%) admixed with unidentified organic residues. The remaining solid residue was extracted again with 3×3 mL of benzene, and the light yellow filtrates were evaporated. A light yellow solid was recovered (14 mg), which was identified as [RhCl(cod)]₂ (71% yield).

Synthesis of $[(\eta^5-C_5Me_5)(CO)_2RuCO_2Rh(cod)]_2$ (3). To a suspension of Cp*Ru(CO)₃PF₆ (186 mg, 0.40 mmol) and [RhOH(cod)]2 (91 mg, 0.20 mmol) in 25 mL of THF (5 °C) was added Me₂EtN (0.24 mL, 2.2 mmol). After 10 min, IR spectral

⁽⁸⁾ Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley-Interscience: New York, 1986.

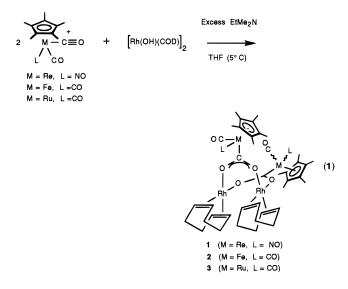
⁽¹⁵⁾ Gibson, D. H.; Ye, M.; Sleadd, B. A.; Mehta, J. M.; Mbadike, O. P.; Richardson, J. F.; Mashuta, M. S. Organometallics 1995, 14, 1242.

monitoring of the dark yellow solution indicated that all of the starting Cp*Ru(CO)₃PF₆ had been consumed. Removal of solvent and excess Me₂EtN left a yellow-green solid, which was extracted with 3 \times 5 mL of benzene (5 °C). The combined yellow-green filtrates were worked up as described for 2. The resulting green solid (200 mg) was characterized as $[(\eta^5-C_5-$ Me₅)(CO)₂RuCO₂Rh(cod)]₂ (3), 91% yield: IR (THF) v(CO) 2011, 1952 cm⁻¹, v_{asym}(OCO) 1479 sh, 1467 (m) cm⁻¹, v_{sym}(OCO) 1317 (w), 1256 (m), 1249 (sh) cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 4.39 (br m, 4H, =CH), 4.34 (br m, 4H, =CH), 2.80 (mult, 4H, exo-CHH), 2.43 (mult, 4H, exo-CHH), 1.70 (mult, 4H, endo-CHH), 1.61 (s, 30H, C₅Me₅), 1.59 (br, 4H, endo-CHH); ¹³C{¹H} NMR (C₆D₆) δ 100.46 (s, C₅ Me₅), 79.37, 72.52 (d_{C-Rh}, J = 14.3 Hz, =C), 31.68, 30.90 (allylic C), 10.29 (s, C₅Me₅)). Anal. Calcd for C42H54O8Rh2Ru2: C, 46.08; H, 4.97. Found: C, 45.57; H, 4.78

Reactions of $[(\eta^5-C_5Me_5)(CO)_2MCO_2Rh(cod)]_2$ (M = Fe, **Ru**) with Carbon Monoxide. Carbon monoxide was bubbled slowly through solutions of $[Cp^*(CO)_2MCO_2Rh(cod)]_2$ (2, M =Fe; 3, M = Ru) (0.02 mmol) in 600 mg of C_6D_6 in an NMR tube (5 °C). Within 5 min, the solutions turned lighter brown. NMR spectra were consistent with complete release of the cod ligands leaving materials that were tentatively assigned as $[Cp^*(CO)_2FeCO_2Rh(CO)_2]_2$ (5) [¹H NMR δ 1.66 (s, 30 H, C_5Me_5); $^{13}C{^{1}H}$ NMR δ 9.79 (C_5Me_5), 96.43 (C_5Me_5)] and $[Cp^*(CO)_2-RuCO_2Rh(CO)_2]_2$ (6) [¹H NMR δ 1.54 (s, 30 H, C_5Me_5); $^{13}C{^{1}H}$ NMR δ 10.15 (C_5Me_5), 100.93 (C_5Me_5)]. When kept in the original benzene solutions or in the presence of the CO atmosphere, these materials were stable for 2–3 h. Thereafter, these brown solutions degraded to unidentified materials.

Into cold (-78 °C) THF solutions containing **2** and **3** (0.02 mmol in 10 mL) CO was slowly bubbled. IR spectral monitoring indicated that **2** and **3** were transformed quantitatively within 5 min to products tentatively formulated as $[Cp^*-(CO)_2FeCO_2Rh(CO)_2]_2$ (**5**) [IR ν (FeCO) 2008 (vs), 1956 (s), ν (RhCO) 2078 (s), 2054 (m), 2008 (vs) cm⁻¹, ν_{asym} (OCO) 1435 (br, m) cm⁻¹, ν_{sym} (OCO) 1261 (m), 1229 (m) cm⁻¹] and $[Cp^*(CO)_2-RuCO_2Rh(CO)_2]_2$ (**6**) [IR ν (RuCO) 2020 (s), 1964 (s), ν (RhCO) 2079 (s), 2055 (m), 2002 (vs) cm⁻¹, ν_{asym} (OCO) 1436 (br, m) cm⁻¹, ν_{sym} (OCO) 1318 (w), 1259 (m), 1244 (m) cm⁻¹]. After being warmed above 0 °C, these solutions degraded to unidentified materials.

