Unusual Degradation of the Rhenium Silyl Ester Cp(NO)(PPh₃)ReCO₂SiMe₂Ph to the Bimetallic μ-η¹(C(Re)):η¹(O,O'(Re)) Carbon Dioxide Complex Cp(NO)(PPh₃)ReCO₂Re(NO)(CO)(PPh₃)OSiMe₂Ph

Stephen M. Tetrick, Marisa DiBiase Cavanaugh, Fook S. Tham, and Alan R. Cutler*

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180

Received September 22, 1997

Summary: The silyl esters $Cp(PPh_3)(NO)ReCO_2SiR_3$ (**2**) are produced from treatment of $Cp(PPh_3)(NO)ReCOBF_4$ with the silanolates R_3SiONa ($R_3Si = PhMe_2Si$, Et_3Si) in CH_2Cl_2 (0 °C) or of $Cp(PPh_3)(NO)ReCO_2K$ with R_3 -SiCl in THF. Upon handling, **2** degraded to the bimetallocarboxylates $Cp(PPh_3)(NO)ReCO_2Re(CO)(NO)-$ (PPh_3)($OSiR_3$) (**3**), one of which ($SiR_3 = SiMe_2Ph$) was characterized by X-ray crystallography as a μ - $\eta^1(C(Re_1))$: $\eta^2(O, O'(Re_2))$ bimetallocarboxylate.

Several tetrametallic bis(carbon dioxide) complexes $[(\eta^{5}-C_{5}R_{5})(L)(L')M(CO_{2})Rh(\eta^{4}-COD)]_{2}(C_{5}R_{5}=Cp^{*}(R=$ Me), M = Fe, Ru (L, L' = CO) and Re (L = NO, L' = CO); $C_5R_5 = Cp$ (R = H), M = Re (L = NO, L' = PPh₃) (1)) recently have been reported.¹ An X-ray crystallographic structure determination of [Cp*(CO)(NO)Re- $(CO_2)Rh(\eta^4$ -COD)]₂ and spectroscopic data for the others established a $M_2Rh_2(\mu_3-CO_2)_2$ structural motif in which each μ_3 - $\eta^1(C(Re))$: $\eta^1(O(Rh))$: $\eta^1(O'(Rh'))$ carboxylate ligand bridges two Rh^I (η^4 -COD) moieties.^{1a} The resulting "open-book" structure resembles that of the catalytically active Rh(I) carboxylates [(RCO₂)Rh(diene)]₂.² In preliminary studies on the reactions of hydrosilanes with **1**, the most stable and least reactive of the $M_2Rh_2(\mu_3 - \mu_3)$ CO_2 complexes, we have observed that the initially formed rhenium silyl esters Cp(PPh₃)(NO)ReCO₂SiR₃ experience an unexpected reaction chemistry.

Treatment of **1** with 1.1-8.0 equiv of PhMe₂SiH in C₆D₆ at room temperature produced complex reaction mixtures in which the predominant Cp(PPh₃)(NO)RecO₂SiMe₂Ph (**2a**; 75% yield with 4.0 equiv of PhMe₂SiH) (Scheme 1). The chemistry at the rhodium appears to be dominated by the formation and subsequent reactions of (COD)Rh(H)₂SiMe₂Ph.^{3,4} In the presence of only 1.1-2.0 equiv of PhMe₂SiH with respect to **1**, however, the initially formed **2a** degraded to another

compound, **3a** (28% conversion, 1 h for 2.0 equiv of silane). IR and ¹H, ¹³C, ³¹P, and ²⁹Si NMR spectral data for **3a** indicated the presence of two rhenium centers that are ligated by a total of one Cp, two PPh₃, two NO, one terminal CO, and one OSiMe₂Ph.⁵ To further characterize **3a** and to document its origin, we independently synthesized its silyl ester precursor **2a** as well as Cp(PPh₃)(NO)ReCO₂SiEt₃ (**2b**) using synthetic procedures that were reported for several examples of Cp*-(CO)(NO)ReCO₂SiR₃.⁶

