Manganese- and Rhodium-Catalyzed Phenylsilane Hydrosilation-Deoxygenation of Iron Acyl Complexes Cp(L)(CO)FeC(O)R (L = CO, PPh₃, P(OMe)₃, P(OPh)₃; $\mathbf{R} = \mathbf{CH}_3$, Ph, CHMe₂, CMe₃)

Zhibiao Mao, Brian T. Gregg, and Alan R. Cutler*

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180

Received July 30, 1997

The manganese carbonyl acyl complexes $L(CO)_4MnC(O)R$ (L = CO, R = CH₃ (2a); L = CO, R = Ph (**2b**); $L = PPh_3$, $R = CH_3$ (**2c**)) are precatalysts for the PhSiH₃ hydrosilationdeoxygenation of $Cp(CO)_2FeC(O)CH_3$ (1a) to $Cp(CO)_2FeCH_2CH_3$ (6a). Thus, 2a (4%) and 1.1 equiv of PhSiH₃ reduce **1a** initially to a mixture of $[Cp(CO)_2FeCH(CH_3)O]_{3-x}H_xSiPh$ (x = 2 (3b), 1 (4b), and 0 (5b)) (7-8 h), which transforms to a mixture of 5b (62%) and 6a (35%) (12 h). Similarly, **2b** and PhSiH₃ transform **1a** to a mixture containing 4% **3b**, 22% **4b**, 72% **5b**, and 2% **6a** (30 min), then up to 15–20% **6a** (12 h). Use of **2c** as the precatalyst selectively yields 71% **4b** and 10% **6a** (30 min), then up to 19% **6a** (5 h). Both **4b** and **5b** were isolated by size-exclusion chromatography and characterized as mixtures of four stereoisomers, 4b as a pair of enantiomers having a prochiral center and two meso diastereoisomers with pseudoasymmetric centers and 5b as a diastereomeric pair of enantiomers. The PhSiH₃ (1.6 equiv)/RhCl(PPh₃)₃ (3%) system conveniently transforms Cp-(L)(CO)FeC(O)R to their alkyl derivatives $Cp(L)(CO)FeCH_2R$. Seven iron acyl complexes P(OMe)₃, and P(OPh)₃), which gave 49-87% isolated yields of Cp(L)(CO)FeCH₂R. Their modest yields correspond to the presence of byproducts, Cp(CO)₂FeCH=CH₂ (32%) and **4b** (14%) with **1a** and 10–15% of the vinyl complexes with $L = PPh_3$ and P(OPh)₃.

Introduction

Organotransition-metal acyl complexes exhibit a rich and varied reaction chemistry with hydrosilanes that depends on the metallic moiety and the choice of hydrosilane and catalyst.¹ The cyclopentadienyliron acetyl complexes $Cp(L)(CO)FeC(O)CH_3$ (L = CO (1a), PPh_3 (1b), $P(OR)_3$), for example, undergo catalytic hydrosilation with mono- or dihydrosilanes to give^{1b,2,3} isolable α -siloxyethyl complexes, Cp(CO)₂FeCH(OSiR₃)-CH₃ (Scheme 1).^{1b,e} To date, the most active iron acetyl hydrosilation catalysts are the degradation product(s) that result from treating the manganese acyl complexes $L(CO)_4MnC(O)R$ (2) with excess hydrosilane.⁴

An interesting selectivity was noted for the hydrosilation of **1a** with 1 equiv of a di- or trihydrosilane and 2-3% of a manganese acyl 2a-c. Using (CO)₅Mn $C(O)CH_3$ (2a) or $(CO)_5MnC(O)Ph$ (2b) as the precatalyst with R_2SiH_2 (R = Et, Ph) gave separable mixtures of mono- and bis(Cp(CO)₂Fe- α -siloxyethyl) complexes, **3a** and **4a**, respectively, whereas use of (PPh₃)(CO)₄MnC-(O)CH₃ (2c) selectively furnished 3a. In the presence of the more reactive PhSiH₃, 2a catalytically transformed 1a to mixtures of [Cp(CO)₂FeCH(CH₃)O]₃SiPh (**5b**) and Cp(CO)₂FeCH₂CH₃ (**6a**).^{1b}

Rhodium(I) compounds also catalyze the hydrosilation of CpFe acetyl complexes 1a and 1b, although the extent of reaction and types of products often differ.^{2,3} For example, RhCl(PPh₃)₃ does not catalyze the hydrosilation of 1a with monohydrosilanes.^{2a} With excess of the more reactive dihydrosilanes,⁶ RhCl(PPh₃)₃ converted 1a to 3a in the presence of competing Rh(I)-promoted

^{(1) (}a) Gregg, B. T.; Hanna, P. K.; Crawford, E. J.; Cutler, A. R. J. *Am. Chem. Soc.* **1991**, *113*, 384. (b) Hanna, P. K.; Gregg, B. T.; Cutler, A. R. *Organometallics* **1991**, *10*, 31. (c) Hanna, P. K.; Gregg, B. T.; Tarazano, D. L.; Pinkes, J. R.; Cutler, A. R. In Homogeneous Transition Metal Catalyzed Reactions; Advances in Chemistry Series No. 230; Moser, W. R., Slocum, D. W., Eds.; American Chemical Society: Washington, DC, 1992; p 491. (d) Gregg, B. T.; Cutler, A. R. Organo-metallics 1992, 11, 4276. (e) Gregg, B. T.; Cutler, A. R. J. Am. Chem. Soc. 1996, 118, 10069. (f) DiBiase-Cavanaugh, M.; Gregg, B. T.; Chiulli, Soc. 1939, 110, 1000: (1) Diamase Cavanaugh, M., Gregg, B. 1., Chun, R. J.; Cutler, A. R. J. Organomet. Chem. 1997, 547, 173. (g) Gregg, B. T.; Cutler, A. R. Manuscript in preparation.
 (2) (a) Crawford, E. J.; Hanna, P. K.; Cutler, A. R. J. Am. Chem. Soc. 1989, 111, 6891. (b) Pinkes, J. R.; Mao, Z.; Cutler, A. R. Manuscript

in preparation.

^{(3) (}a) Akita, M.; Mitani, O.; Moro-Oka, Y. *J. Chem. Soc., Chem. Commun.* **1989**, 527. (b) Akita, M.; Mitani, O.; Sayama, M.; Moro-Oka, Y. Organometallics 1991, 10, 1394.

^{(4) (}a) Gregg, B. T.; Cutler, A. R. Organometallics 1993, 12, 2006. (b) Manganese alkyl and halide complexes (L)(CO)₄MnX (X = CH₃, Ph, CH(OSiR₃)CH₃, Br, L = CO, PPh₃, PEt₃) also serve as effective precatalysts for the hydrosilation of a variety of organic⁵ and organo-metallic acyl compounds. Under comparable reaction conditions, neither $(CO)_5MnSiR_3$ (R₃Si = Me₂Ph, SiHPh₂) nor Mn₂(CO)₁₀ are effective precatalysts

 ^{(5) (}a) Gregg, B. T.; Cutler, A. R. Organometallics 1994, 13, 1039.
 (b) Mao, Z.; Gregg, B. T.; Cutler, A. R. J. Am. Chem. Soc. 1995, 117, 10139. (c) DiBiase-Cavanaugh, M.; Gregg, B. T.; Cutler, A. R. Organometallics 1996, 15, 2764.

⁽⁶⁾ The reactivity order of the hydrosilanes, $RSiH_3 \gg R_2SiH_2 \gg R_3$ -SiH, has been established for the Rh(PPh₃)₃Cl-catalyzed hydrosilation of ketones. Reviews on catalytic hydrosilation of organic substrates: (a) Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; Chapter 25. (b) Chaloner, P. A. *Handbook of Coordination Catalysis in Organic* Chemistry; Butterworth: Boston, 1986; Chapter 7.2. (c) Marciniec, B.; Guliñski, J. J. Organomet. Chem. 1993, 446, 15.

silane dehydrogenative coupling.⁷ Although treatment of **1b** with monohydrosilanes and **2a**-**c** yielded Cp-(PPh₃)(CO)FeCH(OSiR₃)CH₃, RhCl(PPh₃)₃ additionally transformed these α -siloxyethyl products to the vinyl complex Cp(PPh₃)(CO)FeCH=CH₂ (**7b**). With either type of catalyst, dihydrosilanes additionally produce varying amounts of the fully reduced Cp(PPh₃)-(CO)FeCH₂CH₃ (**6b**).^{2,3b} It is this catalytic hydrosilation-then-deoxygenation of the acyl ligand on L_xMC-(=O)R to an α -methylene group L_xMCH₂R that is of interest to the present study.

The only other procedure that we are aware of for directly reducing $L_xMC(=O)R$ to its alkyl derivative L_x ·MCH₂R entails treatment with excess B₂H₆/C₆D₆ or BH₃·THF.⁸ When carried out with **1b**, however, this procedure also gave 25% Cp(PPh₃)(CO)FeH (**8b**) relative to the major product **6b**. Direct catalytic hydrogenation (e.g., with RhCl(PPh₃)₃)⁸ of these acyl complexes has not been documented.