Preparation of $[(\eta^5 - C_5 Me_5)(CO)_2 Fe^{13} CO_2 Rh(cod)]_2$ (2-C¹³). A red solution of Cp*(CO)₂FeK was generated by sonication of a THF suspension (10 mL) of [Cp*Fe(CO)₂]₂ (140 mg, 0.283 mmol) and potassium metal (130 mg, 3.32 mmol) in an ultrasonic cleaning bath (1 h). After centrifugation, the solution was transferred to a 100-mL round-bottom flask and treated with ${}^{13}CO_2$ (99% labeled, 13.4 mL, 0.60 mmol) at -196 °C and then at -78 °C. The resulting dark red-brown Cp*- $(CO)_2FeCO_2K$ solution¹⁴ [IR 1974, 1904 cm⁻¹ ν (CO)] was free of starting Cp*(CO)₂FeK and of contaminating Cp*(CO)₂FeH or [Cp*Fe(CO)₂]₂. To this flask was added a filtered solution of "Rh(cod)(OTf)",16 which was generated from a mixture of [Rh(cod)Cl]2 (139 mg, 0.282 mmol) and AgOTf (144 mg, 0.562 mmol) in 10 mL of THF (-42 °C). An IR spectrum of the dark red solution after stirring for 10 min (-78 °C) was consistent with formation of a 2:1 mixture of [Cp*(CO)₂Fe¹³CO₂Rh(cod)]₂ (2-C¹³) [1999, 1944 cm⁻¹, v(CO)] and [Cp*(CO)(¹³CO)FeCO₂-Rh(cod)]₂ (**2a-C¹³**) [1983, 1913 cm⁻¹, ν (CO)]. The THF was evaporated, the remaining dark red residue was extracted with hexane (3 \times 5 mL), and the combined extracts were evaporated. The resulting 60 mg of a dark red brown powder contained a 1:1:0.25:0.25 mixture of 2-C¹³, 2a-C¹³, Cp*2-Fe₂(CO)₂(¹³CO)₂, and Cp*₂Fe₂(CO)₄, as determined by IR and ¹H NMR integration. IR spectral absorptions in the metallocarboxylate region appeared as broad envelopes 1475-1415 and 1255-1210 cm⁻¹.


Attempts at purifying **2** by chromatography and by crystallization (hexane, acetonitrile, THF/hexane, toluene/hexane, ether/hexane, and CH_2Cl_2 /hexane) invariably enriched the mixtures in $[Cp^*(CO)_2Fe]_2$.

Synthesis of $[(\eta^5-C_5Me_5)(CO)_2FeCO_2Rh(nbd)]_2$ (4) and of [(η⁵- C₅Me₅)(CO)₂Fe¹³CO₂Rh(nbd)]₂ (4-C¹³). [Rh(nbd)-Cl]₂ (115 mg, 0.25 mmol) in 10 mL of THF at -42 °C was treated with AgOTf (128 mg, 0.50 mmol). After 20 min, the yellow suspension of "Rh(nbd)(OTf)"16 was filtered and transferred to a THF solution of Cp*(CO)₂FeCO₂K (0.50 mmol, 10 mL) at -78° C. An infrared spectrum of the dark red solution (30 min) showed the presence of [Cp*(CO)₂FeCO₂Rh(nbd)]₂ (5) $[\nu(CO) 1998, 1943 \text{ cm}^{-1}]$ as the only Cp*(CO)₂Fe product. The THF was evaporated, the dark red residue was extracted with hexane (4 \times 30 mL), and the combined extracts were evaporated. A dark red powder (180 mg) remained that was identified as 4 (75% yield) along with <5% Cp*₂Fe₂(CO)₄. [Cp*(CO)₂FeCO₂Rh(nbd)]₂ (4): IR (THF) v(CO) 1998, 1943 cm⁻¹, ν_{asym} (OCO) 1466 (br, m), ν_{sym} (OCO) 1262 (m), 1229 (m) cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 3.95 (br m, 6H, =CH + $C_{5(6)}H$, 1.08 (mult, 2H, CH₂), 1.57 (s, 30H, C_5Me_5); ${}^{13}C{}^{1}H$ NMR (C₆D₆) δ 217.29 (FeCO₂), 212.82 (FeCO), 96.15 (C₅ Me₅), 59.46 (br, CH₂), 50.59 (=CH + $C_{5(6)}$ H), 9.78 (C_5Me_5).

Substitution of ¹³CO₂ in place of CO₂ in the above procedure afforded 170 mg of a dark red powder. An infrared spectrum of the product in THF showed a mixture consisting of a 2:1:0.25:0.25 ratio of [Cp*(CO)₂Fe¹³CO₂Rh(nbd)]₂ (**4-C¹³**), [Cp*(CO)(¹³CO)FeCO₂Rh(nbd)]₂ (**4a**-¹³C), Cp*₂Fe₂(CO)₄, and Cp*₂Fe₂(CO)₂(¹³CO)₂. IR (THF): **4-C¹³**, ν (CO) 1997, 1942 cm⁻¹, ν _{asym} (OCO) 1417 (br, m), ν _{sym} (OCO) 1246 (m), 1213 (m) cm⁻¹; **4a**-¹³C, ν (CO) 1983, 1912 cm⁻¹.

Results and Discussion

Treatment of the THF suspensions of the carbonyl salts $Cp^*Re(NO)(CO)_2BF_4$ or $Cp^*M(CO)_3PF_6$ with [Rh-(OH)(η^4 -cod)]₂ and 5 equiv of EtMe₂N in THF at 5 °C produced the bis(μ_3 -CO₂) complexes depicted in eq 1.