Treatment of Gladysz's Cp(PPh₃)(NO)ReCO₂K⁷ with PhMe₂SiCl or Et₃SiCl quantitatively generated **2a** and **2b**, as judged by IR spectral monitoring (Scheme 2).⁵ Evaporation of solvent followed by either concentration of ether extracts and precipitation (-78 °C) or evaporation using a Schlenk line produced varying mixtures of **2** and **3** (15–50% **3**) as yellow solids. Similar results were obtained for the reaction of Cp(PPh₃)(NO)-(CO)ReBF₄ and 1.1 equiv of NaOSiMe₂Ph in CH₂Cl₂ (0 °C). This degradation of **2** to **3** is attributed to the

^{(1) (}a) Tetrick, S. M.; Tham, F. S.; Cutler, A. R. *J. Am. Chem. Soc.* **1997**, *119*, 6193. (b) Tetrick, S. M.; Xu, C.; Pinkes, J. R.; Tham, F. S.; Cutler, A. R. *Organometallics*, in press.

^{(2) (}a) Rh(I)-catalyzed hydrogenation of CO₂ to formic acid: Leitner,
W. Angew. Chem., Int. Ed. Engl. 1995, 34, 2207. Fornika, R.; Dinjus,
E.; Görls, H.; Leitner, W. J. Organomet. Chem. 1996, 511, 145. (b)
Hydroformylation catalysis: Süss-Fink, G.; Soulie, J.-M.; Rheinwald,
G.; Stoeckli-Evans, H.; Sasaki, Y. Organometallics 1996, 15, 3416. (c)
Mieczynska, E.; Trzeciak, A. M.; Ziólkowski, J. J.; Lis, T. J. Chem.
Soc., Dalton Trans. 1995, 105.

⁽³⁾ Marciniec, B.; Krzyzanowski, P. J. Organomet. Chem. 1995, 493, 261.

⁽⁴⁾ Cavanaugh, M. D.; Tetrick, S. M.; Cutler, A. R., manuscript in preparation.

⁽⁵⁾ Selected spectroscopic data are as follows: Cp(PPh₃)(NO)ReCO₂-SiMe₂Ph (**2a**): IR (CH₂Cl₂) ν (NO) 1682, ν (C=O) 1563 (br) cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 7.6–7.0 (Ph), 4.81 (Cp), 0.48, 0.34 (SiMe₂); ¹³C{¹H} NMR (C₆D₆) δ 140–130 (Ph), 92.42 (Cp), 0.52, –0.073 (SiMe₂); ¹³P{¹H} NMR (C₆D₆) δ 19.83; ²⁹Si{¹H}, DEPT} NMR (C₆D₆) δ 1.54. Cp(PPh₃)(NO)ReCO₂Re(CO)(NO)(PPh₃)(OSiMe₂Ph) (**3a**): IR (THF) ν (CO) 1972, ν (NO) 1703, 1683, ν (OCO)_{asym} 1287, ν (OCO)_{asym} 1248 cm⁻¹; ¹H NMR δ 8.0–7.0 (Ph), 4.86 (Cp, major), 0.68, 0.41 (SiMe₂), 4.79 (Cp, major), 0.47, 0.34 (SiMe₂); ¹³C{¹H} NMR δ 145–130 (Ph), 93.16 (Cp, major), 3.25 (SiMe₂, 2 degenerate absorptions by HMQC), 92.72 (Cp, minor), 3.41, 2.85 (SiMe₂, verified by HMQC); ³¹P{¹H} NMR (C₆D₆) δ 21.51, 15.28 (major), 20.41, 17.69 (minor); ²⁹Si{¹H} DEPT} NMR δ –4.01 (major), -5.28 (minor).