In initiating this study, we wanted to find catalytic conditions for the PhSiH₃ hydrosilation-then-deoxygenation of **1a** to Cp(CO)₂FeCH₂CH₃ (**6a**) (eq 1) while minimizing the accumulation of α -siloxyethylCp(CO)₂-Fe intermediates [Cp(CO)₂FeCH(CH₃)O]_{3-x}H_xSiPh (x = 2 (**3b**), 1 (**4b**), 0 (**5b**)). The precatalysts that we

L = CO; R = Ph, ⁱPr, ^tBu

 $L = CO, PPh_3, P(OMe)_3, P(OPh)_3; R = CH_3,$

^{(7) (}a) Ojima, I.; Inaba, S. I.; Kogure, T.; Nagai, Y. *J. Organomet. Chem.* **1973**, *55*, C7. (b) Chang, L. S.; Corey, J. Y. *Organometallics* **1989**, *8*, 1885.

surveyed included the manganese acyls **2a**–**c** and RhCl-(PPh₃)₃. These manganese acyls and PhSiH₃ are effective for the hydrosilation-then-deoxygenation of organic esters RC(=O)OR' to give, successively, silyl acetals [RCH(OR')O]_{3-x}H_xSiPh and ethers RCH₂OR'.^{5b} In the present study, RhCl(PPh₃)₃ proved to be the optimal precatalyst for the deoxygenation of **1a** and the scope of this reaction was extended to Cp(CO)(L)FeC(O)CH₃ (L = CO, PPh₃, P(OMe)₃, P(OPh)₃) and Cp(CO)₂FeC-(O)R (R = Et, n-Pr, i-Pr, t-Bu). Portions of this study have been communicated previously.^{1b,2a}

Experimental Section

Synthetic manipulations were performed using a combination of standard Schlenk-line, glovebox, and vacuum-line procedures.⁹ Infrared spectra of benzene solutions were recorded on a Perkin-Elmer FT spectrophotometer, model 1600, over the carbonyl ν (CO) frequency range (2200–1600 cm⁻¹). NMR spectral data were obtained in C₆D₆ and were reported as δ values relative to residual C₆H₆ (¹H, 7.15 ppm) and C₆D₆ (¹³C, 128.00 ppm) using Varian model XL-200 and Unity 500 spectrometers. ¹H NMR spectrometer parameters had been optimized with a 38° pulse angle during quantitative analyses of known concentrations of **1** and anisole. As a result, integration traces are believed to be accurate within ±5%. Combustion microanalyses were done by Quantitative Technologies, Bound Brook, NJ.

Organic and inorganic reagents were obtained commercially and used as received; silanes and C_6D_6 were stored in a glovebox under nitrogen. THF and benzene were distilled from sodium benzophenone ketyl. Wilkinson's compound, Rh-(PPh₃)₃Cl, was purchased or prepared and purified according to the literature procedure;¹⁰ its purity (activity) was assayed by ¹H NMR spectral monitoring of the catalyzed H₂SiPh₂ hydrosilation of Cp(CO)₂FeC(O)CH₃.^{2a} The manganese acyl complexes, (CO)₅MnC(O)CH₃ (**2a**),¹¹ (CO)₅MnC(O)Ph (**2b**),¹² and (PPh₃)(CO)₄MnC(O)CH₃ (**2c**),¹³ and the iron acyl complexes, Cp(CO)(L)FeC(O)CH₃ (L = CO (**1a**), PPh₃ (**1b**),¹⁴

⁽⁸⁾ Van Doorn, J. A.; Masters, C.; Volger, H. C. *J. Organomet. Chem.* **1983**, *243*, 87.

⁽⁹⁾ Shriver, D. F.; Drezdon, M. A. *The Manipulation of Air-Sensitive Compounds*, 2nd ed., Wiley-Interscience: New York, 1986. (10) (a) Osborn, J. A.; Wilkinson, G. *Inorg. Synth.* **1990**, *28*, 77. (b)

^{(10) (}a) Osborn, J. A.; Wilkinson, G. Inorg. Synth. 1990, 28, 77. (b)
Evans, D. A.; Fu, G. C.; Anderson, B. A. J. Am. Chem. Soc. 1992, 114, 6679. (c) Burgess, K.; van der Donk, W. A.; Weastcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. J. Am. Chem. Soc. 1992, 114, 9350.

^{(11) (}a) Closson, R. D.; Kozikowski, J.; Coffield, T. H. J. Org. Chem. 1957, 22, 598. (b) King, R. B. Organometallic Syntheses, Academic Press: New York, 1965; Vol. 1, Part I, p 147. (c) Mckinney, R. J.; Crawford, S. S. Inorg. Synth. 1989, 26, 155. (d) Anderson, J. M.; Moss, J. R. Organometallics 1994, 13, 5013.

P(OMe)₃ (**1c**), P(OPh)₃ (**1d**)¹⁵) and Cp(CO)₂FeC(O)R (R = Ph¹⁶ (**9**), i-Pr¹⁷ (**10**), t-Bu¹⁸ (**11**)), were prepared by literature procedures and judged pure by IR and ¹H NMR spectroscopy. Samples of Cp(CO)₂FeCH=CH₂ (**7a**)^{16b} and its spectral data were available from previous studies:^{19 1}H NMR (C₆D₆) δ 7.17 (dd, *J* = 17.1, 9.0 Hz, Fe-CH), 6.26 (dd, *J* = 9.0, 0.9 Hz, E =CH), 5.76 (dd, *J* = 17.1, 0.9 Hz, Z =CH), 4.02 (Cp); ¹³C NMR (C₆D₆) δ 216.53 (CO), 85.41 (Cp), 139.76 (=CH₂), 130.81 (Fe-CH=).

Hydrosilation of Cp(CO)₂FeC(O)CH₃ (1a) with PhSiH₃ and (CO)₅MnC(O)CH₃ (2a) as the Precatalyst. A solution containing 200 mg of 1a (0.91 mmol), 10 mg of manganese acetyl 2a 0.042 mmol, 4.6 mol %), and 33 mg of C₆H₅OCH₃ (0.31 mmol) in 600 mg of C₆D₆ was treated with PhSiH₃ (118 mg, 1.09 mmol). The resulting light yellow-orange solution was transferred in the glovebox to a 5-mm NMR tube that was fitted with a new rubber septum, and the first ¹H NMR spectrum was recorded within 10 min. Within 1 h, the reaction solution had turned dark red; no other physical changes were noted over 12 h. Since virtually all NMR absorptions were assigned, the reaction progress was monitored by ¹H and ¹³C-{¹H} NMR spectroscopy.

The reaction was worked up by size-exclusion chromatography on polystyrene beads (Biorad SX-12, molecular weight range 0–400) that had been packed into a 40×350 mm glass column in benzene. A guard column (21×130 mm) also was part of the high-performance, low- to medium-pressure chromatography²⁰ apparatus, which was connected via 4-mm Teflon tubing and fittings. The UV-vis detector was set at 463 nm. After 12 h, the reaction mixture was injected onto the apparatus through a three-way valve and was pumped through the columns. Six orange to yellow-orange fractions, 10-15 mL each, were collected and evaporated. When combined after NMR analysis, fractions 2-4 afforded 57 mg of an orange oil that was characterized as [Cp(CO)₂FeCH(CH₃)O]₃-SiPh (5b) (24% yield). Anal. Calcd for C₃₃H₃₂O₉SiFe₃: C, 51.59; H, 4.20. Found: C, 52.10; H, 4.11. Fractions 5 and 6 were evaporated under a stream of nitrogen to yield 104 mg of spectroscopically pure Cp(CO)₂FeCH₂CH₃ (**6a**),²¹ an amber oil, in 51% yield. ¹H NMR (C₆D₆) δ 4.02 (Cp), 1.58 (q, J = 7.6Hz, FeCH₂), 1.36 (t, CH₃); ¹³C NMR δ 218.25 (CO), 85.32 (Cp), 22.53 (CH₃), -2.81 (FeCH₂).

Hydrosilation of $Cp(CO)_2FeC(O)CH_3$ (1a) with $(CO)_5$ -MnC(O)Ph (2b) as the Precatalyst. A yellow C_6D_6 solution (0.5 mL) containing 200 mg of 1a (0.91 mmol) and 12 mg of 2b (4.4 mol %) was treated with 118 mg of PhSiH₃ (1.09 mmol). The reaction solution turned yellow-orange after 15 min, and after 2 h, the red solution was evaporated to a red oil, which

- (13) (a) Mawby, R. J.; Basolo, F.; Pearson, R. G. J. Am. Chem. Soc. **1964**, *86*, 5043. (b) Kraihanzel, C. S.; Maples, P. K. *Inorg. Chem.* **1968**, *7*, 1806. (c) Noack, K.; Ruch, M.; Calderazzo, F. *Inorg. Chem.* **1968**, *7*, 345.
- (14) (a) Reger, D. L.; Fauth, D. J.; Dukes, M. D. Synth. React. Inorg. Metal Org. Chem. **1977**, 7, 151. (b) Forschner, T. C.; Cutler, A. R. Inorg. Synth. **1989**, 26, 231.

