Reactions of the Rhenacarborane $[N(PPh_3)_2]_2[Re(CO)_3(\eta^5-7-CB_{10}H_{11})]$ with Pentamethylcyclopentadienylrhodium and -iridium **Complexes**[†]

John C. Jeffery,[‡] Paul A. Jelliss,[§] Leigh H. Rees,[‡] and F. Gordon A. Stone^{*,§}

Department of Chemistry, Baylor University, Waco, Texas 76798-7348, and School of Chemistry, The University, Bristol BS8 1TS, U.K.

Received January 20, 1998

The rhenium salt $[N(PPh_3)_2]_2[Re(CO)_3(\eta^5-7-CB_{10}H_{11})]$ (**1a**) reacts with the group 9 transition-metal complexes $[M(NCMe)_3(\eta^5-C_5Me_5)][BF_4]_2$ (M = Rh, Ir) to form neutral binuclear metal compounds $[\text{ReM}(\text{CO})_3(\eta^5-C_5\text{Me}_5)(\eta^5-7-\text{CB}_{10}\text{H}_{11})]$ (M = Rh (**3a**), Ir (**3b**)). Complex **3a** was characterized by X-ray diffraction as having a $Rh(\eta^5-C_5Me_5)$ fragment attached to the icosahedral *closo*-2,1-ReCB₁₀ framework by a Re–Rh bond and two B–H–Rh linkages. The latter involve boron atoms in α - and β -sites with respect to the cage carbon atom of the

CBBBB face of the cage ligating the Re atom. At ambient temperatures, the complex is highly dynamic in solution, although significant exopolyhedral mobility of the Rh(η^5 -C₅- Me_5) fragment was suppressed by cooling solutions to -88 °C, as determined by a variabletemperature NMR study. Treatment of **3a** with phosphines PR_3 ($PR_3 = PMe_3$, PMe_2Ph) yields the complexes $[ReRh(CO)_3(PR_3)(\eta^5-C_5Me_5)(\eta^5-7-CB_{10}H_{11})]$ (PR₃ = PMe₃ (**4b**), PMe₂Ph (5)). Product **4b** exists only in the form of one green isomer, which contains a B_{β} -H \rightarrow Rh agostic bond, whereas 5 consists of a mixture of red and green isomers 5a and 5b, respectively. Red crystals of **5a** were isolated, and X-ray diffraction revealed that the η^{5} - C_5Me_5 ligand carried by the rhodium atom lies in an anti configuration with respect to the cage carbon atom of the *nido*-7-CB₁₀H₁₁ ligand, which is η^5 -bound to the rhenium atom. The rhodium atom is also connected to the cage through a B_{α} -H \rightarrow Rh system, involving a

boron atom in a position α to the cage carbon atom of the CBBBB face of the cage. In solution, an equilibrium exists between the syn and anti isomers of **5a** and those of the green complex **5b**. The latter contain a B_{β} -H \rightarrow Rh bonded system. Although **3b** could not be isolated, it could be formed at temperatures below 0 °C and reacted in situ with the phosphines PMe₃ and PMe₂Ph to yield the stable species [ReIr(CO)₃(PR₃)(η^{5} -C₅Me₅)(η^{5} -7-CB₁₀H₁₁)] (PR₃ = PMe₃ (6), PMe₂Ph (7)). For both 6 and 7 it was possible to separate the α - and β -isomeric forms by column chromatography to give 6a/7a and 6b/7b, respectively. Complex 6a was determined by X-ray diffraction to be the anti isomer with a $B_{\alpha}-H$ -Ir bond. In solution, both **6a** and **6b** exist as mixtures of syn and anti isomers. The structure of **7b** determined by X-ray diffraction showed it to have a B_{β} -H-Ir linkage and to be the syn isomer, the only isomeric form in solution, while 7a had a B_{α} -H-Ir exopolyhedral bond and was a mixture of both syn and anti isomeric species.