⁽⁶⁾ Cavanaugh, M. D.; Tetrick, S. M.; Masi, C. J.; Cutler, A. R. J. Organomet. Chem. 1997, 538, 41.

presence of traces of moisture (vide infra), which is in contrast with the relative ease of handling Cp*(CO)-(NO)ReCO₂SiR₃.⁶ By silanizing all glassware used, we procured 10:1 mixtures of **2** (30–48% NMR spectroscopic yields) and **3**. Compounds **2a** and **2b** displayed single ³¹P and ²⁹Si NMR spectral resonances; their ¹H and ¹³C NMR spectra revealed single Cp resonances plus two absorptions each for the diastereotopic methyl (**2a**) or methylene hydrogens (**2b**).⁵ The presence of the silyl ester ligand on these products is consistent with their medium-intensity IR ν (C=O) absorptions at 1563 cm⁻¹ (CH₂Cl₂), analogous to the 1593 cm⁻¹ (THF) acyl absorption for Cp(PPh₃)(NO)ReCO₂CH₃.⁸

Compounds 3a and 3b also were synthesized independently by combining Cp(PPh₃)(NO)ReCO₂K and Cp-(PPh₃)(NO)(CO)ReBF4^{8b} in THF, followed by treatment with PhMe₂SiOH or Et₃SiOH,⁶ respectively (Scheme 3). The resulting mustard yellow solids after recrystallization from benzene-pentane (1:3) were characterized as analytically pure Cp(PPh₃)(NO)ReCO₂Re(CO)(NO)- $(PPh_3)(OSiR_3)$ (SiR₃ = SiMe₂Ph (**3a**), SiEt₃ (**3b**)), in 78-80% yields. Both 3a and 3b crystallize or precipitate as a mixture of two diastereomers in 1:1 to 1:2 ratios, as established by multinuclear NMR spectroscopy. The diastereomeric ratio of these isolated complexes was invariant with time and handling; exchange between the diastereomers for 3a was not detected by ¹H NMR EXSY experiments. IR spectra of these compounds exhibit medium-intensity $\nu(OCO)_{asym}$ and $\nu(OCO)_{sym}$ bands at 1287 and 1248 cm⁻¹ (THF), albeit with an very small $\Delta \nu = \nu (OCO)_{asym} - \nu (OCO)_{sym}$ value of 39 cm⁻¹.9

An X-ray crystallographic structure determination of **3a** confirmed the presence of the Re₂(μ_2 - η^3 -CO₂) bridging carboxylate (Figure 1).¹⁰ Re(1) on the pseudooctahedral

Figure 1. Ball and stick view of $Cp(PPh_3)(NO)ReCO_2Re-(CO)(NO)(PPh_3)(SiMe_2Ph) ($ **3a**). Selected interatomic distances (Å) and angles (deg): <math>Re(1)-C(1) = 2.063(5), C(1)-O(1) = 1.306(5), C(1)-O(2) = 1.302(5), Re(2)-O(1) = 2.153(3), Re(2)-O(2) = 2.104(3), Re(2)-O(3) = 1.979(3), O(3)-Si = 1.609(4); O(1)-C(1)-O(2) = 112.0(4), O(1)-Re-(2)-O(2) = 61.04(13), O(3)-Re(2)-N(2) = 178.1(2), C(2)-Re(2)-P(2) = 92.9(2), O(2)-Re(2)-P(2) = 97.60(10), C(2)-Re(2)-O(1) = 107.8(2), C(1)-Re(1)-P(1) = 92.05(13), N(1)-Re(1)-C(1) = 93.5(2), P(1)-Re(1)-Re(2)-N(2) = -12.32(15), Re(1)-O(1)-O(2) and Re(2)-O(1)-O(2) = 9.2(1), Re(2)-O(1)-O(2) and C(1)-O(1)-O(2) = 6.7(7), Re(1)-O(1)-O(2) and C(1)-O(1)-O(2) = 2.5(6).