(15) (a) Crawford, E J.; Lambert, C.; Menard, K. P.; Cutler, A. R. J. Am. Chem. Soc. **1985**, 107, 3130. (b) Bibler, J. B.; Wojcicki, A. Inorg. Chem. **1966**, 5, 889.

(16) (a) Brookhart, M.; Studabaker, W. B.; Humphrey, M. B.; Husk, G. R. *Organometallics* **1989**, *8*, 132. (b) King, R. B.; Bisnette, M. B. *J. Organomet. Chem.* **1964**, *2*, 15.

 (17) Lukehart, C. M.; Zeile, J. V. J. Am. Chem. Soc. 1977, 99, 4368.
 (18) Afzal, D.; Lenhert, P. G.; Lukehart, C. M.; Srinivasan, R. Inorg. Chem. 1986, 25, 710.

(19) (a) Tarazano, D. L.; Cutler, A. R. *J. Organomet. Chem.* **1993**, *448*, 139. (b) Nesmeyanov, A. N.; Rybinskaya, M. I.; Rybin, L. v.; Kaganovich, V. S.; Petrovskii, P. V. *J. Organomet. Chem.* **1971**, *31*, 257.

(20) Components for low- to medium-pressure chromatography apparatus are available from Ace Glass Inc., Vineland, NJ.

(21) (a) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. **1956**, *3*, 104. (b) Green, M. L. H.; Nagy, P. J. Organomet. Chem. **1963**, *1*, 58.

was extracted by hexane $(2 \times 1 \text{ mL})$. This extractant was chromatographed on a column $(10 \times 2 \text{ cm})$ of flash-grade silica gel in hexane. Elution with hexane and then 2:1 hexane–benzene brought down light orange bands that produced small amounts of Cp(CO)₂FeCH₂CH₃ admixed with unidentified organic residues. Continued development of the column with 2:1 hexane–benzene removed fraction 3, a dark yellow band, which provided 133 mg of a yellow gum. This gum corresponded to [Cp(CO)₂FeCH(CH₃)O]₃SiPh (**5b**) (43% yield by relative integration) that was contaminated (total 30 mg) with **6a** (6%), <4% [Cp(CO)₂FeCH(CH₃)O]₂SiHPh (**4b**), and uinidentified organic materials. Prolonged washing of the column with 2:1 hexane–benzene and then benzene gave smaller amounts of **5b** that were increasingly contaminated with **4b**, Cp(CO)₂Fe₂, and other unidentified residues.

Hydrosilation of 1a with (PPh₃)(CO)₄MnC(O)CH₃ (2c) as the Precatalyst. 1. To a 5-mL vial in the glovebox was added 1a (44 mg, 0.20 mmol), C_6D_6 (600 mg), 2c (3 mg, 3.2%), PhSiH₃ (11 or 26 mg, 0.50 and 1.20 equiv respectively), and toluene (10 mg, 0.11 mmol). The yellow solution darkened over 5 min. It was transferred to a 5-mm NMR tube that was fitted with a rubber septum, and ¹H NMR spectra were recorded within 10 min. Within 0.5 h, all of the substrate 1a was consumed.

2. Phenylsilane (43 mg, 0.40 mmol) was added to a benzene solution (1 g) of **1a** (176 mg, 0.80 mmol) and **2c** (11 mg, 0.023 mmol, 2.9%). After 0.5 h, the darkened yellow solution was chromatographed on Biorad SX-12 (size exclusion) polystyrene beads in benzene. Four 15-mL yellow fractions were collected and evaporated. Fraction 2 offered 180 mg of a brown gum that was spectroscopically characterized as **4b** (82% yield) plus small amounts of organic residues. Further attempts to purify this fraction proved unsuccessful. Fractions 1 and 3 also contained **4b** admixed with unidentified organic residues.

Treatment of [Cp(CO)₂FeCH(CH₃)O]₂SiHPh (4b) with RhCl(PPh₃)₃ and PhSiH₃. A yellow solution containing **1a** (44 mg, 0.20 mmol), **2c** (3 mg, 3.2%), and toluene (10.3 mg, 0.11 mmol) in 500 mg of C_6D_6 was treated with PhSiH₃ (11 mg, 0.10 mmol). ¹H and ¹³C NMR spectral monitoring of the reaction mixture indicated that all of **1a** and PhSiH₃ were consumed within 0.5 h, leaving a mixture of **4b** (81%) and Cp(CO)₂FeCH₂CH₃ (**6a**) (4%). The NMR tube was brought back to the glovebox, and RhCl(PPh₃)₃ (3 mg) and excess PhSiH₃ (35 mg) were added. The results of ¹H NMR spectral monitoring over 3 h were consistent with a reduction in concentration of **4b** (70%) commensurate with an increase in **6a** (14%).

Reaction of $[Cp(CO)_2FeCH(CH_3)O]_3SiPh$ (5b) with RhCl(PPh₃)₃ and PhSiH₃. To a 0.5 mL benzene solution of **1a** (200 mg, 0.91 mmol) was added **1b** (12 mg, 4.4%) and PhSiH₃ (110 mg, 1.01 mmol). The yellow solution turned red over 1 h, and after 1.5 h it was chromatographed on Biorad SX-12 polystyrene beads in benzene. Five 15-mL yellow fractions were collected and evaporated, of which fraction 2 contained most of the initial yellow band. This band provided 172 mg of a yellow oil that was identified as [Cp(CO)₂FeCH-(CH₃)O]₃SiPh (5b) (0.22 mmol, 74% yield), albeit contaminated by small amounts of organic residues. This material in 600 mg of C₆D₆ was treated with RhCl(PPh₃)₃ (21 mg, 0.022 mmol) and PhSiH₃ (130 mg, 1.19 mmol). ¹H NMR spectral monitoring over 8 h indicated that none of the substrate **5b** was consumed.

Treatment of Cp(CO)₂FeCH(OSiMe₂Ph)CH₃ with RhCl-(PPh₃)₃ and PhSiH₃. PhMe₂SiH (138 mg, 1.01 mmol) was added to a benzene solution (0.50 mL) containing **1a** (200 mg, 0.91 mmol) and (CO)₅MnC(O)CH₃ (**2a**) (12 mg, 4.4%). After 50 min, the resulting orange solution was chromatographed on 4 × 1 cm of silica gel-pentane. The resulting yellow pentane eluate (40 mL) was evaporated to yield a 188 mg of a yellow oil, which was identified as spectroscopically pure Cp-(CO)₂FeCH(OSiMe₂Ph)CH₃^{1b} (0.53 mmol): ¹H NMR (C₆D₆) δ

 ^{(12) (}a) Lukehart, C. M.; Torrence, G. P.; Zeile, J. V. Inorg. Synth.
 1978, 18, 56. (b) Motz, P. L.; Sheeran, D. J.; Orchin, M. J. Organomet. Chem. 1990, 383, 201.

5.72 (q, J = 6.0 Hz, FeCH), 4.15 (Cp), 1.69 (d, CH*CH*₃), 0.39 (s, SiMe₂). To this material in C₆D₆ (500 mg) was added RhCl-(PPh₃)₃ (15 mg, 0.016 mmol or 3.1%) and PhSiH₃ (57 mg, 0.53 mmol). Although gas evolution occurred during the first 0.5 h, the solution remained orange and ¹H NMR spectral monitoring over 8 h indicated that none of the Cp(CO)₂FeCH-(OSiMe₂Ph)CH₃ was consumed.

Hydrosilation of Cp(CO)₂FeC(O)CH₃ (1a) with PhSiH₃ and RhCl(PPh₃)₃. The reaction was carried out in a 1 dram vial in the glovebox by adding 6 mg of RhCl(PPh₃)₃ (3.2%) to a C₆D₆ solution (500 mg) containing 1a (44 mg, 0.20 mmol), PhSiH₃ (35 mg, 1.6 equiv), and PhMe internal standard (9 mg, 0.10 mmol). After 10 min, the yellow solution turned yellowish-green (commensurate with gas evolution), and it was transferred to a NMR tube. Within 40-60 min all of the 1a was consumed, as judged by ¹H and ¹³C NMR spectral monitoring. The presence of Cp ¹³C NMR absorptions was especially informative: $Cp(CO)_2FeCH_2CH_3$ (6a) (δ 85.32), $Cp(CO)_2FeCH=CH_2$ (7a) (δ 85.41), 1a (δ 86.22), $Cp(CO)_2Fe_2$ (δ 88.52). Product yields were determined via integration of the ¹H NMR spectra vs PhMe: **6a** δ 1.58 (quart, J = 7.6 Hz, CH₃), 1.36 (t, CH₂), (49%); 7a δ 6.26 (E=CH), 5.76 (Z=CH) (32%); [Cp(CO)₂FeCH(CH₃)O]₂SiHPh (4b) δ 6.12-6.06 (Fe-CH) (12–14%); **1a** δ 2.40 (CH₃); Cp(CO)₂FeH²² (**8a**) δ –11.8 (FeH).