These red to red brown solids **1**–**3** were isolated after evaporating excess amine and carrying out multiple extractions using cold benzene. We quantitatively isolated the previously reported^{1a} Re₂Rh₂ bis(μ_3 -CO₂) complex **1** as a 1:1 mixture of diastereomers that was characterized by ¹H and ¹³C NMR spectroscopy. The analytically pure Fe₂Rh₂ and Ru₂Rh₂ products **2** and **3** were isolated in 67% and 91% yields, respectively. The reactions leading to and the workup procedures for **2** and **3** were conducted at 5 °C in order to minimize the

⁽¹⁶⁾ Aresta, M.; Quaranta, E.; Albinati, A. Organometallics 1993, 12, 2032.

compound ^a	ν (CO) (cm ⁻¹) ^b	$\nu_{\rm OCO(asym)}$ (cm ⁻¹)	$\nu_{\rm OCO(sym)}$ (cm ⁻¹)
$[Cp^{*}(CO)(NO)ReCO_{2}Rh(cod)]_{2}^{c} (1)$	1960 1694 (NO)	1459 (br, m)	1304 (w), 1260 (m)
[Cp*(CO) ₂ FeCO ₂ Rh(cod)] ₂ (2)	1999, 1944	1470 (br, m)	1262 (w), 1230 (m)
$[Cp^{*}(CO)_{2}Fe^{13}CO_{2}Rh(cod)]_{2}$ (2-C ¹³)	1998, 1943	$1475 - 1415^d$	$1255-1210^{d}$
$[Cp^{*}(CO)_{2}RuCO_{2}Rh(cod)]_{2} (3)$	2011 1952	1479 (sh, m) 1467 (m)	1317 (w), 1256 (m), 1249 (sh)
$[Cp^*(CO)_2FeCO_2Rh(nbd)]_2$ (4)	1998, 1943	1466 (br, m)	1262 (m), 1229 (m)
$[Cp^{*}(CO)_{2}Fe^{13}CO_{2}Rh(nbd)]_{2}^{e}$ (4-C ¹³)	1997, 1942	1417 (br, m)	1246 (m), 1213 (m)
$[Cp^{*}(CO)_{2}FeCO_{2}Rh(CO)_{2}]_{2}$ (5)	2008, 1956 2078, 2054, 2008	1435 (br, m)	1261 (m), 1229 (m)
$[Cp^{*}(CO)_{2}RuCO_{2}Rh(CO)_{2}]_{2}$ (6)	2020 s, 1964 s 2079 s, 2055 m, 2002 vs	1436 (br, m)	1318 (w), 1259 (m), 1244 (m)
$[Cp^*(CO)(NO)ReCO_2Rh(CO)_2]_2^c$	1969, 1707 (NO) 2078, 2054, 2003	1454 (br, m) 1428 (br, m)	1260 (sh), 1254 (m)

^{*a*} THF solutions. ^{*b*} ν (CO) relative intensities: s, strong, for Re, Fe, and Ru–CO and s-m, medium-strong for Rh–CO absorptions. Other relative intensities: m, medium; w, weak. ^{*c*} Reference 1. ^{*d*} Broad envelope due to 1:1 mixture of **2**⁻¹³**C** and [Cp*(CO)(¹³CO)FeCO₂Rh(cod)]₂ (**2a**-¹³**C**); ν (CO) bands 1983 and 1913 cm⁻¹. ^{*e*} Isolated as 2:1 mixture of **4**-**C**¹³ and [Cp*(CO)(¹³CO)FeCO₂Rh(nbd)]₂ (**4a**-¹³**C**); ν (CO) bands 1983 and 1913 cm⁻¹.

amount of dimeric $[Cp^*M(CO)_2]_2$ that forms. Attempts to further purify **2** or **3** by crystallization or chromatography invariably enriched these mixtures in $[Cp^*M-(CO)_2]_2$.

Once isolated, $[Cp^*(CO)_2FeCO_2Rh(cod)]_2$ (2) has a limited stability in benzene and THF solutions at room temperature. A 0.02 M solution in THF decomposed 15% over 2 h to give a darker brown solution containing $[Cp^*Fe(CO)_2]_2$ as the IR detectable product; its $t_{1/2} = 6$ h. ¹H NMR spectral monitoring of C₆D₆ solutions was consistent with 10% decomposition over 3 h to $[Cp^*Fe(CO)_2]_2$ as the only Cp*Fe species and a $t_{1/2} = 16$ h. $[Cp^*(CO)_2RuCO_2Rh(cod)]_2$ (3) is somewhat less stable. A 0.02 M solution of 2 in THF has a $t_{1/2}$ of 3 h, whereas in C₆D₆ 15% of 2 decomposed over 3 h, $t_{1/2} = 9$ h. In both solvents, $[Cp^*Ru(CO)_2]_2$ was the only Cp*Ru species detected by IR and ¹H NMR spectral monitoring, respectively.¹⁷

Structures for the Fe₂Rh₂ and Ru₂Rh₂ products **2** and **3** were inferred from their IR, ¹H, and ¹³C NMR spectra. The IR spectra are dominated with a pair of intense ν (CO) bands as well as medium-intensity metallocarboxylate ν_{OCO} absorptions, vide infra, between 1480 and 1230 cm⁻¹ (Table 1). ¹H and ¹³C NMR spectra for **2**, for example, exhibit single resonances for the CO, CO₂, and Cp* ligands. It was the NMR spectra of the cod ligands, however, that indicated the presence of the folded M₂Rh₂ structures illustrated.