Cp(PPh₃)(NO)Re moiety¹¹ connects to the carboxylate carbon, and the carboxylate oxygens chelate Re(2) in a facial array with the silanolate ligand. Remaining ligands on Re(2) include PPh₃ and CO trans to the metallocarboxylate O's and NO trans to the silanolate. The μ - η^1 (C(Re₁)): η^2 (O,O'(Re₂)) carboxylate ligand on **3** has Re-C = 2.063(5) Å, which, although relatively short for a μ_2 - η^3 -CO₂ bimetallocarboxylate,^{7.9} is reasonable for an acyl complex Cp(PPh₃)(NO)ReCOR.^{11b} The sym-

⁽⁷⁾ Senn, D. R.; Emerson, K.; Larsen, R. D.; Gladysz, J. A. Inorg. Chem. 1987, 26, 2737.

^{(8) (}a) Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics **1982**, 1, 1204. (b) Agbossou, F.; O'Connor, E. J.; Garner, C. M.; Méndez, N. Q.; Fernández, J. M.; Patton, A. T.; Ramsden, J. A.; Gladysz, J. A. *Inorg. Synth.* **1992**, 29, 210.

⁽⁹⁾ Gibson, D. H. *Chem. Rev.* **1996**, *96*, 2063.

metrical chelation of the carboxylate oxygens to Re(2) resembles that observed in Gibson's Cp*(CO)(NO)Re-(CO₂)Re(PPh₃)(CO)₃,¹² although unsymmetrical chela-tion was noted for Gladysz's Cp(PPh₃)(NO)ReCO₂-SnPh₃.⁷ Solid-state structural data also have been reported for several examples of Cp*(CO)(NO)Re- $(CO_2)ML_x$ ($L_x = Mo(CO)_2Cp$, $ZrClCp_2$, WCp_2^+ , $SnMe_3$, and SnPh₃) as well as for Cp(CO)(PPh₃)Fe(CO₂)Re(CO)₃- $[P(OEt_3)].^9$

A plausible pathway for the synthesis of **3** from Cp-(PPh₃)(NO)ReCO₂K and Cp(PPh₃)(NO)(CO)ReBF₄ also appears in Scheme 3. The key intermediate postulated in this reaction is **4**, which results from an $\eta^5 - \eta^1$ Cp ring shift¹³ commensurate with O,O'-chelation of the rhenium carboxylate group. Examples of Cp ligand slippage have been documented for other Re(I) compounds.^{13b-g} The silanol present presumably traps **4**, with or without ionization of the η^1 -Cp as Cp⁻, ^{13c} and provides **3** plus C_5H_6 (which also was detected, 85%). We have no information at present on the (nonobligatory) intermediacy of the metalloanhydride 5.14 A similar Fp-based metalloanhydride was postulated by Cooper and Lee during their studies on the reaction between Cp(CO)₂FeCO₂Na and FpCOBF₄.^{14d}

The rearrangement of 2 to 3 also could entail transience of intermediates 4 and 5 (Scheme 4). This rearrangement could be initiated by adventitious water, hydrolyzing **2** to the rhenium acid $Cp(PPh_3)(NO)Re$ -CO₂H (6)¹⁵ and silanol.¹⁶ Subsequent addition of 6 to **2**, perhaps via the depicted tetrahedral intermediate **7**,¹⁷ then provides 5 plus more silanol. Rearrangement of 5

 depicted was observed in the crystal examined.
 (11) (a) Georgiou, S.; Gladysz, J. A. *Tetrahedron* 1986, 42, 1109. (b)
 Bodner, G. S.; Patton, A. T.; Smith, D. E.; Georgiou, S.; Tam, W.; Wong, W.-K.; Strouse, C. E.; Gladysz, J. A. Organometallics 1987, 6, 1954 (c) Blackburn, B. K.; Davies, S. G.; Whittaker, M. In Stereochemistry of Organometallic and Inorganic Compounds; Bernal, I., Ed.; Elsevier: Amsterdam, 1989; Vol. 3, Chapter 2.