When the reaction was repeated with 1.1 equiv of PhSiH₃, 23% of 1a remained along with 6a (49%), 7a (32%), and 4b (10-12%). With 0.56 equiv of H₃SiPh, the reaction had 29% 1a remaining after 3 h and only trace quantities of 7a.

The reaction mixture (1.6 equiv of PhSiH₃) and a 1 mL of pentane rinse were poured into 5 mL of pentane and centrifuged. The supernatant solution was chromatographed on activity 2 neutral alumina (5 \times 90 mm) in pentane, from which a yellow band was removed with 5:1 pentane-CH₂Cl₂. This afforded 22 mg of a yellow oil that was identified as spectroscopically pure 6a (53% yield); NMR spectral yield vs added (Me₃Si)₂O, 52%.

The reaction was carried out on a 0.50 mmol scale: 110 mg of 1a (0.50 mmol), 86 mg of PhSiH₃ (1.6 equiv), and 14 mg of RhCl(PPh₃)₃ (3.2%) were mixed in 1.0 g of C₆D₆. An NMR spectrum of the reaction mixture after 2 h indicated that all of 1a was consumed; chromatographic yield of 6a (4 \times 1 cm alumina-pentane, eluted with pentane then 5:1 pentane-CH2-Cl₂), 52 mg, 49%.

RhCl(PPh₃)₃-Catalyzed PhSiH₃ Hydrosilation of Cp-(L)(CO)FeC(O)R: Cp(PPh₃)(CO)FeC(O)CH₃ (1b). An NMR tube was charged with a C_6D_6 solution (600 mg) of **1b** (91 mg, 0.20 mmol), PhSiH₃ (35 mg, 1.6 equiv), PhMe (14 mg, 0.15 mmol), and RhCl(PPh₃)₃ (6 mg, 3.2%). The reaction was complete within 45 min, as judged by ¹H NMR spectroscopy: 61% Cp(PPh₃)(CO)FeCH₂CH₃ (6b),^{8,23} 11% Cp(PPh₃)(CO)-FeCH=CH₂ (7b)²⁴ (quantitated by integration of the vinyl absorptions at δ 6.31 (ddd, 1H), 5.86 (dt, 1H), 4.18 (d, J = 1.2Hz, Cp)), and 11% Cp(PPh₃)(CO)FeH (8b)^{23a,25} (quantitated with the hydride and Cp absorptions at δ –12.85 (d, $J_{\rm PH}$ = 75.3 Hz) and 4.25 (d, J = 1.0 Hz), respectively).

Cp(PPh₃)(CO)FeC(O)CH₃ (1b) (227 mg, 0.50 mmol), PhSiH₃ (86 mg, 1.6 equiv), and RhCl(PPh₃)₃ (14 mg, 3.2%) were dissolved in 1.2 g of C_6D_6 . The orange solution turned green within 15 min; NMR spectral monitoring confirmed that the reaction was complete. The reaction mixture was poured into 10 mL of pentane and centrifuged. The centrifugate plus pentane washings (2 \times 5 mL) were chromatographed on activity 2 neutral alumina-pentane (2 \times 5 cm column). Development with 5:1 pentane-CH₂Cl₂ eluted an orange band that gave spectroscopically pure 6b (137 mg, 62% yield) as an orange solid. ¹H NMR (C₆D₆) δ 7.52 (m, 6H, Ph), 7.02 (m, 9H, Ph), 4.12 (d, J = 1.0 Hz, Cp), 1.85 (m, 1H, FeCHH), 1.56 (dt, J = 1.9, 7.3 Hz, FeCH₂*CH*₃), 1.04 (m, 1H, FeC*H*H); ¹³C NMR (C₆D₆) δ 223.52 (d, J = 32.3 Hz, CO), 137.71 (d, J = 39.1 Hz, ipso C), 133.40 (d, J = 9.6 Hz, o-C), 129.45 (s, p-C), 128.21 (d, J = 6.9 Hz, m-C), 84.95 (Cp), 23.71 (d, J = 4.1 Hz, FeCH₂CH₃), -2.19 (d, J = 18.5 Hz, FeCH₂).

Similar reactions, 0.20 and 0.50 mmol scale, were performed with the following iron acyls: Cp(CO)₂FeC(O)Ph (9), Cp-(CO)₂FeC(O)CH(CH₃)₂ (10), Cp(CO)₂FeC(O)C(CH₃)₃ (11), Cp-[P(OMe)₃](CO)FeC(O)CH₃ (1c), and Cp[P(OPh)₃](CO)FeC(O)-CH₃ (1d). Reactions were chromatographed using the above procedures; both NMR spectroscopic and isolated yields of the resulting alkyl complexes are recorded in Table 2. Salient NMR spectroscopic data, Cp(CO)₂FeCH₂Ph:²⁶ ¹H NMR (C₆D₆) δ 3.91 (Cp), 2.67 (CH₂); ¹³C NMR (C₆D₆) δ 217.5 (CO), 86.01 (Cp), 5.42 (CH₂). Cp(CO)₂FeCH₂CH(CH₃)₂:²⁷ ¹H NMR (C₆D₆) δ 4.05 (Cp), 4.74 (m, FeCH₂*CH*), 1.59 (t, *J* = 1.2 Hz, Fe*CH*₂), 1.09 (d, J = 5.9 Hz, CH₃); ¹³C NMR (C₆D₆) δ 218.39 (CO), 85.45 (Cp), 35.24 (Cp(CO)₂FeCH₂CH), 26.66 (Cp(CO)₂FeCH₂), 13.71 (CH₃). Cp(CO)₂FeCH₂C(CH₃)₃:²⁸ ¹H NMR (C₆D₆) δ 4.06 (Cp), 1.73 (s, FeCH₂), 1.12 (s, CH₃); ¹³C NMR (C₆D₆) δ 219.11 (CO), 85.62 (Cp), 35.40 (CMe₃), 33.40 (FeCH₂), 19.25 (CH₃). Cp-[P(OMe)₃](CO)FeCH₂CH₃:²⁹ ¹H NMR (C₆D₆) δ 4.31 (Cp), 3.26 (d, J = 11.3 Hz, P(OMe)₃), 1.58 (m, FeCH₂CH₃), 1.27 (m, Fe*CH*₂CH₃); ¹³C NMR (C₆D₆) δ 221.4 (d, J = 47.6 Hz, CO), 83.32 (Cp), 51.13 (P(OMe)₃), 23.27 (d, J = 2.7 Hz, FeCH₂CH₃), -6.01 (d, J = 29.3 Hz, FeCH₂). Cp[P(OPh)₃](CO)FeCH₂CH₃: 24a,30 ¹H NMR (C₆D₆) δ 7.25 (m, 6H, Ph), 7.02 (m, 6H, Ph), 6.85 (m, 3H, Ph), 3.90 (Cp), 1.62 (m, 5H, CH₂CH₃).

Results and Discussion

1. Manganese-Acyl-Catalyzed PhSiH₃ Hydrosilation of Cp(CO)₂FeC(O)CH₃ (1a). The (CO)₅MnC-(O)CH₃-catalyzed PhSiH₃ hydrosilation of Cp(CO)₂FeC-(O)CH₃ (**1a**) exhibited three characteristics. First, these sluggish reactions had variable reaction times under comparable conditions. With 1.1-1.2 equiv of PhSiH₃ and 4.4-4.6% of precatalyst 2a, typically 20% of 1a was depleted over 4-5 h and then 70-85% over 7-8 h. These values, averaged over a dozen runs, however, do not convey the wide rate fluctuations with which substrate **1a** was consumed. The rate of consumption of 1a varied from 85% within 2 h to an initial 30% after 6 h followed by jumping to 85% after 7 h.

The second observation concerns the fate of the precatalyst 2a. Most of it remained intact (as deduced from ¹H NMR spectroscopy), up to at least 85–90% consumption of the substrate 1a. This substrate inhibition of the required hydrosilation of the precatalyst^{1d} is typical of the manganese-acyl-catalyzed hydrosilation of 1^{2} As expected,⁴ a reactive precatalyst is required for the hydrosilation of **1a**; neither (CO)₅MnSi(CH₃)₃ nor Mn₂(CO)₁₀ function as viable hydrosilation catalysts toward 1 under these conditions.

^{(22) (}a) Ferguson, S. B.; Sanderson, L. J.; Skackleton, T. A.; Baird, M. C. *Inorg. Chim. Acta* **1984**, *83*, L45. (b) Shackleton, T. A.; Mackie, S. C.; Fergusson, S. B.; Johnston, L. J.; Baird, M. C. *Organometallics* 1990. 9. 2248.