Introduction

Relatively few 12-vertex monocarbon metallacarborane complexes have been described¹ since these species were first reported many years ago.² Thus, the versatility of [nido-7-CB₁₀H₁₁]³⁻ as a ligand has hitherto been neglected, a fact which prompted us to prepare the salt $[Na][Pt(PEt_3)_2(\eta^5-7-CB_{10}H_{11})]$ and to use it to synthesize dimetal species with Pt-Cu, Pt-Au, and Pt-Hg bonds.^{3a} Whereas in the products with Pt-Au and Pt-Hg bonds the *nido*-7-CB₁₀H₁₁ group adopts a spectator role in the sense that the carborane cage is solely bonded to platinum in the expected η^5 manner, in the copperplatinum complex, the Pt-Cu bond is augmented by two

[†] The compounds described in this paper have a rhenium atom incorporated into a *closo*-1-carba-2-rhenadodecaborane structure. However, to avoid a complicated nomenclature for the complexes reported and to relate them to the many known rhenium species with η^{5} coordinated cyclopentadienyl ligands, we treat the cages as *nido*-11-vertex ligands with numbering as for an icosahedron from which the twelfth vertex has been removed.

[‡] University of Bristol.

[§] Baylor University.

⁽¹⁾ Grimes, R. N. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford, U.K., 1995; Vol. 1 (Housecroft, C. E., Ed.), Chapter 9.

⁽²⁾ Knoth, W. H. J. Am. Chem. Soc. 1967, 89, 3342. Hyatt, D. E.; Little, J. L.; Moran, J. T.; Scholer, F. R.; Todd, L. J. J. Am. Chem. Soc. 1967, 89, 3342. Knoth, W. H. Inorg. Chem. 1971, 10, 598. Rietz, R. R.; Dustin, D. F.; Hawthorne, M. F. Inorg. Chem. 1974, 13, 1580.
(3) (a) Batten, S. A.; Jeffery, J. C.; Jones, P. L.; Mullica, D. F.; Rudd, M. D.; Sappenfield, E. L.; Stone, F. G. A.; Wolf, A. Inorg. Chem. 1997, 36, 2570. (b) Blandford, I.; Jeffery, J. C.; Jelliss, P. A.; Stone, F. G. A. Organometallics 1998, 17, 1402.

exopolyhedral B-H-Cu linkages formed by B-H ver-

texes in the CBBBB ring ligating the platinum. We have recently prepared the first monocarbon rhenacarborane $[\text{Re}(\text{CO})_3(\eta^5-7-\text{CB}_{10}\text{H}_{11})]^{2-}$ isolating this dianionic complex as the [N(PPh₃)₂]⁺ (1a) or [NEt₃(CH₂Ph)]⁺ (1b) salts, Chart 1.^{3b} Studies using 1a as a synthon have afforded new rhenium-platinum and -palladium complexes [ReM(CO)₃(PR₃)₂(η^{5} -7-CB₁₀H₁₁)] (M = Pt, R = Ph (2a), R = Et (2b)) and $[ReM(CO)_3(diphos)(\eta^5-7 CB_{10}H_{11}$] (M = Pt (**2c**), Pd (**2d**), diphos = Ph₂PCH₂CH₂-PPh₂). In these products, the *closo*-2,1-ReCB₁₀ framework forms an exopolyhedral Re–Pt or Re–Pd σ bond while, in addition, there are agostic three-center twoelectron $B-H \rightarrow M$ (M = Pt or Pd) interactions involving B–H vertexes in the CBBBB ring η^5 -coordinated to the rhenium. In this paper, we report further studies with the salt **1a** directed toward the synthesis of complexes with Re-Rh and Re-Ir bonds. It was anticipated that these species might reveal novel molecular structures

in which rhodium or iridium atoms are exopolyhedrally attached to *closo*-2,1-ReCB₁₀ cages both by metal-metal bonds and by B-H \rightarrow M (M = Rh or Ir) linkages.

