Ruthenium-Catalyzed Tandem [2 + 2 + 2]/[4 + 2]Cycloaddition of 1,6-Heptadiyne with Norbornene

Yoshihiko Yamamoto, Hideaki Kitahara, Reiko Hattori, and Kenji Itoh*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan

Received January 27, 1998

Summary: The ruthenium(II)-catalyzed reaction of a substituted 1,6-heptadiyne with norbornene gave a tandem [2+2+2]/[4+2] cycloaddition product as a single stereoisomer along with a [2+2+2] cycloadduct. CpRu-(cod)Cl catalyzes both [2 + 2 + 2] cycloaddition of the heptadiyne and norbornene and subsequent [4 + 2]cycloaddition of the resultant cyclohexadiene and norbornene. The second [4 + 2] cycloaddition step was effectively improved by use of an indenvl complex, $(\eta^5 C_{9}H_{7}$ Ru(PPh₃)₂Cl, to afford the tandem adducts in moderate to good yields.

Transition-metal-catalyzed cyclotrimerization of alkynes is a viable route to highly substituted benzene derivatives.¹ Cyclotrimerization of 2 equiv of an alkyne with an alkene is also catalyzed by transition metals to produce cyclohexadiene,² which is a potential diene component for Diels-Alder reaction. Such Diels-Aldertype [4 + 2] cycloadditions are generally promoted by heat, pressure, or Lewis acid,³ and recently, several transition-metal catalysts were found to promote [4 + 2] cycloaddition of nonactivated Diels-Alder partners.¹ In this conjunction, we found that several organoruthenium complexes 1 having a planar auxiliary ligand promotes both [2 + 2 + 2] cycloaddition of 1,6-heptadiyne derivatives 2 with norbornene⁴ and subsequent [4+2] cycloaddition of the resultant cyclohexadiene 4 with the second norbornene molecule to afford an interesting polycyclic compound **3** as a single stereoisomer along with 4 (Scheme 1). Herein, we wish to report this novel tandem [2 + 2 + 2]/[4 + 2] cycloaddition

In the presence of CpRu(cod)Cl (1a) (10 mol %), malonate derivative divne 2a and 20 equiv of norbornene were refluxed in dichloromethane for 7 h. Separation of products by silica-gel chromatography gave an unexpected tandem [2 + 2 + 2]/[4 + 2]cycloadduct **3a** in 45% yield along with a [2 + 2 + 2]cycloadduct 4a (20%) (Table 1, entry 1). The structure of 3a was confirmed based on the following spectral features. The ¹H NMR spectrum and the parent peak of the mass spectrum $(m/z 396, M^+)$ indicate that the

Table 1. Cycloaddition of 1,6-Heptadiynes 2a-e with Norbornene

b

d

Series

	catalysts			isolated yields	
entry	(moľ %)	diynes	conditions ^a	3 (%)	4 (%)
1	1a (10)	2a	A, 7 h	45	20
2	1a (10) ^b	2a	A, 72 h	47	10
3	1b (10)	2a	A, 17 h	15	47
4	1c (10)	2a	A, 48 h	19	10
5	1d (10)	2a	A, 24 h	32	9
6	1d (10)	2a	B, 24 h	78	10
7	1d (5)	2a	B, 24 h	77	12
8	1d (5)	2b	B, 48 h	64	0
9	1d (5)	2c	B, 48 h	50	35
10	1d (5)	2d	B, 24 h	47	С
11	1d (5)	2e	B, 24 h	36	С

^a A: CH₂Cl₂, reflux. B: ClCH₂CH₂Cl, 40 °C. ^b NH₄PF₆ (20 mol %) was used. ^c Trace amount.

product is the 1:2 adduct of 2a and norbornene. In the ¹³C NMR spectrum, there are two sp² peaks (δ 172.5 and 131.3) and eight sp³ peaks (δ 57.0, 52.7, 41.1, 36.0, 29.5, 28.1, 22.0, and 12.8), and no coupling was observed between the bridgehead proton H_a and the endo-proton H_b in the ¹H NMR spectrum (Scheme 1). These observations support the highly symmetrical exo-exo structure of **3a**.⁵ Finally, a satisfactory elemental analysis was obtained.

The present method is an interesting route to the novel rigid polycyclic system **3a**, which is potentially a key component of functionalized artificial molecules.⁶

Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
 Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539.
 Carruthers, W. Cycloaddition Reactions in Organic Synthesis,

Tetrahedron Organic Chemistry Series; Pergamon Press: Oxford, 1990, Vol. 8.