¹H NMR spectra for **2** and **3** show the expected¹⁸ upfield progression of the COD vinyl, exo, and endo methylene absorptions. The presence of two resonances for each of the vinyl, exo-, and endo-CH₂ hydrogens are consistent with the low C_{2v} symmetry of **2** and **3**. This doubling of ¹H NMR resonances for ligated cod represents the presence of "inside and outside" cod protons (inside hydrogens are juxtaposed in the region between the two cod rings). The results of COSY NMR experiments with **2** further allowed us to identify the two spin systems, δ 4.40, 2.38, 1.62 and δ 4.24, 2.79, 1.67, which

correspond to "inside and outside" vinyl, exo-, and endomethylene protons, respectively. (Inside hydrogens on each ligated cod are in the region between the two rhodium centers; cf. eq 1.) Each endo-H couples to one exo-H and a vinyl-H, each exo-H couples to a vinyl-H and an endo-H, and the vinyl-H also couples to the other vinyl-H. In the absence of definitive results of nOe experiments, we could not assign these spins systems as inside or outside, however. The same symmetry constraints—inside and outside cod sites—are manifested in the ¹³C{¹H} NMR spectra of **2** and **3**, which show four cod resonances, two each for the vinyl and allylic carbons.

NMR spectra for **2** and **3** are less complex than the spectra for **1**,^{1a} which are complicated by the presence of the stereogenic rhenium centers and the attendant formation of a 1:1 diastereomeric mixture. The relative simplicity of the present NMR spectra for **2** and **3** nevertheless are consistent with the illustrated folded structures (crystallographically established for **1**). The number of observed NMR absorptions are inconsistent with **2** and **3** in solution having either a planar structure or with a chelated η^2 -O,O' Cp*(CO)₂FeCO₂Rh(cod) structure.¹⁹ Either structure would have half the number of NMR absorptions. In addition, any fluxional motion for **2** and **3** must be extremely slow with respect to the NMR time scale.²⁰

The synthetic procedure outlined in eq 1 was optimized for maximum isolated yields of 1-3 by working at 5 °C and by using a large excess of a volatile tertiary amine. We optimized the conversion of Cp*Fe(CO)₃PF₆

⁽¹⁷⁾ Solutions of $[Cp^*(CO)(NO)Re(CO_2)Rh(\eta^4-cod)]_2$ (1) are more stable than those of 2 and 3 at 25 °C. In benzene, 1 degraded over 2 d to $Cp^*(CO)(NO)ReC_6H_5$ (37%) and low concentrations of unidentified rhenium and rhodium residues. Solutions of 1 are more stable in ether and THF.¹

^{(18) (}a) Rodman, G. S.; Mann, K. R. *Inorg. Chem.* **1988**, *27*, 3338; *J. Organomet. Chem.* **1989**, *378*, 255. (b) Ciriano, M. A.; Perez-Torrente, J. J.; Oro, L. A. *J. Organomet. Chem.* **1993**, *445*, 267.

⁽¹⁹⁾ Monomeric bis(phosphine) rhodium(I) complexes bearing a chelating (η^2 -O, O') carboxylate ligand are known: Darensbourg, D. J.; Grotsch, G.; Wiegreffe, P.; Rheingold, A. L. *Inorg. Chem.* **1987**, *26*, 3827. Werner, H.; Schäfer, M.; Nürnberg, O.; Wolf, J. *Chem. Ber.* **1994**, *127*, 27. Schäfer, M.; Wolf, J.; Werner, H. *J. Organomet. Chem.* **1994**, *476*, 85. Kukla, F.; Werner, H. *Inorg. Chim. Acta* **1995**, *235*, 253. (20) One or more pathways for stereochemical nonrigidity are

⁽²⁰⁾ One or more pathways for stereochemical nonrigidity are available for folded structures analogous to 1-3.^{18,21} The ¹H NMR spectrum of $[CH_3CO_2Rh(cod)]_2$ at room temperature, for example, exhibits three broadened absorptions at room temperature for the cod ligand vinyl and exo- and endo-methylene hydrogens plus a sharp methyl singlet. Cooling the toluene- d_8 solution to 0 °C and recording the NMR spectrum resolves each of the three broadened absorptions into two sharp absorptions, while having no effect on the methyl singlet. This temperature dependency can be accounted for by a tub–tub ring flipping of the eight-member ring that interconverts inside and outside sites but not the exo and endo hydrogens. The ¹H NMR spectrum of **2** in toluene- d_8 solution is independent of temperature between +25 and -65 °C.

and $[Rh(OH)(cod)]_2$ to **2** using a variety of bases and reaction conditions. It is worth noting that, in the absence of base, $[Rh(OH)(cod)]_2$ converted up to 40% of the Cp*Fe(CO)_3PF₆ to **2** within 20 min at room temperature. Although this reaction consumed 60% of the Cp*Fe(CO)_3PF₆ within 6 h, the concentration of **2** then remained constant and the excess iron appeared as $[Cp*Fe(CO)_2]_2$. Carrying out the same reaction but in the presence of potassium hydride (1 equiv in THF at -20 °C) immediately consumed the Cp*Fe(CO)_3PF₆ and gave **2** (85% yield) contaminated with $[Cp*Fe(CO)_2]_2$.