Results and Discussion

Treatment of **1a** with $[Rh(NCMe)_3(\eta^5-C_5Me_5)][BF_4]_2$ in acetonitrile gave the rhenium–rhodium complex **3a**, which on the basis of microanalytical, IR, and NMR data (Tables 1–3) could be formulated as having the composition [ReRh(CO)₃(η^{5} -C₅Me₅)(η^{5} -7-CB₁₀H₁₁)]. However, such a formulation implies a dimetal species with 30 cluster valence electrons (cve), four short of the number required to give a closed 18-electron shell to each of the metal atoms. Accordingly, an X-ray diffraction study was carried out, the results of which are discussed before the spectroscopic data are reviewed.

The molecular structure of **3a** is shown in Figure 1, and salient bond distances and angles are listed in Table 4. A complication of the structure determination was the fact that 3a crystallized with three crystallographically independent molecules in the asymmetric unit. All three molecules are structurally akin with Re-Rh bond distances close in magnitude (Re(1)-Rh(1) 2.8345(6) Å, Re(2)-Rh(2) 2.8526(6) Å, Re(3)-Rh(3) 2.8214(6) Å). These parameters all compare well with the Re-Rh distances established in the binuclear metal complexes $[\text{ReRh}\{\mu - \sigma, \eta^5 - 7, 8 - \text{Me}_2 - 10 - \text{CH}_2(\text{C}_6\text{H}_4\text{Me} - 4) - 7, 8 - \text{C}_2\text{B}_9\text{H}_7\}$ $(CO)_4(\eta^5-C_5H_4Me)$] (2.888(1) Å)^{4a} and [ReRh(μ -CO)₂{ μ - $Ph_2P(CH_2)PPh_2_2(Me)(CO)_2[CF_3SO_3]$ (2.8510(5) Å).^{4b} The three rhenium atoms are each bound in an η^5 manner by their respective *nido*-7-CB₁₀H₁₁ cages, and all Re-C-O angles are near-linear (Re(1)-C-O average 176.4°, Re(2)-C-O average 176.9°, Re(3)-C-O

^{(4) (}a) Pilotti, M. U.; Stone, F. G. A.; Topaloğlu, I. *J. Chem. Soc., Dalton Trans.* **1991**, 1621. (b) Antonelli, D. M.; Cowie, M. *Organome-tallics* **1991**, *10*, 2550.

				anal.	/% ^b
compd	color	yield/%	$\nu_{\rm max}({\rm CO})^{a/cm^{-1}}$	С	Н
3a [ReRh(CO) ₃ (η^{5} -C ₅ Me ₅)(η^{5} -7-CB ₁₀ H ₁₁)]	red-brown	81	2026vs, 1962m, 1930s	25.7 (26.3)	4.2 (4.1)
4b [ReRh(CO) ₃ (PMe ₃)(η^{5} -C ₅ Me ₅)(η^{5} -7-CB ₁₀ H ₁₁)]	deep green	67	2020vs, 1936s, 1872m	28.3 (28.5)	4.9 (4.9)
5 [ReRh(CO) ₃ (PMe ₂ Ph)(η^{5} -C ₅ Me ₅)(η^{5} -7-CB ₁₀ H ₁₁)]	red-green ^c	72	2024vs, 1945s, 1868m	31.2 (32.0)	$4.5 (4.8)^d$
6a [ReIr(CO) ₃ (PMe ₃)(η^{5} -C ₅ Me ₅)(η^{5} -7-CB ₁₀ H ₁₁)] (α)	orange	18	2030vs, 1950s, 1888m	25.5 (25.4)	4.4 (4.4)
6b [ReIr(CO) ₃ (PMe ₃)(η^{5} -C ₅ Me ₅)(η^{5} -7-CB ₁₀ H ₁₁)] (β)	purple	73	2022vs, 1938s, 1874m	25.3 (25.4)	4.4 (4.4)
7a [ReIr(CO) ₃ (PMe ₂ Ph)(η^{5} -C ₅ Me ₅)(η^{5} -7-CB ₁₀ H ₁₁)] (α)	orange	50	2032vs, 1955s, 1920m	29.6 (30.5)	4.2 (4.3)
7b [ReIr(CO) ₃ (PMe ₂ Ph)(η^{5} -C ₅ Me ₅)(η^{5} -7-CB ₁₀ H ₁₁)] (β)	purple	17	2022vs, 1938s, 1865m	30.5 (30.5)	4.3 (4.3)