⁽⁴⁾ For [2 + 2 + 2] cycloaddition of acetylene with norbornene, see: (a) Suzuki, H.; Itoh, K.; Ishii, Y.; Simon, K.; Ibers, J. A. *J. Am. Chem. Soc.* **1976**, *98*, 8494. (b) Brown, L. D.; Itoh, K.; Suzuki, H.; Hirai, K.; Ibers, J. A. *J. Am. Chem. Soc.* **1978**, *100*, 8232.

⁽⁵⁾ Meinwald, J.; Meinwald, Y. C.; Baker, T. N., III J. Am. Chem. Soc. 1963, 85, 2514.

To improve the selectivity for the formation of **3a**, reaction conditions were optimized as summarized in Table 1. A cationic system " $[CpRu]^+$ " (10 mol % of **1a** with 20 mol % of NH₄PF₆) improved the selectivity but the total yield was somewhat lower (entry 2). The product selectivity was reversed by use of Cp*Ru(cod)-Cl (**1b**), having a more electron donating but bulkier Cp* ligand than the Cp ligand (entry 3). In this case, the [2 + 2 + 2] cycloadduct **4a** became the major product (47%). This indicates that the steric bulk of the Cp* ligand results in the facile dissociation of coordinated **4a** prior to further [4 + 2] cycloaddition (vide infra). In addition, Mitsudo-type [2 + 2] cycloaddition between the remaining alkyne terminus of a self-cyclodimerization product **5** and norbornene gave **6** in 21% yield.⁷

The corresponding phosphine analogue CpRu(PPh₃)₂-Cl (1c) was less reactive and gave poor results (entry 4). Thus, cod is superior to PPh₃ as a leaving ligand. In contrast, an indenyl analogue of the above phosphine complex, $(\eta^5-C_9H_7)Ru(PPh_3)_2Cl$ (1d), showed better reactivity and selectivity favorable to the desired tandem adduct **3a** (entry 5). The best result was found by use of 1d in 1,2-dichloroethane at 40 °C, and 3a was selectively obtained in 78% yield (entry 6). A reduced amount of the catalyst (5 mol %) gave a similar result (entry 7). In general, the η^5 -indenyl complex is known to be more active than the corresponding cyclopentadienyl analogues due to the associative ligand substitution induced by the η^5 to η^3 slippage of the indenvel ligand,⁸ however, it is noteworthy that the η^5 -indenyl ligand combined with PPh₃ improved not only the yield but also the product ratio favoring 3a.

Having optimized the reaction conditions, a series of 1,6-heptadiynes shown in Scheme 1 were subjected to the tandem cycloaddition. For cyclohexanedione derivative divne 2b (entry 8) and malononitrile derivative divne 2c (entry 9), a longer reaction time (48 h) was required to complete the reaction. Thus, 2b gave exclusively the corresponding tandem adduct **3b** in 64% yield, while a considerable amount of the [2 + 2 + 2] adduct **4c** (35%) was also formed from **2c** together with the tandem adduct 3c (50%). In contrast to divnes having a tertiary center at the 4-position, a parent 1,6-heptadiyne with no substituent gave only trace amounts of cycloadducts under the same reaction conditions. Furthermore, diynes having a heteroatom at the 4-position 2d and 2e also gave pyrroline derivative 3d and dihydrofurane derivative **3e**⁹ selectively in 47% and 36% yields, respectively (entries 10 and 11). In sharp contrast to the above results, reactions with norbornadiene, which are expected to give a polymer, or benzonorbornadiene gave no cycloaddition product at all. In the former case, 97% of starting diyne **2a** was recovered intact, and in the latter, dimer **5** and trimer **7** were obtained in 77% and 17% yields, respectively.

A plausible mechanism of the tandem cycloaddition is outlined for the representative cyclopentadienyl complex 1a in Scheme 2. The catalytic cycle starts with the formation of ruthenacyclopentadiene 8 from 1a and 1,6-heptadiyne 2. Norbornene is inserted into the ruthenium-carbon bond of 8 in order to minimize the steric repulsion between the Cp ligand and the methylene bridge of norbornene ($8 \rightarrow 9 \rightarrow 10$). Reductive elimination of cyclohexadiene gives the η^4 -cyclohexadiene complex 11. In the case where the bulkier Cp* ligand is present as in 1b, the cyclohexadiene ligand dissociation was facilitated to liberate 4a mainly. It is noteworthy that the expected [4+2] adduct **3a** was not formed at all by refluxing the isolated 4a, norbornene, and **1a** (10 mol %) in CH_2Cl_2 for 24 h or stirring **4a**, norbornene, and 1d (20 mol %) in dichloroethane at 40 $^{\circ}$ C for 24 h. Thus, the [4 + 2] cycloaddition must take place between coordinated cyclohexadiene 11 and a norbornene molecule, which inserts into the rutheniumcarbon bond in η^2 -cyclohexadiene complex **12a** (**11** \rightarrow $12a \rightarrow 13 \rightarrow 3$). Alternatively, the ligand slippage of the indenyl ligand, $\eta^5 \rightarrow \eta^3$, promotes coordination of the norbornene to result in the [4 + 2] cycloaddition (Scheme 2, 12b). Recently, Rh and Ni have been found to catalyze the intramolecular [4 + 2] cycloaddition between dienes and dienophiles with an electronically similar nature, which occurs only under vigorous conditions without catalysts.¹ As for intermolecular versions of [4 \pm 2] cycloaddition, Ti-, 10 Fe-, 11 and Rh- 12 catalyzed reactions of dienes with acetylenes were reported in addition to classical Ni catalysis of butadiene dimerization.¹ If our mechanism shown in Scheme 2 is true, the present tandem reaction would be the first example of intermolecular [4 + 2] cycloaddition between a Rucoordinated nonactivated diene and a strained alkene, norbornene.