 (12) Gibson, D. H.; Mehta, J. M.; Ming, Y.; Richardson, J. F.;
 Mashuta, M. S. *Organometallics* **1994**, *13*, 1070.
 (13) (a) O'Connor, J. M.; Casey, C. P. *Chem. Rev.* **1987**, *87*, 307. (b)
 Casey, C. P.; O'Connor, J. M.; Jones, W. D.; Haller, K. J. Organome-Casey, C. P.; O'Connor, J. M.; Jones, W. D.; Haller, K. J. Organome-tallics **1983**, *2*, 535. (c) Casey, C. P.; O'Connor, J. M.; Haller, K. J. J. Am. Chem. Soc. **1985**, 107, 1241. (d) Young, K. M.; Miller, T. M.; Wrighton, M. S. J. Am. Chem. Soc. **1990**, 112, 1529. (e) Hubbard, J. L.; Kimball, K. L.; Burns, R. M.; Sum, V. Inorg. Chem. **1992**, *31*, 1, 4224. (f) Casey, C. P.; Widenhoefer, R. A.; O'Connor, J. M. J. Organomet. Chem. **1992**, 428, 99. (g) Dahlenburg, L.; Hillman, G.; Markus, E.; Moll, M.; Knoch, F. J. Organomet. Chem. **1996**, 525, 115. (14) Considerably more evidence is available for the transience of

(14) Considerably more evidence is available for the transience of $\eta^2(\dot{C},\dot{C}')$ metalloanhydride intermediates involving a single metal center, $L_xMC(O)OC(O)$, $^{14a-c}$ as oppposed to those involving a bridging center, L₄MC(U)OC(U),^{14a} 'as opposed to those involving a bridging metalloanhydride ligand:^{14d} (a) Lee, G. R.; Cooper, N. J. *Organome-tallics* **1985**, *4*, 794. (b) Cutler, A. R.; Hanna, P. K.; Vites, J. C. *Chem. Rev.* **1988**, *88*, 1363. (c) Pinkes, J. R.; Masi, C. J.; Chiulli, R.; Steffey, B. D.; Cutler, A. R. *Inorg. Chem.* **1997**, *36*, 70. (d) Lee, G. R.; Cooper, N. L. *Organometallics* **1095**, *4*, 1465. N. J. Organometallics 1985, 4, 1467.

to 4 followed by "silanolysis" yields the observed 3. In support of this mechanism, treatment of 2b with either 1.0 equiv of 6 or 0.5 equiv of water gave 93% 3b, as quantified by ¹H NMR spectroscopy.¹⁸

Most examples of bimetallic μ -CO₂ complexes have resulted from metalation of either metal-CO₂ adducts or metallocarboxylic acids with the appropriate metal electrophile, usually under carefully controlled reaction conditions.⁹ The clean transformation of rhenium silvl esters **2** to the Re₂(μ_2 - η^3 -CO₂) compounds **3**, in contrast, represents a mechanistically unique example of degradation of a metallocarboxylic derivative into a stable bimetallic μ -CO₂ complex.¹⁹ Studies in progress address (a) the metallocarboxylate ligand promoted η^{5} n^1 Cp ring slippage and (b) the intermediacy of the putative metalloanhydride 5 during the transformation of 2 to 3.

Acknowledgment. Support from the Department of Energy, Office of Basic Energy Science, and from the National Science Foundation (Grant CHE-9108591) is gratefully acknowledged.

Supporting Information Available: Text giving spectroscopic and characterization data for all compounds and tables of crystallographic parameters, hydrogen atom parameters, thermal parameters, and bond distances and angles and figures giving additional views of 3a (22 pages). Ordering information is given on any current masthead page.