^{*a*} Measured in CH₂Cl₂; medium-intensity broad bands observed at ca. 2550 cm⁻¹ in the spectra of all the compounds are due to B–H absorptions. ^{*b*} Calculated values are given in parentheses. ^{*c*} Complex **5a** is red, and **5b** is green (see text); solutions of **5** in CH₂Cl₂ are colored green-brown. ^{*d*} Crystallizes with a molecule of CH₂Cl₂.

Table 2. ¹H and ¹³C NMR Data^a

compd	$^{1}\mathrm{H}/\delta^{b}$	$^{13}\text{C}/\delta^{c}$
3a	2.06 (s, 15 H, Me), 2.84 (s br, 1 H, CH)	194.8 (CO), 102.6 (d, <i>C</i> ₅ Me ₅ , <i>J</i> (RhC) 8), 49.1 (br, CH), 11.1 (C ₅ <i>Me</i> ₅)
4b ^d	$-11.56,^{\dagger}-10.70$ (m br, 1 H, B–H–Rh), 1.47 [†] (dd, 9 H, PMe, J(PH) 10, J(RhH) < 2), 1.59 (dd, 9 H, PMe, J(PH) 11, J(RhH) < 2), 1.93 [†] (m, 15 H, C ₅ Me ₅), 1.94 (d, 15 H, C ₅ Me ₅ , J(PH) 4), 2.03, 2.05 [†] (s br, 1 H, CH)	197.7, ^e 197.0 (CO), 105.9 [†] (dd, C_5 Me ₅ , J (PC) 6, J (RhC) 3), 105.7 (dd, C_5 Me ₅ , J (PC) 8, J (RhC) 4), 20.5 (d, PMe, J (PC) 30), 19.8 [†] (d, PMe, J (PC) 29), 11.1, 11.0 [†] (C_5 Me ₅)
5	 -11.26,* -10.47 (m br, 1 H, B−H→Rh), 1.50 (d, 3 H, PMe, J(PH) 10), 1.59* (d, 15 H, C₅Me₅, J(PH) 4), 1.65 (d, 15 H, C₅Me₅, J(PH) 4), 1.70* (d, 3 H, PMe, J(PH) 10), 1.85 (d, 3 H, PMe, J(PH) 10), 1.96 (s br, 1 H, CH), 2.00* (d, 3 H, PMe, J(PH) 11), 2.11* (s br, 1 H, CH), 7.48-7.54 (m, 5 H, Ph) 	197.7, 196.7 (CO), 134.2–129.4 (Ph), 106.2 (dd, C_5Me_5 , $J(PC)$ 5, $J(RhC)$ 2), 106.0* (m, C_5Me_5), 43.4 (br, CH), 20.8 (d, PMe, $J(PC)$ 27), 20.3,* 18.2* (d × 2, PMe, $J(PC)$ 30 and 28), 13.7 (d, PMe, $J(PC)$ 28), 10.7, 10.5* (C_5Me_5)
6a	-13.54 (m br, 1 H, B-H→Ir), 1.58 (d, 9 H, PMe, J(PH) 10), 1.77* (d, 9 H, PMe, J(PH) 10), 2.01* (d, 15 H, C ₅ Me ₅ , J(PH) 3), 2.07 (d, 15 H, C ₅ Me ₅ , J(PH) 2), 2.10, 2.18* (s br, 1 H, CH)	196.9 (CO), 195.6 (br, CO \times 2), 101.9 (d, C_5 Me ₅ , J (PC) < 2), 101.8* (C_5 Me ₅), 47.3, 44.0* (br, CH), 21.1* (d, PMe, J (PC) 39), 20.7 (d, PMe, J (PC) 38), 10.7, 10.4* (C_5 Me ₅)
6b ^e	 -14.82 (m br, 1 H, B−H→Ir), 1.69 (d, 9 H, PMe, J(PH) 11), 1.82* (d, 9 H, PMe, J(PH) 11), 1.96* (d, 15 H, C₅Me₅, J(PH) 3), 2.04 (d, 15 H, C₅Me₅, J(PH) 2), 2.11 (s br, 1 H, CH) 	
7a	 -13.30 (m br, 1 H, B−H→Ir), 1.54 (d, 3 H, PMe, J(PH) 10), 1.64* (d, 15 H, C₅Me₅, J(PH) 3), 1.79 (d, 15 H, C₅Me₅, J(PH) 2), 1.89* (d, 3 H, PMe, J(PH) 11), 1.98 (d, 3 H, PMe, J(PH) 10), 2.08* (d, 3 H, PMe, J(PH) 11), 2.11^f (s br, 1 H, CH), 7.47-7.56 (m, 5 H, Ph) 	195.2 ^g (br, CO), 134.4–126.9 (Ph), 102.2* (C_5 Me ₅), 102.1 (d, C_5 Me ₅ , J (PC) 2), 22.3 (d, PMe, J (PC) 37), 13.9 (d, PMe, J (PC) 36), 10.2, 10.0* (C_5Me_5)
7 b	-14.49 (m br, 1 H, B $-H$ -Ir), 1.70 (d, 15 H, C ₅ Me ₅ , <i>J</i> (PH) 2), 1.88 (d 3 H PMe, <i>I</i> (PH) 11) 2.02 (d 3 H PMe, <i>I</i> (PH) 11) 7.44 -7.55	196.6 (CO), 134.3 (d, C ¹ (Ph), J (PC) 56), 131.4 (d, C ⁴ (Ph), I(PC) 3) 131.1 (d, C ² (Pb), I (PC) 8) 129.2 (d, C ³ (Pb))