Our best observation for the use of 1 equiv of an amine base corresponded to 2,6-lutidine at 5 °C. Under these conditions, lutidine converted 70% of the Cp*Fe-(CO)₃PF₆ plus [Rh(OH)(η^4 -COD)]₂ to **2** and less than 2% [Cp*Fe(CO)₂]₂ after 1 h. Samples of **2** prepared by this procedure tended to be thermally unstable at room temperature. Attempts to purify this product by chromatography or by crystallization (hexane, acetonitrile, THF/hexane, toluene/hexane, ether/hexane, and CH₂-Cl₂/hexane) invariably enriched the mixtures in [Cp*Fe (CO)₂Fe]₂. Moreover, excessive amounts of [Cp*Fe-(CO)₂]₂ were obtained upon scaling up this reaction.

When this reaction with lutidine as the base was performed at room temperature, IR spectral monitoring also indicated that a maximum of 70% of the Cp*Fe- $(CO)_3PF_6$ converted to **2** within 15 min. After 6 h, no further Cp*Fe(CO)_3PF_6 was consumed, but 15% of the **2** had degraded to $[Cp*Fe(CO)_2]_2$. Substitution of 1 equiv of Me₂EtN, Et₃N, or Pr_2 EtN for the lutidine converted at most 60% of the Cp*Fe(CO)_3PF_6 to **2** after 1 h.²² Thereafter, the remaining Cp*Fe(CO)_3PF_6 decreased by an additional 20% over 6 h as the of amount of **2** dropped to 45% yield commensurate with building up of $[Cp*Fe(CO)_2]_2$ (35% yield).

The use of amines in reaction 1 appears to involve equilibria analogous to that in eq 2. An excess of 5 equiv

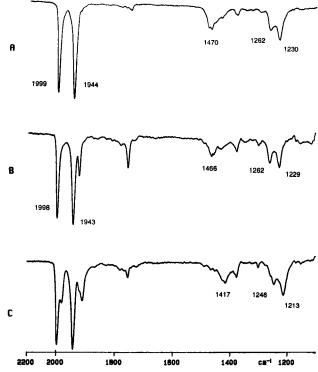
$$2 \text{ Cp*(CO)}_{2}\text{FeCO} + \text{PF}_{6}^{-} + [\text{Rh}(\text{OH})(\eta^{4}\text{-cod})]_{2} + 2 \text{ EtMe}_{2}\text{N} = 2 \text{ EtMe}_{2}\text{NH}^{+} \text{PF}_{6}^{-} + [\text{Cp*(CO)}_{2}\text{Fe}(\text{CO}_{2})\text{Rh}(\eta^{4}\text{-cod})]_{2} (2)$$

of lutidine transformed 85% of the Cp*Fe(CO)₃PF₆ to **2** in 15 min (IR spectral monitoring) while giving only traces of $[Cp*Fe(CO)_2]_2$. Higher initial concentrations of Me₂EtN of up to 20 equiv at room temperature quantitatively generated **2**; slow evaporation of solvent and excess amine (room temperature at 10^{-2} mm) shifted the equilibrium to the left. Readdition of the THF and recording of the IR spectrum then indicated the presence of a 70:30 mixture of **2** and Cp*Fe(CO)₃PF₆ plus traces of $[Cp^*Fe(CO)_2]_2$. The amine-promoted equilibrium leading to **2** also can be reversed with the presence of an excess of the amine salt conjugate acid. A THF solution of purified **2** upon treatment with 4 equiv of Bu₃NH⁺BF₄⁻ in THF solution at 5 °C afforded a 60:40 mixture of **2** and Cp*Fe(CO)₃BF₄ within 1 h. The presence of [RhOH(cod)]₂ also was noted by its IR ν (OH) absorption at 3506 cm⁻¹.

We also generated samples of **2** and its norbornadiene analogue $[Cp^*(CO)_2Fe(CO_2)Rh(\eta^4-nbd)]_2$ (**4**) by treating the metallocarboxylate $Cp^*(CO)_2FeCO_2K$ with a rhodium(I) η^4 -diene triflate, eq 3. The $Cp^*(CO)_2FeCO_2K$ was

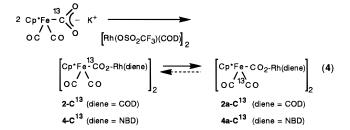
$$\begin{array}{c} Cp^{*}Fe^{-}K^{+} & \xrightarrow{CO_{2}} & Cp^{*}Fe^{-}C & \begin{pmatrix} O \\ - & K^{+} \\ OC & CO \end{pmatrix}^{*} \\ THF, -78^{\circ}C & OC & OC \end{pmatrix}^{*} & 1/2 \\ \begin{bmatrix} Rh(OTf)(COD) \\ 2 \\ CD^{*}Fe^{-}CO_{2}-Rh(diene) \\ OC & CO \end{bmatrix}_{2} \\ \begin{array}{c} (3) \\ 2 \\ (diene = COD) \\ 4 \\ (diene = NBD) \end{array}$$

produced from the metalate Cp*(CO)₂FeK and CO₂ in THF at -78 °C,^{13,14b} and the rhodium(I) triflates were obtained in situ from [RhCl(η^4 -diene)]₂ and silver triflate.¹⁶ Rhodium(I) triflates were necessary since the starting [RhCl(η^4 -diene)]₂ complexes proved to be unreactive toward Cp*(CO)₂FeCO₂K (-78 °C)—only [Cp*Fe(CO)₂]₂ was detected. In addition to evaluating an alternative synthesis of **2**, we wanted to obtain samples of C¹³-labeled materials [Cp*(CO)₂Fe(¹³CO₂)Rh(η^4 -diene)]₂ [diene = cod (**2**-¹³C) and nbd (**4**-¹³C)] in order to help assign the carboxylate IR spectral absorptions.