In summary, we have found that the ruthenium(II)catalyzed reaction of 1,6-heptadiyne and norbornene

^{(6) (}a) Warrener, R. N.; Wang, S.; Russell, R. A. *Tetrahedron* **1997**, *53*, 3975. (b) Warrener, R. N.; Schultz, A. C.; Houghton, M. A.; Butler, D. N. *Tetrahedron* **1997**, *53*, 3991. (c) Warrener, R. N.; Russell, R. A.; Margetic, D. Synlett **1997**, 38. (d) Warrener, R. N.; Wang, S.; Butler, D. N.; Russell, R. A. *Synlett* **1997**, 44. (e) Warrener, R. N.; Wang, S.; Russell, R. A.; Gunter, M. J. *Synlett* **1997**, 47.

⁽⁷⁾ For CpRu(cod)Cl-catalyzed [2 + 2] cycloaddition of an acetylene with norbornene, see: Mitsudo, T.; Naruse, H.; Kondo, T.; Ozaki, Y.; Watanabe, Y. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 580.

^{(8) (}a) Rerek, M. E.; Basolo, F. J. Am. Chem. Soc. 1984, 106, 5908.
(b) Bönnemann, H. Angew. Chem., Int. Ed. Engl. 1985, 24, 248. (c) Borrini, A.; Diversi, P.; Ingrosso, G.; Lucherini, A.; Serra, G. J. Mol. Catal. 1985, 30, 181. (d) Trost, B. M.; Kulawiec, R. J. J. Am. Chem. Soc. 1993, 115, 2027. (e) Gamasa, M. P.; Gimeno, J.; Gonzalez-Bernardo, C.; Martín-Vaca, B. M.; Monti, D.; Bassetti, M. Organome-tallics 1996, 15, 302.

⁽⁹⁾ The lower yield of **3e** may be ascribable to its thermal unstability. The isolated **3e** slowly decomposed even at -15 °C.

⁽¹⁰⁾ Mach, K.; Antropiusová, H.; Petrusová, L.; Hanus, T. V.; Sedmera, P.; Schraml, J. *J. Organomet. Chem.* **1985**, *289*, 331.

^{(11) (}a) Carbonaro, A.; Greco, A.; Dall'Asta, G. J. Org. Chem. 1968, 33, 3948. (b) Genet, J. P.; Ficini, J. Tetrahedrom Lett. 1979, 1499. (c) tom Dieck, H.; Diercks, R. Angew. Chem., Int. Ed. Engl. 1983, 22, 778. (d) Bakhtiar, R.; Drader, J. J.; Jacobson, D. B. J. Am. Chem. Soc. 1992, 114, 8304.

⁽¹²⁾ Matsuda, I.; Shibata, M.; Sato, S.; Izumi, Y. Tetrahedron Lett. 1979, 28, 1499.

gave rise to the tandem [2 + 2 + 2]/[4 + 2] cycloadduct as a single stereoisomer along with the simple [2 + 2 + 2] cycloadduct. As a catalyst, CpRu(cod)Cl, in particular, the η^5 -indenylruthenium complex (η^5 -C₉H₇)Ru(PPh₃)₂-Cl, gave the tandem adduct as the major product, and bulkier Cp*Ru(cod)Cl suppressed the second [4 + 2]cycloaddition step to afford the [2 + 2 + 2] adduct as the major product. **Acknowledgment.** We gratefully acknowledge financial support (Grant No. 09305059) from the Ministry of Education, Science, Sports, and Culture, Japan.

Supporting Information Available: Experimental procedures and spectral data for selected compounds (3 pages). Ordering information is given on any current masthead page. OM980048+