^{(23) (}a) Su, S.; Wojcicki, A. *J. Organomet. Chem.* **1971**, *27*, 271. (b) Reger, D. L.; Culbertson, E. C. *J. Am. Chem. Soc.* **1976**, *98*, 2789. (c) Flood, T. C.; DiSanti, F. J.; Miles, D. L. Inorg. Chem. **1976**, *15*, 1910.

^{(24) (}a) Bodnar, T.; Cutler, A. R. J. Organomet. Chem. **1970**, *13*, 1910.
(24) (a) Bodnar, T.; Cutler, A. R. J. Organomet. Chem. **1981**, *213*, C31. (b) Boland-Lusser, B. E.; Churchill, M. R.; Hughes, R. P.; Rheingold, A. L. Organometallics **1982**, *1*, 628.
(25) (a) Kalck, P.; Poilblanc, R. C. R. Acad. Sci. Paris **1972**, *274*, 66.
(b) Reger, D. L.; Culbertson, E. C. J. Am. Chem. Soc. **1976**, *98*, 2789.

⁽²⁶⁾ Bibler, J. B.; Wojcicki, A. J. Am. Chem. Soc. 1966, 88, 4862.

⁽²⁷⁾ Green, M. L. H.; Smith, M. J. J. Chem. Soc. A 1971, 1943.

⁽²⁸⁾ Jacobson, S. E.; Wojcicki, A. J. Am. Chem. Soc. 1973, 95, 6962.
(29) Alt, H. G.; Eichner, M. E.; Jansen, B. M.; Thewalt, U. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1982, 37B, 1109.
(30) Reger, D. L.; Coleman, C. J. Inorg. Chem. 1979, 18, 3155.

	Table 1.	Spectral Data	for α-Siloxyethy	l Fe(CO) ₂ Cı	o Complexes
--	----------	----------------------	------------------	--------------------------	-------------

complex (IR)	¹ H NMR (C ₆ D ₆), δ	$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (C ₆ D ₆), δ
Cp(CO) ₂ FeCH(CH ₃)OSiH ₂ Ph, 3b ^a	5.73 (q, $J = 6.0$ Hz, FeCH)	72.26 (CH)
• • • • • •	5.25 (s, 2H, SiH)	34.88 (CH ₃)
	4.24 (s, Cp)	
	1.78 (d, $\hat{J} = 6.0$ Hz, CH ₃)	
[Cp(CO) ₂ FeCH(CH ₃)O] ₂ SiHPh, 4b ^b	7.90 (m, 2H, SiPh)	217.85, 217.55, 217.49, 217.46 (CO)
$(\nu(CO) \ 2004, \ 1945 \ cm^{-1}(br))$	7.26 (m, 3H, SiPh)	134.30, 130.56, 127.49 (ipso-SiPh)
	6.07 (q, $J = 6.4$ Hz, FeCH _A)	86.29, 86.27, 86.24 (br) (Cp)
	6.05 (q, $J = 6.4$ Hz, FeCH _B)	70.20, 70.02, 69.41, 69.40 (CH)
	6.04 (q, $J = 5.9$ Hz, FeCH _C)	35.73, 35.69, 35.49, 35.42 (CH ₃)
	6.01 (q, $J = 5.9$ Hz, FeCH _D)	
	5.47 (s, 1H, SiH)	
	5.42 (s, 3H, SiH)	
	4.24, 4.22, 4.18, 4.17 (s, Cp _{A-D})	
	1.96 (d, $J = 6.4$ Hz, $CH_{3(C)}$)	
	1.95 (d, $J = 6.4$ Hz, $CH_{3(D)}$)	
	1.88 (d, $J = 5.9$ Hz, $CH_{3(A)}$)	
	1.87 (d, $J = 5.9$ Hz, $CH_{3(B)}$)	
[Cp(CO) ₂ FeCH(CH ₃)O] ₃ SiPh,	8.10 (m, 2H, Ph)	218.09, 218.08, 218.05, 218.03,
5b (ν (CO) 2008, 1951 cm ⁻¹ (br))	7.36 (m, 2H, Ph)	217.91, 217.87, 217.82, 217.77 (CO)
	7.26 (m, 1H, Ph)	138.22 (<i>ipso</i> -C, Ph)
	6.39 (q, $J = 6.2$ Hz, FeCH _A)	130.06, 128.53, 127.99 (Ph)
	6.38 (q, $J = 6.2$ Hz, FeCH _B)	86.36, 86.30, 86.27, 86.21 (Cp)
	6.32 (q, $J = 5.8$ Hz, FeCH _C)	69.37, 69.29, 69.27, 69.10 (FeC)
	6.23 (q, $J = 6.1$ Hz, FeCH _D)	36.12, 36.02, 35.97, 35.93 (CH ₃)
	4.39, 4.38, 4.31, 4.27 (s, Cp)	
	2.06 (d, $J = 5.8$ Hz, $CH_{3(A)}$)	
	2.04 (d, $J = 5.9$ Hz, $CH_{3(C)}$)	
	2.01 (d, $J = 5.9$ Hz, $CH_{3(B)}$)	
	1.98 (d, $J = 6.1$ Hz, $CH_{3(D)}$)	

^{*a*} Observed as a minor component during the early stages of hydrosilation of **1a**. Carbonyl (IR, ¹³C NMR), phenyl (¹H, ¹³C NMR), and Cp (¹³C NMR) absorptions were not discerned. ^{*b*} Methine absorption appears as an eight-line multiplet at δ 6.05, and two of the methyl doublets appear as an apparent triplet (δ 1.99). Double irradiation at δ 1.9 reduced the δ 6.05 multiplet to four equally intense singlets; reversing the decoupling experiment revealed four methyl resonances. Further correlation of these methine–methyl spin systems are consistent with the results of the COSY experiments.³³

Table 2.	RhCl(PPh ₃) ₃ -Catal	vzed PhSiH3 Hydrosilatior	n of Cp(CO)(L)FeC(O)R
		,	

substrate	reaction scale (mmol) ^a	product	NMR yield (%) ^b	isolated yield (%) ^c
1. Cp(CO) ₂ FeC(O)CH ₃ (1a)	0.20	$Cp(CO)_2FeCH_2CH_3$ (6a)	49^d	53
• • • • • • • • •	0.50	• • • • • •		49
2. Cp(CO) ₂ FeC(O)CH(CH ₃) ₂ (10)	0.50	Cp(CO) ₂ FeCH ₂ CH(CH ₃) ₂		69
3. $Cp(CO)_2FeC(O)C(CH_3)_3$ (11)	0.20	Cp(CO) ₂ FeCH ₂ C(CH ₃) ₃	91	
	0.50			66
4. Cp(CO) ₂ FeC(O)Ph (9)	0.20	Cp(CO) ₂ FeCH ₂ Ph	82	58
	0.50			73
5. Cp(PPh ₃)(CO)FeC(O)CH ₃ (1b)	0.20	Cp(PPh ₃)(CO)FeCH ₂ CH ₃ (6b)	61 ^e	
	0.50			62
6. Cp[P(OMe) ₃](CO)FeC(O)CH ₃ (1c)	0.20	Cp[P(OMe) ₃](CO)FeCH ₂ CH ₃	75^e	
	0.50			74
7. Cp[P(OPh) ₃](CO)FeC(O)CH ₃ (1d)	0.50	Cp[P(OPh) ₃](CO)FeCH ₂ CH ₃		87

^{*a*} Reaction carried out in 600 mg of C_6D_6 (0.20 mmol) or 1.5 mL of C_6D_6 or C_6H_6 (0.50 mmol) with 1.6 equiv of PhSiH₃ and 3.2% RhCl(PPh₃)₃. ^{*b*} Quantified by ¹H NMR vs PhMe internal standard (±5%). ^{*c*} Isolated as spectroscopically pure material via column chromatography on activity 2 alumina using 5:1 pentane-CH₂Cl₂. ^{*d*} Also detected 32% Cp(CO)₂FeCH=CH₂ (**7a**) and 12–14% [Cp(CO)₂FeCH(CH₃)O]₂SiHPh (**4b**). ^{*e*} Also detected 10–15% of the vinyl complexes Cp(L)(CO)FeCH=CH₂ (L = PPh₃ (**7b**) and P(OMe)₃ (**7c**)).