Treatment of Cp*(CO)₂FeCO₂K with either of the rhodium(I) η^4 -diene triflate intermediates (eq 3) quantitatively produced the Fe₂Rh₂ bis(μ_3 -CO₂) complexes **2** and **4**, as judged by IR spectral monitoring. Samples of **2**, although obtained in low overall yields after benzene and hexane extraction, contained 90–95% pure **2** (IR, ¹H, and ¹³C NMR spectroscopy), the remainder being the ubiquitous [Cp*Fe(CO)₂]₂. These samples, however, decomposed more readily in solution at room temperature [$t_{1/2}$ (THF) = 76 min] than samples of **2** procured using the first route.

The nbd-containing **4** proved to be even less stable in solution. All attempted workup procedures degraded it to $[Cp*Fe(CO)_2]_2$ as the only IR detectable species. The 75% isolated yield of **4** (with 5% $[Cp*Fe(CO)_2]_2$ contamination) reported in the Experimental Section represents our best result. Although an elemental analysis for **4** was not obtained, its IR and NMR spectral data closely resemble that for **2**.

We repeated the preparations of **2** and **4** using 1.1 equiv of 99% labeled ${}^{13}CO_2$. Under the conditions reported, attempts to generate $[Cp^*(CO)_2Fe^{13}CO_2Rh(cod)]_2$ (**2-C**¹³) instead provided 2:1 mixtures of **2-C**¹³ and $[Cp^*(CO)({}^{13}CO)FeCO_2Rh(cod)]_2$ (**2a-C**¹³). Alternatively, variable amounts of $\{Cp^*(CO)({}^{13}CO)FeCO_2[Rh(cod)]_2O_2^{-13}CFe(CO)_2Cp^*\}$ if formed would have been indistinguishable from mixtures of **2-C**¹³ and **2a-C**¹³. IR spectral monitoring of the cold reaction mixture nevertheless showed the expected ${}^{13}C$ label shift for the


^{(21) (}a) Sielisch, T.; Cowie, M. Organometallics **1988**, 7, 707. (c) Tejel, C.; Villoro, J. M.; Ciriano, M. A.; López, J. A.; Eguizábal, E.; Lahoz, F. J.; Bakhumutov, V. I.; Oro, L. A. Organometallics **1996**, *15*, 2967. (d) Balley, J. A.; Grundy, S. L.; Stobart, S. R. Organometallics **1990**, *9*, 536. Bushnell, G. W.; Fjeldsted, D. O. K.; Stobart, S. R.; Wang, J. Organometallics **1996**, *15*, 3785.

⁽²²⁾ Other bases tried included 1 equiv of $(CH_3)_3COK$ or 1,8bis(dimethylamino)naphthalene. The reaction between Rh(OH)(η^4 cod)]₂ and Cp*Fe(CO)₃PF₆ using the latter base was sluggish: After 2 h, 65% of the Cp*Fe(CO)₃PF₆ converted to **2**. Thereafter further product formation was offset by increasing production of $[Cp*Fe(CO)_2]_2$. Potassium *tert*-butoxide, on the other hand, rapidly gave **2** (even at -78 °C), but substantial concentrations of $[Cp*Fe(CO)_2]_2$ also formed. The reaction at room temperature provided a 45:55 mixture of **2** and $[Cp*Fe(CO)_2]_2$ within 15 min.

Figure 1. Infrared spectra in THF: (A) $[Cp^*(CO)_2FeCO_2-Rh(cod)]_2$ (**2**), isolated material from reaction between $[Rh-(OH)(\eta^{4}-cod)]_2$ and $Cp^*Fe(CO)_3PF_6$; (B) $[Cp^*(CO)_2FeCO_2-Rh(nbd)]_2$ (**4**), generated in THF from $Cp^*(CO)_2FeCO_2K$ and $[Rh(OSO_2CF_3)(\eta^{4}-cod)]_x$ } (peaks at 1924 and 1756 cm⁻¹ correspond to the $[Cp^*(CO)_2Fe]_2$ impurity); (C) $[Cp^*-(CO)_2Fe^{13}CO_2Rh(nbd)]_2$ (**4**-C¹³) admixed with $[Cp^*(CO)-(l^{3}CO)FeCO_2Rh(nbd)]_2$ (**4a**-l³C) (1983, 1912 cm⁻¹).

Cp*(CO)(¹³CO)Fe ν (CO) absorptions.²³ Further workup of the reaction was necessary in order to remove soluble triflate residues that absorbed in the carboxylate IR region. This workup—benzene or hexane extractions engendered further carboxylate—carbonyl label shuttle^{3,5a,23,24} that give a 1:1 mixture of **2-C¹³** and **2a-C¹³** along with labeled and unlabeled [Cp*Fe(CO)₂]₂. This label shuttle is presumed to be an equilibrium process, eq 4.

Similar attempts to generate $[Cp^*(CO)_2Fe^{13}CO_2Rh-(nbd)]_2$ (4-C¹³) reaction were more promising in that we obtained a 2:1 mixture of 4-C¹³ and 4a-C¹³ after workup. Figure 1 presents IR spectra for 4-C¹³ and 4a-C¹³ in THF solution (scans B and C); scan A correponds to a THF solution of 2 that was prepared by the first procedure.