(d, 3 H, PMe, *J*(PH) 11), 2.02 (d, 3 H, PMe, *J*(PH) 11), 7.44–7.55 (m, 5 H, Ph)

196.6 (CO), 134.3 (d, C¹(Ph), J(PC) 56), 131.4 (d, C⁴(Ph), J(PC) 3), 131.1 (d, C²(Ph), J(PC) 8), 129.2 (d, C³(Ph), J(PC) 11), 102.0 (d, C₅Me₅, J(PC) 2), 36.2 (br, CH), 21.5 (d, PMe, J(PC) 39), 18.6 (d, PMe, J(PC) 36), 10.1 (C₅Me₅)

^{*a*} Chemical shifts (δ) in ppm, coupling constants (*J*) in hertz, measurements in CD₂Cl₂ at room temperature. Peaks marked with an asterisk are due to a minor isomer (see text). ^{*b*} Resonances for terminal BH protons occur as broad unresolved signals in the range δ ca. –2 to 3. ^{*c*} ¹H-decoupled chemical shifts are positive to high frequency of SiMe₄. ^{*d*} Peaks marked with a dagger (†) are due to the isomeric form of **4b** initially present as a minor species. ^{*e*} ¹³C{¹H} NMR spectrum unavailable due to very low solubility of sample. ^{*f*} Signal due to cage CH in minor isomer masked by other peaks. ^{*g*} Signal due to cage CH not observed due to low solubility.