OM970831M

(17) In the transformation of Cp(PPh₃)(NO)ReCO₂CH₃ to other acyl complexes Cp(PPh₃)(NO)ReCOR, stronger nucleophiles (e.g., RMgCl) presumably add to a rhenium alkoxycarbonyl ligand via tetrahedral Intermediates. (a) Buhro, W. E.; Wong, A.; Merrifield, J. H.; Lin, G.-Y.; Constable, A. C.; Gladysz, J. A. *Organometallics* **1983**, *2*, 1852. (18) The frequently discussed mechanism for transesterification of

metallocarboxylic acids and esters L_xMCO₂R involves metal-assisted ionization¹⁹ to L_xMCO^+ and then association of the exchanging alcohol, an overall S_N1 process.^{16d,e} We disfavor involvement of this pathway in the conversion of $Cp(PPh_3)(NO)ReCO_2H$ and **2** to **3** for two reasons. (1) Ionization of 2 or Cp(PPh₃)(NO)ReCO₂H to Cp(PPh₃)(NO)ReCO and $OSiR_3^-$ or OH^- , respectively, was not detected in dry THF, CH_2^- , Cl_2 , or dimethylformamide. (2) No reaction took place between Cp-(PPh₃)(NO)ReCO₂H and Cp(PPh₃)(NO)ReCO⁺ in the presence of 1 equiv of lutidine (which does not independently react with Cp(PPh₃)-(NO)ReCO⁺). These observations were the result of IR spectral monitoring of reactions involving 1 equiv of potential base for at least 2 h

(19) (a) Grice, N.; Kao, S. C.; Pettit, R. J. Am. Chem. Soc. **1979**, *101*, 1627. (b) Liu, L.-K.; Eke, U. B.; Mesubi, M. A. Organometallics 1995. 14. 3958.

(20) In a formally related degradation, Cp(NO)(CO)ReC(=O)OCH2-CH₂Mo(CO)₃Cp extrudes CO plus ethylene and leaves the μ - η^1 (C(Re)): η^2 (O,O'(Mo)) bimetallocarboxylate Cp(NO)(CO)ReCO₂Mo(CO)₂Cp: Gibson, D. H.; Franco, J. O.; Mehta, J. M.; Harris, M. T.; Ding, Y.; Mashuta, M. S.; Richardson, J. F. Organometallics 1995, 14, 5073.

⁽¹⁰⁾ Crystal data for **3a**: C₅₁H₄₆N₂O₆P₂Re₂Si·0.5C₆H₆, M_r = 1284.38, triclinic, $P\overline{1}$ (No. 2); a = 9.1251(5) Å, b = 14.4101(8) Å, c = 19.8446(9) Å; $\alpha = 85.392(4)$, $\beta = 87.004(4)$, $\gamma = 81.382(4)^{\circ}$, V = 2541.3 Å³; Z = 2 $D_c = 1.678$ g/cm³; yellow prism (0.06 × 0.16 × 0.48 mm); 9720 reflections (7996 independent); 198 K; Siemens P4 diffractometer (ω - 2θ scan, $3.4 \le 2\theta \le 48^{\circ}$). The full-matrix least-squares refinement was based on 7996 reflections ($I > 2\sigma(I)$) and 604 parameters and converged with R = 0.0282 ($R_w = 0.0642$). Data were processed using the SHELXTL version 5.03 package (Siemens). Only the diastereomer

⁽¹⁵⁾ Tam, W.; Lin, G.-Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. *J. Am. Chem. Soc.* **1982**, *104*, 141.

^{(16) (}a) Analogous alcoholysis reactions occur for Cp*(CO)(NO)-ReCO₂SiR_{3.6} (b) Related transesterification reactions of metallocarboxylic acids and esters^{16d-e} are well-known. (c) Treatment of Cp (PPh₃)(NO)ReCO₂H with 4 equiv of methanol in CDCl₃ promptly yielded a 3:2 mixture of Cp(PPh₃)(NO)ReCO₂CH₃ and starting acid, as determined by NMR spectroscopy. (d) Ford, P. C.; Rokicki, A. Adv. Organomet. Chem. 1988, 28, 139. (e) Brunner, H. Adv. Organomet. Chem. 1980, 18, 151.