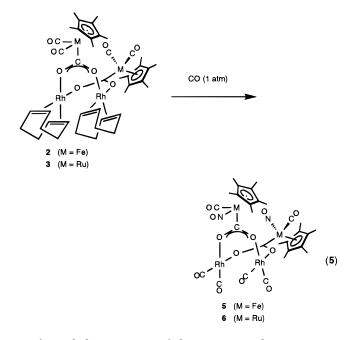
The carboxylate–carbonyl label shuttle observed in generating **2a-C¹³** and **4a-C¹³** originated from **2-C¹³** and **4-C¹³**, eq 4. An alternative prior equilibration of Cp*(CO)₂Fe¹³CO₂K and Cp*(¹³CO)(CO)FeCO₂K^{23a,24} followed by trapping with the rhodium(I) triflate was deemed less likely. The procedure reported here is identical to that previously used for cleanly transforming Cp*(CO)₂Fe¹³CO₂K and either tin chloride R₃SnCl (R = CH₃, Ph) to Cp*(CO)₂Fe¹³CO₂SnR₃.^{14b} The trimethyltin product subsequently underwent carboxylate–carbonyl label shuttle and competitive decarboxylation to give a mixture of Cp*(¹³CO)(CO)FeCO₂Sn-(CH₃)₃ and Cp*(CO)₂FeSn(CH₃)₃/Cp*(¹³CO)(CO)FeSn-(CH₃)₃.

Table 1 collects solution IR spectral data for the M₂- Rh_2 bis(μ_3 -CO₂) complexes that were prepared in this study. Assignment of the medium-intensity carboxylate vibrational modes $\nu_{OCO(asym)}$ and $\nu_{OCO(sym)}$ ^{3a} rests on comparison of these spectra with appropriate standards, typically [Cp₂M(CO)₄]₂ and [RhCl(diene)]₂, and on the label shift for the carboxylate bands for **4** and **4**-**C**¹³. Note that carboxylate IR spectral band assignments are collected as $v_{OCO(asym)}$ and $v_{OCO(sym)}$ regions in this table due to the existence of several bands that appear as two distinct groups. It is important to note that the number of these bands and their relative intensities-their overall appearance-is independent of the sample history, the temperature (-15 to +25 °C), and the method of preparation. Moreover, the IR spectra in the carboxylate region of the iron and ruthenium complexes **2–6** resemble that of **1**, which also exhibits the same spectrum in the solid state as a KBr pellet.

The appearance of several bands in the carboxylate region rather than one band each for the $\nu_{OCO(asym)}$ and $\nu_{OCO(sym)}$ vibrational modes is unexpected. Thus far, metallocarboxylates have been treated analogous to organic carboxylate ligands²⁵ in that their IR spectra were expected to exhibit single $\nu_{OCO(asym)}$ and $\nu_{OCO(sym)}$ bands, perhaps augmented by a δ bending vibrational mode.²⁶ This analogy clearly breaks down for the present M₂Rh₂ bis(μ_3 -CO₂) complexes. The rhodium(I) acetates [Rh(μ -CH₃CO₂)(cod)]₂¹¹ and [Rh(μ -CH₃CO₂)-(CO)₂]₂,^{27a,b} in contrast, exhibit just two acetate carboxylate absorptions, 1580, 1426 cm⁻¹ and 1570, 1436 cm⁻¹, respectively, in THF. These rhodium acetates

⁽²³⁾ For similar IR spectral $\nu(CO)$ assignments, see those for Cp-($^{13}CO)(CO)MCO_2ZrCICp_2$ [M = Fe, Ru], $^{4b.14a.23a}$ Cp*($^{13}CO)(CO)FeCO_2$ -SnMe3, 14b and Cp($^{13}CO)(CO)MCO_2M'$ [M = Fe, Ru; M' = Na, K]. 13 (Co)MCO_2M' [M = Fe, Ru; M' = Na, K]. 13 (24) (a) Lee, G. R.; Cooper, N. J. Organometallics **1985**, 4, 1467. (b) Lee, G. R.; Cooper, N. J. Organometallics **1985**, 4, 794.

^{(25) (}a) Deacon, G. B.; Phillips, R. J. Coord. Chem. Rev. 1980, 33,
227. Deacon, G. B.; Huber, F.; Phillips, R. J. Inorg. Chim. Acta 1985,
104, 41. (b) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, 1986; p 231.
(26) (a) Jegat, C.; Fouassier, M.; Tranquille, M.; Massetti, J.; Tommasi, I.; Aresta, M.; Ingold, F.; Dedieu, A. Inorg. Chem. 1993, 32,
1279. (b) Jegat, C.; Fouassier, M.; Massetti, J. Inorg. Chem. 1991, 30,
1521. (c) Jegat, C.; Fouassier, M.; Tranquille, M.; Massetti, J. Inorg. Chem. 1991, 30, 1529. (d) Massetti, J.; Tranquille, M. J. Phys. Chem.
1988, 92, 2177.


^{(27) (}a) Lawson, D. N.; Wilkinson, G. J. Chem. Soc. 1965, 1900. (b) See also, Pruchnik, F.; Wajda, K. Inorg. Chim. Acta 1980, 40, 203. Mieczynska, E.; Trzeciak, A. M.; Ziółkowski, J. J. J. Mol. Catal. 1993, 80, 189. Bianchi, F.; Gallazzi, M. C.; Pori, L.; Diversi, P. J. Organomet. Chem. 1980, 202, 99. (c) Esteruelas, M. A.; Lahuerta, O.; Modrego, J.; Nurnberg, O.; Oro, L. A.; Rodriguez, L.; Sola, E.; Werner, H. Organometallics 1993, 12, 266. Nagy-Magos, Z.; Vastag, S.; Heil, B.; Marko, L. J. Organomet. Chem. 1979, 171, 97.