average 175.2°). In turn, the Rh atoms are ligated by η^5 -C₅Me₅ groups (Rh(1)-C(C₅Me₅) average 2.162 Å, Rh(2)-C(C₅Me₅) average 2.151 Å, Rh(3)-C(C₅Me₅) average 2.154 Å). Of particular importance is the presence in each of the three molecules of two B-H-Rh three-center two-electron agostic bonds, the hydrogen atoms of which were located and refined. Without exception, and despite apparent disorder in molecule 2, one of these interactions involves a B_{α}-H bond and the other

a B_β-H bond in the C*BB*BB faces of the cages ligating the rhenium atoms. Hence, all molecules lack a mirror plane of symmetry that they might otherwise have contained if both B-H-Rh agostic groups in each complex utilized the two available B_β-H bonds. As would be expected, there are two short Rh-B distances observed in each independent molecule (Rh(1)-B(12) 2.311(7) Å, Rh(1)-B(13) 2.357(7) Å, Rh(2)-B(22) 2.331(7) Å, Rh(2)-B(23) 2.301(8) Å, Rh(3)-B(32) 2.370(8) Å, Rh(3)-B(33) 2.316(7) Å). As a result of the X-ray diffraction study, it can thus be inferred that **3a** contains a [*nido*-7-CB₁₀H₁₁]³⁻ ligand making an overall contribution of $7e^-$ to the dimetal fragment. This donation together with the contributions from the other ligands affords the expected closed shell cve count of 34 for the molecule.

The presence of the two B-H-Rh bonds from the

CBBBB face of the cage ligating the rhenium atom in **3a** deserves further comment in the context of the earlier characterization of numerous dimetal complexes of the transition elements having $[nido-7,8-R_2-7,8-C_2B_9H_9]^{2-}$ (R = H or Me) ligands bridging the metalmetal bonds.⁵ In many of these dicarbon carborane structures, the cage contributes six valence electrons to the overall electron count in the molecule, doing so by formally donating four electrons via η^5 bonding to one metal center and donating two electrons via three-center exopolyhedral bonding to the other. Thus, generally one B-H-M exopolyhedral bond rather than two exists in the structure. However, both the mono- and dicarbon

 ^{(5) (}a) Stone, F. G. A. Adv. Organomet. Chem. 1990, 31, 53. (b) Brew,
 S. A.; Stone, F. G. A. Adv. Organomet. Chem. 1993, 35, 135. (c) Jelliss,
 P. A.; Stone, F. G. A. J. Organomet. Chem. 1995, 500, 307.

Table 3.	¹¹ B and ³¹ P	NMR Data ^a	

compd	$^{11}\mathrm{B}/\delta^{b}$	$^{31}P/\delta^c$
3a	10.3 (1 B), -5.3 (2 B), -9.8 (2 B), -12.7 (1 B), -15.0 (2 B), -18.2 (2 B)	
4b ^{<i>d</i>}	24.6 (1 B, B-H \rightarrow Rh), 21.2 [†] (1 B, B-H \rightarrow Rh), 1.2 [†] (1 B), -1.5 (1 B),	-11.3 (d, <i>J</i> (RhP) 145), -13.1^{\dagger} (d, <i>J</i> (RhP) 150)
	-4.4 (1 B), -6.7 (1 B), -8.4 (1 B), -10.0^{\dagger} (1 B), -13.2 (3 B), -15.7 (2 B),	
	-21.4^{\dagger} (2 B)	
5	22.5* (1 B, B−H→Rh), 22.0 (1 B, B−H→Rh), 1.8 (1 B), 0.8 (1 B),	12.9* (d, J(RhP) 136), 5.8* (d, J(RhP) 134),
	-1.3* (1 B), -3.3 (1 B), -3.9* (1 B), -6.4* (1 B), -8.8* (1 B), -9.4 (1 B),	1.5 (d, <i>J</i> (RhP) 149), -0.1* (d, <i>J</i> (RhP) 146) ^e
	-13.7 (3 B), -16.0 (2 B), -21.4* (1 B)	
6a	23.4 (1 B, B−H→Ir), 21.3* (1 B, B−H→Ir), 2.8 (1 B), 0.9 (1 B), −1.5 (1 B),	$-44.8,^{*}-47.2$
	-9.1* (1 B), -11.2 (1 B), -14.3 (3 B), -15.9 (2 B), -19.5* (1 B)	
6b	25.1 (1 B, B−H→Ir), −0.6 (1 B), −3.0 (1 B), −6.5 (1 B), −8.7 (1 B),	-42.1,* -43.0
	-12.3 (1 B), -14.7 (2 B), -16.3 (1 B), -21.3 (1 B)	
7a	25.5* (1 B, B−H→Ir), 24.8 (1 B, B−H→Ir), 3.5 (1 B), 0.5 (1 B), -0.7 (1 B),	-30.3,* -31.8
	-10.2 (1 B), -14.2 (3 B), -15.1 (1 B), -16.5 (1 B)	
7b	24.4 (1 B, B−H→Ir), −0.5 (1 B), −2.9 (1 B), −6.2 (1 B), −9.2 (1 B),	-32.5
	-12.0 (1 B), -14.2 (1 B), -14.9 (1 B), -16.3 (1 B), -21.3 (1 B)	