Third, results of ¹H NMR spectroscopic monitoring established that the 2a-catalyzed hydrosilation of 1a occurs in two stages, Scheme 2. Within the first 7-8h, 1a transformed to variable mixtures of Cp(CO)₂FeCH-(CH₃)OSiH₂Ph (3b), [Cp(CO)₂FeCH(CH₃)O]₂SiHPh (4b), and [Cp(CO)₂FeCH(CH₃)O]₃SiPh (5b), typically 1:1:2 at 70% depletion of **1a**. Little or no $Cp(CO)_2FeCH_2CH_3$ (6a) or $Cp_2(CO)_4Fe_2$ was detected. Between 8 and 12 h, the reaction mixture of 3b-5b plus remaining PhSiH₃ produced **6a** (along with traces of Cp₂(CO)₄Fe₂) and left 5b. Then 5b evidently underwent only very slow reduction to **6a**, which was not further studied. Although the use of 2.2–2.4 equiv of PhSiH₃ and the same precatalyst concentration accelerated the reaction (1a was consumed in under 6 h), the same ratio of 6a and 5b formed as the final products.

Together, **6a** and **5b** constituted the final products after reaction for 12 h with 1.2 equiv of PhSiH₃ and accounted for virtually all of the starting 1a. Their NMR yields of 35% and 62%, respectively (based upon 1a), were calculated via two procedures. Results of direct quantitation of either their Cp resonances or their upfield ethyl multiplets and methyl doublets-using anisole as an internal standard-agreed with the other procedure of extrapolating the maximum yields of 6a and 5b that are possible from the relative integrated areas of their Cp resonances.³¹ We made no attempts to account for the residual organosilane byproducts. These byproducts left no definitive NMR spectral absorptions other than broad SiH ¹H NMR absorptions at 5.2-5.4 ppm, which coincided with the buildup of substantial concentrations of 6a.

We isolated [Cp(CO)₂FeCH(CH₃)O]₃SiPh (5b) in 24% yield by size-exclusion chromatography, as outlined in the Experimental Section. This chromatography procedure, when used on 0.5-2.0 mmol scale reactions, had been used to separate similar hydrosilation reaction products involving dihydrosilanes. Both Cp(CO)₂FeCH-(OSiHR₂)CH₃ (3a) and [Cp(CO)₂FeCH(CH₃)O]₂SiR₂ (4a) (R = Et, Ph), the R₂SiH₂ dihydrosilation products of **1a** (Scheme 1), accordingly had been isolated by sizeexclusion chromatography.^{1b,e} Experimental details also are outlined for working up the **1a**/PhSiH₃ hydrosilation reactions using the more traditional column chromatography on 40 μ m (flash-grade) silica gel-hexane. Under these chromatography conditions, however, considerable decomposition occurred on the column and produced unidentified residues admixed with both 5b and 6a.

The isolated **5b** is a stable yellow oil that that was fully characterized as an equimolar mixture of four diastereomers. Its IR spectrum shows two broadened carbonyl v(CO) bands at 2008 and 1951 cm⁻¹. Chemical shifts for the ¹H and ¹³C NMR spectra of **5b** (Table 1) correspond to those of the fully characterized Cp-(CO)₂FeCH(OSiHPh₂)CH₃ (3a) and [Cp(CO)₂FeCH-(CH₃)O]₂SiPh₂ (4a). Both the ¹H and ¹³C NMR spectra of **5b** are well resolved and further establish it as a constitutionally symmetrical molecule that has three stereogenic Cp(CO)₂FeCHMeO groups branching off an achiral silicon center. The resulting four stereoisomers constitute a diastereomeric pair of enantiomers [RRR (SSS) and RRS (SSR)]³² that accounts for the net 1:1: 1:1 relative intensities for the Cp (and other Cp-(CO)₂FeCHMeO) ¹H and ¹³C NMR spectral resonances of 5b.33

We were unable to isolate Cp(CO)₂FeCH(CH₃)OSiH₂-Ph (**3b**) and [Cp(CO)₂FeCH(CH₃)O]₂SiHPh (**4b**) during the earlier stages of these reactions catalyzed by **2a**. Attempted size-exclusion chromatographic workup produced only fractions that contained varying ratios (always <1:5) of **4b** and **5b**. Although both the ¹H and ¹³C NMR spectra of these reaction mixtures are rich in the number of absorptions corresponding to diastereomeric mixtures for **3b**–**5b**, the isolation of **5b** (and of **4b** from the **2c**-catalyzed reactions, vide infra) greatly simplified the assignment of their NMR spectra and spectral monitoring of these hydrosilation reactions.

NMR spectroscopic monitoring of the catalyzed Ph-SiH₃ hydrosilation of **1a** also was facilitated by spreading out of the corresponding absorptions for **3b**-**5b**. In particular, a characteristic downfield progression of the methine quartets, Cp singlets, and methyl doublets occurs in their ¹H NMR spectra in going from **5b** to **4b** to **3b**. These chemical shift regions for each of **3b**-**5b** are consistent with the results of COSY NMR experiments.³³

Ethoxyphenylsilanes $H_xSi(EtO)_{3-x}Ph(x = 1-3)$ that might have originated from continued oxidative addition of PhSiH₃ to **3b**-**5b** and then reductive elimination were not detected. Similar elimination of alkoxysilanes from CpFe α -siloxyethyl complexes has been observed with trialkylsilanes upon photolysis or heating.³⁴ ¹H and ¹³C NMR spectral data of authentic samples of these ethoxysilanes, generated by **2**-catalyzed dehydrogenative silation of ethanol with PhSiH₃,^{5a} were obtained independently. These ethoxyphenylsilanes exhibit diagnostic ¹H NMR absorptions at δ 3.6–3.7 and 1.0–1.2 and ¹³C NMR resonances at δ 18–19 and 59–61 that easily would have been detected during the hydrosilation of **1a**.

Substitution of $(CO)_5MnC(O)Ph$ (**2b**) as the precatalyst (4.4%) under otherwise identical reaction conditions considerably accelerated the PhSiH₃ hydrosilation of Cp(CO)₂FeC(O)CH₃ (**1a**)—the substrate was depleted within 30 min. In its place, a mixture containing 4% **3b**, 22% **4b**, 72% **5b**, and approximately 2% Cp-(CO)₂FeCH₂CH₃ (**6a**) was quantified by ¹H NMR spectroscopy. Over 2 h, **3b** was consumed, leaving 15% **4b**, 81% **5b**, but only 4% **6a**. Prolonged sitting of the reaction mixture up to 12 h only increased the yield of **6a** to 15–20% (peak broadening of the ¹H NMR spectra was problematic). The higher yields of **5b** when using **2b** as the precatalyst facilitated the isolation of **5b** by size-exclusion chromatography on polystyrene beads. It

⁽³¹⁾ The ratio of the integral traces of the Cp resonances for **5b** is 0.61 times that of Cp(CO)₂FeEt (**6a**) or $n_{5b} = (0.61)n_{6a}$ (n = number of moles), after accounting for the relative number of Cp rings involved. Thus, $n_{1a} = n_{6a} + 3n_{5b}$, and $n_{1a} = n_{6a} + 3(0.61)n_{6a} = 2.83n_{6a}$. This affords $n_{6a}/n_{1a} = 0.35$ or 35% and 65% yields of **6a** and **5b**, respectively, as deduced from the ratio of the Cp ligand integrations and the observation that all of the substrate **1a** had been converted to **6a** and **5b**.

⁽³²⁾ Eliel, E. L.; Wilen, S. H. *Stereochemistry of Organic Compounds*;
Wiley: New York, 1994; p 68.
(33) ¹H NMR spectra of isolated **4b** and **5b** (with discussion of their

^{(33) &}lt;sup>1</sup>H NMR spectra of isolated **4b** and **5b** (with discussion of their assignments) as well as of the reaction mixtures of **2a**- and **2c**-catalyzed PhSiH₃ hydrosilation of **1a** are deposited in the Supporting Information.

^{(34) (}a) Akita, M.; Oku, T.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1989, 1790. Akita, M.; Oku, T.; Tanaka, M.; Moro-oka, Y. Organometallics 1991, 10, 3080. (b) Brunner, H.; Fisch, K. Ang. Chem., Int. Ed. Engl. 1990, 29, 1131; J. Organomet. Chem. 1991, 412, C11.

Scheme 3

was very difficult to completely remove all of **4b**, although benzene easily eluted 100-150 mg samples of **5b** that were contaminated with 5-10% **4b**.