<sup>I. J. Organomet. Chem. 1979, 171, 97.
(28) (a) Reis, A. H., Jr.; Willi, C.; Siegel, S.; Tani, B. Inorg. Chem.
1979, 18, 1859. (b) Sheldrick, W. S.; Günther, B. J. Organomet. Chem.
1989, 375, 233. (c) Mieczynska, E.; Trzeciak, A. M.; Ziólkowski, J. J. J. Mol. Catal. 1993, 80, 189. (d) Werner, H.; Poelsma, S.; Schneider, M. E.; Windmüller, B.; Barth, D. Chem. Ber. 1996, 129, 647. (e) Fornika, R.; Dinjus, E.; Görls, H.; Leitner, W. J. Organomet. Chem.
1996, 511, 145.</sup>

should have structures²⁸ similar to that of 1, which presumably resembles those of 2-6.

The presence of the carboxylate–carbonyl label shuttle for **2-C**¹³ and **4-C**¹³ allowed us to assign the ¹³C NMR resonances for the carbonyl and carboxylate ligands, which appear as two singlets near δ 213–215 and δ 217. Although ¹³C NMR spectra for these complexes exhibited intense resonances in both regions due to the presence of **2a-C**¹³ and **4a-C**¹³, the downfield singlet initially was up to twice as intense. Hence, we assign the downfield absorption to the carboxylate ligand. These carbonyl and carboxylate chemical shift assignments are consistent with those that we reported for the related tin esters Cp*(CO)₂Fe¹³CO₂SnR₃: R = Ph, δ 218 (CO₂), 216 (CO); R = Me, δ 216.5 (CO₂), 212 (CO).^{14b}

We further characterized 2 and 3 by carbonylation and by the reaction of 2 with Ph₃SnCl. One atmosphere of carbon monoxide promptly carbonylated the rhodium centers, eq 5. IR spectra of the reaction solutions

confirmed the presence of the iron or ruthenium metallocarboxylates and the rhodium dicarbonyl moiety; NMR spectra confirmed the release of 1,5-cycloctadiene and the presence of one set of Cp* resonances. The three IR ν_{CO} bands for the rhodium, moreover, closely resemble those observed for [Rh(μ -CH₃CO₂)(CO)₂]₂,¹¹ the analogous carbonylation product of $[Rh(\mu-CH_3CO_2)-(cod)]_2$.²⁷ Taken togeather, the spectral data for **5** and **6** are consistent with the illustrated "open-book" Rh₂ structures. Solutions of **5** and **6** in benzene or THF were unstable at room temperature, behavior reminiscent of $[Rh(\mu-CH_3CO_2)(CO)_2]_2$.^{11b}

The rapid reaction with 1 equiv of Ph_3SnCl (eq 6) conveniently derivatized **2** as the known FeSn ester.^{14b,15}

$$\begin{array}{c} Cp^{+}Fe^{-}CO_{2}-Rh(COD) \\ OC & CO \end{array} \right|_{2} + 2 Ph_{3}SnCl \longrightarrow \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ Cp^{+}Fe^{-}C \\ OC & CO \end{array} \right|_{2} + \left[Rh(Cl)(COD)\right]_{2} (6)$$

This FeSn ester retains the original CO_2 ligand. IR spectral monitoring of this reaction confirmed that it occurred quantitatively within 0.5 h, and subsequent workup afforded 60-70% isolated yields of the FeSn ester and [Rh(Cl)(cod)]₂.

Conclusions

In this article we document the synthesis of three M₂- $Rh_2 bis(\mu_3-CO_2)$ complexes $[Cp^*(CO)(NO)Re(CO_2)Rh(\eta^4-\eta^4)]$ cod)]₂ (1) and $[Cp^{*}(CO)_{2}MCO_{2}Rh(\eta^{4}-cod)]_{2}$, M = Fe (2) and Ru (3), from the reaction between $[Rh(OH)(\eta^4-cod)]_2$ and a carbonyl salt $Cp^*(L)(CO)_2M^+$ (L = CO, M = Fe, Ru; L = NO, M = Re) and a base. The resulting μ_3 -CO₂ ligands thus originate from condensation of a metal carbonyl plus a metal hydroxide with loss of a proton, a reaction with little precedent.⁶ The more common synthetic procedure³ of treating a metallocarboxylate [Cp*(CO)₂FeCO₂K or Cp*(CO)₂Fe¹³CO₂K] with a metal electrophile { $[Rh(OSO_2CF_3)(\eta^4\text{-cod})]_x$ } also was used to prepare 2 and $[Cp^*(CO)_2Fe^{13}CO_2Rh(diene)]_2$ [diene = cod (2-13C) and nbd (4-13C)]. These ¹³C-labeled compounds readily exchanged the ¹³C-label between the carboxylate and carbonyl ligands. The IR and NMR spectroscopy of these Re_2Rh_2 and Fe_2Rh_2 bis(μ_3 -CO₂) complexes are consonant with the presence of two μ_3 - $[\eta^1-C(M):\eta^1-O(Rh):\eta^1-O'(Rh')]$ carboxylate groups and an overall structure that resembles the Rh(I) carboxylates [(RCO₂)Rh(diene)]₂.

Acknowledgment. Support from the National Science Foundation, Grant CHE-9108591, is gratefully acknowledged.

OM970443K