^{*a*} Chemical shifts (δ) in ppm, coupling constants (*J*) in hertz, measurements in CD₂Cl₂ at room temperature. Peaks marked with an asterisk are due to a minor isomer (see text). ^{*b*} ¹H-decoupled chemical shifts are positive to high frequency of BF₃·Et₂O (external). B–H–M assignments made from fully coupled ¹¹B spectrum. ^{*c*} ¹H-decoupled chemical shifts are positive to high frequency of H₃PO₄ (external). ^{*d*} Peaks marked with a dagger (†) are due to the isomeric form of **4b** initially present as a minor species. ^{*e*} Peak integral ratio: 1:10:70:30.

Figure 1. Structure of $[ReRh(CO)_3(\eta^5-C_5Me_5)(\eta^5-7-CB_{10}H_{11})]$ (**3a**), showing the crystallographic labeling scheme. Thermal ellipsoids are shown at the 40% probability level. Only the agostic hydrogen atoms are shown for clarity.

carborane copper complexes $[PtCu(PEt_3)_2(PPh_3)(\eta^{5-7-CB_{10}H_{11}})]^{3a}$ and $[Cu_2(PPh_3)_2(\eta^{5-7}, 8-C_2B_9H_{11})]^{6}$ have molecular structures with metal-metal bonds and two B-H-Cu linkages to the exopolyhedral copper atoms.

The IR spectrum of **3a** displayed three $v_{max}(CO)$ absorbances at 2026vs, 1962m, and 1930s cm⁻¹ (Table 1). The compound was extremely soluble in CD_2Cl_2 and gave rise to strong, unambiguous signals in its NMR spectra. The ¹H NMR spectrum (Table 2) was relatively simple with just a sharp singlet due to the methyl groups and a broad signal at δ 2.84 characteristic of a cage CH proton,^{5b} while the ¹¹B{¹H} NMR spectrum (Table 3) revealed a pattern of six peaks (1:2:2:1:2:2). This clearly implies the existence of a mirror plane of symmetry in the molecule in solution, in stark contrast with the results of the X-ray structure determination for the molecule in the solid state. Furthermore, there was no NMR evidence for the B-H-Rh linkages which routinely manifest themselves as broad multiplets in the ¹H NMR spectrum in the range from δ –5 to –12, sometimes with resolved ${}^{11}B-{}^{1}H$ quartet coupling (J(BH) = 60-90 Hz).^{5b} The *B*-H-M boron nuclei invariably give rise to low-field doublets (δ 10–30) with a diminished ${}^{1}\text{H}-{}^{11}\text{B}$ coupling constant (*J*(HB) = 60-90 Hz). For complex 3a, all signals in the fully coupled ¹¹B NMR spectrum appear as doublets with J(HB) > 100 Hz. In particular, the doublet at δ 10.3, which borders on the accepted chemical shift range for B-H-M agostic systems, has a ¹H-¹¹B coupling of 131 Hz, which far exceeds the expected value for a three-center B-H-M group.^{5b} The ¹³C{¹H} NMR spectrum was strong and informative, with doublet and singlet peaks arising from pentamethylcyclopentadienyl ring (δ 102.6 (d, J(RhC)) = 8 Hz)) and methyl (δ 11.1) carbon nuclei, respectively, and a diagnostic broad peak for the cage-carbon nucleus at δ 49.1. The carbon nuclei of the CO ligands give rise to only one sharp singlet resonance at δ 194.8.