The precatalyst (PPh₃)(CO)₄MnC(O)CH₃ (**2c**) differed in activity from **2a** and **2b** in that PhSiH₃ hydrosilation of **1a** yielded [Cp(CO)₂FeCH(CH₃)O]₂SiHPh (**4b**) as the major product. The use of **2c** (3.0 mol %) as the precatalyst consumed **1a** within 0.5 h and selectively yielded **4b** and **6a** as the only NMR detectable products. With 1.2 equiv of PhSiH₃, the yields of **4b** and **6a** went from 71% and 10% after 0.5 h to 66% and 19% after 5 h. With 0.50 equiv of PhSiH₃ under otherwise identical conditions, **1a** transformed to mixtures containing 73% **4b** plus 6% **6a**.³³

The ¹H NMR spectrum of [Cp(CO)₂FeCH(CH₃)O]₂-SiHPh (4b) also exhibits four sets of NMR absorptions for its Cp(CO)₂FeCHMeO groups. These NMR absorptions are anticipated for a constitutionally symmetrical molecule that has two stereogenic Cp(CO)₂FeCHMeO groups separated by the SiHPh center. This structure affords four stereoisomers, a pair of enantiomers having a prochiral center $[R \cdot R (S \cdot S)]$ and two meso diastereoisomers each with their pseudoasymmetric centers [RrS and RsS]. The meso diastereoisomers account for two sets of ¹H and ¹³C NMR absorptions for their Cp(CO)₂FeCHMeO groups, whereas the enantiomeric pair exhibits two sets of NMR absorptions due to the presence of their diastereotopic and magnetically nonequivalent Cp(CO)₂FeCHMeO moieties. Detailed NMR assignments for these sets of NMR absorptions of 4b, however, were more difficult to make than those for 5b because of overlapping of the NMR spectral absorptions.33

2. RhCl(PPh₃)₃-Catalyzed PhSiH₃ Hydrosilation of Iron Acyl Complexes Cp(CO)(L)FeC(O)R. The RhCl(PPh₃)₃-catalyzed PhSiH₃ hydrosilation of Cp(CO)₂-FeC(O)CH₃ (1a) is the most efficient procedure for reducing it to Cp(CO)₂FeCH₂CH₃ (6a), albeit at the expense of producing another organoiron product—the known^{16b,19} vinyl complex Cp(CO)₂FeCH=CH₂ (7a), eq 2. A mixture of 7a (32%), 6a (49%), and [Cp(CO)₂FeCH-(CH₃)O]₂SiHPh (4b) (12–14%) results from the reaction

of **1a** (0.20 mmol) with 1.6 equiv of PhSiH₃ and 3.2% RhCl(PPh₃)₃ in C₆D₆, as deduced by ¹H and ¹³C NMR spectroscopy. The catalyst and silane concentrations were optimized for the rapid depletion of substrate **1a** (40 to 60 min), conditions under which neither Cp₂-Fe₂(CO)₄ (δ 4.22) nor Cp(CO)₂FeH (δ -11.8) were detected. Isolated yields of spectroscopically pure **6a** varied from 48% (0.50 mmol scale) to 51% (0.20 mmol scale) after chromatography on alumina.

CH₃

To probe the mechanism for the RhCl(PPh₃)₃-catalyzed PhSiH₃ hydrosilation of **1a**, we looked at the independent reactions of several Cp(CO)₂Fe- α -siloxyethyl complexes with RhCl(PPh₃)₃/PhSiH₃ (Scheme 3). The addition of catalytic quantities of RhCl(PPh₃)₃ had no effect on mixtures of Cp(CO)₂FeCH(OSiMe₂Ph)CH₃^{1a} or [Cp(CO)₂FeCH(CH₃)O]₃SiPh (**5b**) with PhSiH₃ over at least 3 h. We did note, however, the much slower dehydrogenative silation and oligomerization of PhSiH₃ to at least PhH₂SiSiH₂Ph (10%).⁷

In contrast, $[Cp(CO)_2FeCH(CH_3)O]_2SiHPh$ (**4b**) proved to be a more responsive substrate toward RhCl(PPh₃)₃/ PhSiH₃. The substrate **4b** was generated conveniently from **2c**-catalyzed hydrosilation of **1a** (0.50 equivalent of PhSiH₃) as a mixture containing 72% **4b** and 2% **6a** but no residual PhSiH₃. Although the addition of 3% RhCl(PPh₃)₃ to this mixture had no effect, repeating the Scheme 4

same procedure and adding another $1.0 \text{ equiv of PhSiH}_3$ yielded 12% **6a** after 2 h.

Wilkinson's compound also catalyzed the PhSiH₃ hydrosilation-deoxygenation of Cp(PPh₃)(CO)FeC(O)-CH₃ (**1b**). The addition of 1.6 equiv of PhSiH₃ and 3.2% RhCl(PPh₃)₃ promptly transformed **1b** to a mixture containing 61% Cp(PPh₃)(CO)FeCH₂CH₃ (**6b**), 11% Cp-(PPh₃)(CO)FeCH=CH₂ (**7b**), and 11% Cp(PPh₃)(CO)FeH (**8b**) (eq 3). A slightly higher yield of the ethyl com-

pound **6b** (62%) was realized after column chromatography of a larger scale reaction (0.50 mmol). The presence of **7b** and **8b** was signaled by diagnostic ¹H NMR spectral absorptions for their vinyl and iron hydride spin systems, respectively.

Five other iron acyl compounds— $Cp(CO)_2FeC(O)Ph$ (9), $Cp(CO)_2FeC(O)CH(CH_3)_2$ (10), $Cp(CO)_2FeC(O)C$ -

(CH₃)₃ (11), Cp[P(OMe)₃](CO)FeC(O)CH₃ (1c), and Cp-[P(OPh)₃](CO)FeC(O)CH₃ (**1d**)—were subjected to similar hydrosilation procedures. The resulting fully reduced alkyl complexes are reported in Table 2 as both their in situ NMR spectral and isolated yields after chromatography. Both yields, in good agreement with one another, ranged from 58% (for 9) to 87% (1d). The model substrate 1a under comparable reaction conditions, in contrast, afforded somewhat lower yields of 6a, due to the presence of **4b** and especially the vinyl complex **7a**. Of the five new iron acyl compounds, only the trimethyl-phosphite-substituted acetyl complex 1c provided detectable concentrations of a vinyl complex, Cp[P(OMe)₃](CO)FeCH=CH₂^{2a} (7c). Catalytic hydrosilation-deoxygenation, using RhCl(PPh₃)₃ and Ph₂SiH₂ in CH₂Cl₂, also has been reported by Akita, Moro-oka, and co-workers.³ They transformed **1b** to **6b** plus varying amounts of 7b and Cp(CO)₂FeC(O)Ph (9) to Cp-(CO)₂FeCH₂Ph plus Cp(CO)₂FeCH(OMe)Ph after methanolysis.

A plausible pathway for the rhodium(I)-catalyzed hydrosilation–reduction of iron acyl complexes to their fully reduced alkyl compounds (Scheme 4) has as its first step catalytic hydrosilation that gives an α -siloxyalkyl intermediate, Cp(L)(CO)FeCH(OSiH₂Ph)R (**3**). In this first step, RhCl(PPh₃)₂ as the active catalyst promotes hydrosilation of the acyl complex analogous to the accepted mechanism for the Rh(I)-catalyzed hydrosilation of ketones.^{6,35} We emphasize, however, that although this latter reaction often provides vinyl silyl ethers as byproducts (e.g., PhC(OSiR₃)=CH₂ from PhC-(O)CH₃),³⁶ full reduction of the acyl functionality to a methylene group is rare.^{6,37}

The resulting α -siloxyalkyl intermediate **3** then continues to react with the active catalyst and PhSiH₃ (or $Ph_2SiH_2^3$), perhaps via an active catalyst $PhSiH_3$ adduct (PhH₂Si)(H)RhCl(PPh₃)₂.^{6,38} This hydrido(silyl)rhodium(III) transient would transfer hydride to 3 concurrent with abstracting the α -siloxy group as a disiloxane. A potential driving force for loss of the α -siloxy group relates to the established proclivity of organometallic centers to ionize even poor leaving groups from a sp³ hybridized α -carbon.³⁹ This ionization step is commonly used to produce stable alkylidene derivatives such as $Cp(L)(CO)Fe=CHCH_3^+$, ^{39a,b} which are reduced by hydride donors (giving 6) or are deprotonated by weak bases (giving 7).^{24a} Accordingly, we hypothesize that hydrido(silyl)rhodium(III), while abstracting the α -siloxy group, also competitively deprotonates **3** to a vinyl complex 7 concurrent with releasing disiloxane and H₂- $RhCl(PPh_3)_2$ (then H_2).

Supporting evidence for the ionization-deoxygenation step is available from the studies of Akita, Moro-oka, and co-workers³ on the RhCl(PPh₃)₂-catalyzed reactions of Ph₂SiH₂ with iron α -methoxyalkyl complexes. They observed that RhCl(PPh₃)₃ in the presence of Ph₂SiH₂ catalytically deoxygenated Cp(PPh₃)(CO)FeCH(OCH₃)R $(R = H, CH_3)$ to give $Cp(PPh_3)(CO)FeCH_2R$, although $Cp(CO)_2FeCH_2OCH_3$ was inert. This diminution in reactivity by switching to the comparatively electrondeficient $Cp(CO)_2Fe$ moiety can be attributed to its diminished capability of promoting the alkoxide ionization or otherwise stabilizing an incipient positive charge at the α -carbon.

We propose that the RhCl(PPh₃)₂·PhSiH₃ adduct preferentially reduces the mono- α -siloxyethyl intermediates $Cp(L)(CO)FeCH(OSiH_2Ph)CH_3$ (3), as opposed to their bis- and tris-counterparts **4** and **5**. The intermediates 3-5 were detected only during the catalytic PhSiH₃ hydrosilation of 1a. With this substrate, choice of a manganese acyl precatalyst 2a-c gave variable amounts of **3b**–**5b**, although **3b** never accumulated in more than 18% of the converted **1a** and never appeared as part of the final product array. These observations correspond to using 2a-c as catalysts, whereas choice of RhCl-

(36) (a) Benes, J.; Hetflejs, J. Collect. Czech. Chem. Commun. 1976, 41, 2264. (b) Sakurai, H.; Miyoshi, K.; Nakadaira, Y. Tetrahedron Lett. 1977, 2671. (c) Matsumoto, H.; Hoshino, Y.; Nagai, Y. Bull. Chem. Soc. Jpn. 1981, 54, 1279. (d) Payne, N. C.; Stephan, D. W. Inorg. Chem. 1982, 21, 182. (e) Lappert, M. F.; Maskell, R. K. J. Organomet. Chem. 1984, 264, 217. (f) Brunner, H.; Becker, R.; Riepl, G. Organometallics 1984, 3, 1354. Brunner, H.; Kurzinger, A. J. Organomet. Chem. 1988, 346, 413. (g) Ojima, I.; Donovan, R. J.; Clos, N. Organometallics 1991, 10, 2606. (h) Wright, M. E.; Cochran, B. B. J. Am. Chem. Soc. 1993, 115, 2059; Organometallics 1996, 15, 317.

(37) Cullen, W. R.; Evans, S. V.; Han, N. F.; Trotter, J. Inorg. Chem. 1987. 26. 514.

(c) Bruce, M. I. Chem. Rev. 1991, 91, 197.

 $(PPh_3)_3$ as the precatalyst and **1a** as the substrate gave <15% [Cp(CO)₂FeCH(CH₃)O]₂SiHPh (**4b**) as the minor byproduct to $Cp(CO)_2FeCH_2CH_3$ (6a) and $Cp(CO)_2$ -FeCH=CH₂ (7a). Nevertheless, isolated samples of 4b when subjected to RhCl(PPh₃)₃/PhSiH₃ catalysis only slowly reduced to Cp(CO)₂FeCH₂CH₃ (**6a**); in separate reactions, **5b**, as well as Cp(CO)₂FeCH(OSiMe₂Ph)CH₃, remained inert. It is of course possible that acyl substrates with more electron-rich iron centers, especially 1b, may form (undetected) mono-, bis-, and tris- α -siloxyethyl intermediates [Cp(L)(CO)FeCH(CH₃)O]_x- $SiH_{3-x}Ph$ (3, x = 1; 4, x = 2; 5, x = 3) that undergo subsequent catalytic deoxygenation or deprotonation along with loss of disiloxane.

A reaction pathway similar to that advanced in Scheme 4 for the hydrosilation-deoxygenation of iron acyl complexes using RhCl(PPh₃)₃ as the catalyst also applies to the manganese acyl precatalysts 2a-c. These precatalysts could afford coordinatively unsaturated $L(CO)_3MnSiH_2Ph$ (L = CO, PPh₃) as the presumed active catalysts.^{4a} Analogous manganese silyls, generated by hydrosilation of 2a-c with excess hydrosilane and by photolysis of (CO)₅MnSiR₃, are postulated active catalysts for the hydrosilation of ketones, 5c esters, 5b and Cp(CO)₂FeC(O)R.^{1b,e} Indeed, treatment of (CO)₅MnC-(O)CH₃ (1a) with PhSiH₃ yields α -siloxyethyl complexes $[(CO)_5MnCH(CH_3)O]_xH_{3-x}SiPh (3c-5c);^{33}$ their degradation was reminescent of the hydrosilation chemistry of 2a-c with other hydrosilanes to generate transient concentrations of the purported hydrosilation active catalysts.^{1a,b,d} Studies in progress address the proposed use of active catalyst-hydrosilane adducts, L(CO)₃Mn- $(H)(SiR_3)_2$, as reducing agents toward organic silvl acetals and organometallic α -siloxyalkyl complexes.

Conclusions

The PhSiH₃/RhCl(PPh₃)₃ catalytic system affords a convenient synthetic procedure for the hydrosilation then deoxygenation of organoiron acyl complexes Cp-(L)(CO)FeC(O)R to yield their alkyl derivatives Cp(L)-(CO)FeCH₂R. We used the transformation of $Cp(CO)_2$ - $FeC(O)CH_3$ (1a) to $Cp(CO)_2FeCH_2CH_3$ (6a) as the control reaction for optimizing catalysis, although this substrate of the seven iron acyl complexes studied provided the lowest yields (49%) of its reduced alkyl. With 3% RhCl(PPh₃)₃ and 1.6 equiv of PhSiH₃, the reduced yields of **6a** corresponded to the presence of Cp(CO)₂FeCH=CH₂ (7a) (32%) and [Cp(CO)₂FeCH- $(CH_3)O]_2SiHPh$ (4b) (12–14%). The other iron acyl complexes provided their fully reduced alkyl derivatives (0.50 mmol scale reactions) in 58-87% isolated yields after chromatography, for which analogous vinyl byproducts were observed with only two other iron acyl substrates.

The manganese carbonyl acyl complexes L(CO)₄MnC-(O)R (L = CO, R = CH₃ (**2a**); L = CO, R = Ph (**2b**); L = PPh₃, $R = CH_3$ (2c)) also served as viable PhSiH₃ hydrosilation precatalysts for 1a. With 1 equiv of PhSiH₃ and 3% manganese acyl precatalyst, these reactions produced Cp(CO)₂FeCH(CH₃)OSiH₂Ph (3b), [Cp(CO)₂FeCH(CH₃)O]₂SiHPh (4b), and [Cp(CO)₂FeCH-(CH₃)O]₃SiPh (**5b**) plus variable amounts of **6a** (maximum 35% with 2a) but no 7a. Depending on the choice of precatalyst, both 4b and 5b were isolated whereas

^{(35) (}a) Ojima, I.; Kogure, T.; Kumagai, M.; Horiuchi, S.; Sato, T. J. Organomet. Chem. 1976, 122, 83. Ojima, I.; Kogure, T.; Kumagai, M. Org. Chem. 1977, 42, 1671. Ojima, I.; Kogure, T. Organometallics **1982**, *I*, 1390. (b) Hayashi, T.; Yamamoto, K.; Kumada, M. J. Organomet. Chem. **1976**, *113*, 127. (c) Corriu, R. J. P.; Moreau, J. J. E. Nouv. J. Chim. **1977**, *1*, 71. (d) Peyronel, J. F.; Kagan, H. B. Nouv. J. Chim. **1978**, *2*, 211. Kagan, H. B.; Peyronel, J. F.; Yamagishi, T. In Adv. Chem. Ser. 1979, 173, 50. (e) Kolb, I.; Hetflejs Collect. Czech. Chem. Commun. 1980, 45, 2224. (f) Zheng, G. Z.; Chan, T. H. Organometallics 1995, 14, 70 and references therein.

⁽³⁸⁾ Reviews on metal silyl complexes: (a) Tilley, T. D. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley Interscience: New York, 1989; Part 2, Chapter 24. (b) Lus, whey interstetere. New York, 1969, Fart 2, Chapter 24. (b)
 Tilley, T. D. In *The Silicon–Heteroatom Bond*, Patai, S., Rappoport,
 Z., Eds.; Wiley: New York, 1992; Chapter 10.
 (39) (a) Brookhart, M.; Studabaker, W. B. *Chem. Rev.* 1987, *87*, 411.
 (b) Cutler, A. R.; Hanna, P. K.; Vites, J. C. *Chem. Rev.* 1988, *88*, 1363.

3b was only detected by ¹H and ¹³C NMR spectral monitoring. We believe that **3b**, as opposed to **4b** or **5b**, preferentially undergoes reduction to **6a** with the manganese acyls **2a**-**c** (or RhCl(PPh₃)₃) as the precatalysts. Consistent with this hypothesis, samples of **4b** and **5b** were poor substrates for PhSiH₃/RhCl(PPh₃)₃ reduction to **6a**. We surmise that similar intermediates Cp(L)(CO)FeCH(OSiH₂Ph)R **(3)** serve as precursors to other alkyl products, Cp(L)(CO)FeCH₂R).

Acknowledgment. We gratefully acknowledge receiving generous financial support from the Department of Energy, Office of Basic Energy Science. We also are indebted to Dr. Paul Hanna and Edward Crawford (RPI) for their preliminary observations.

Supporting Information Available: ¹H NMR spectra of isolated **4b** and **5b** (with discussion of their assignments) and of the reaction mixtures of **2a**- and **2c**-catalyzed PhSiH₃ hydrosilation of **1a**, as well as spectroscopic data, and discussion of the reaction of **2a** and PhSiH₃ (9 pages). Ordering information is given on any current masthead page.

OM970659M