On the basis of these data, two scenarios are envisaged. First, and at the very least, an isomerization process is occurring in solution at ambient temperatures, which involves rapid exchange of the adjacent $B_{\alpha\beta}$ -H bonds in the coordinating CBBBB face of the cage involved in the B-H-Rh linkages (Scheme 1). Generation of the $\beta\beta'$ isomer along the isomerization pathway is sufficient to produce a mirror plane in the complex, which could account for the observed ${}^{11}B{}^{1}H{}$ NMR spectrum at ambient temperatures. A similar mechanism was proposed to account for the dynamic NMR spectra of the complex [RePd(CO)₃(diphos)(η^{5} -7- $(CB_{10}H_{11})$] (2d).^{3b} In this complex, there is only one B-H-Pd moiety in the ground-state structure and the minimal requirement for production of the pseudomirror plane of symmetry in 2d is a fast exchange between alternative B_β -H bonds involved in exopolyhedral bridging to the palladium atom. However, this process is not enough to make all three carbonyl carbon nuclei in **2d** equivalent (δ (CO) 196.9 (CO \times 1), 194.0 (CO \times 2)). Similarly, the proposed exchange of $B_{\alpha/\beta}$ -H and $B_{\alpha'/\beta'}$ -H bonds in **3a** (Scheme 1) would also be incapable of rendering all carbonyl ligands equivalent, yet this is what was observed. Thus, a second dynamic event (Scheme 1) may involve heterolytic fission of the Re-Rh bond, followed by rapid migration of the Rh(η^{5} -C₅-Me₅) unit about the polyhedral *closo*-2,1-ReCB₁₀ framework by multiple exchanges of B-H bonds employing

Table 4. Selected Internuclear Distances (Å) and Angles (deg) for $[ReRh(CO)_3(\eta^5-C_5Me_5)(\eta^5-7-CB_{10}H_{11})]$ (3a) with Estimated Standard Deviations in Parentheses

			Molecule 1				
Re(1) - C(14)	1.922(7)	Re(1) - C(13)	1.959(8)	Re(1) - C(12)	1.961(8)	Re(1) - B(12)	2.297(7)
Re(1) - B(15)	2.298(8)	Re(1) - B(13)	2.317(7)	Re(1) - C(11)	2.325(6)	Re(1) - B(14)	2.386(7)
Re(1) - Rh(1)	2.8345(6)	Rh(1) - B(12)	2.311(7)	Rh(1) - B(13)	2.357(7)	Rh(1) - H(1)	1.88(5)
Rn(1) = H(2) $Ph(1) = C(C Mo_{1})$	2.03(6)	C(12) = O(12)	1.139(8)	C(13) = O(13)	1.138(8)	C(14) = O(14)	1.156(8)
$\operatorname{KII}(1) = \operatorname{C}(\operatorname{C5Wie5})$	average 2.102						
Re(1)-B(12)-Rh(1)	75.9(2)	$\operatorname{Re}(1) - B(1)$	(3)-Rh(1)	74.7(2)	O(12)-C	(12) - Re(1)	177.9(7)
O(13) - C(13) - Re(1)) 176.3(6)	O(14) - C(14)	(4) - Re(1)	174.9(6)			
			Molecule 2				
Re(2)-C(22)	1.938(7)	Re(2)-C(23)	1.941(7)	Re(2)-C(24)	1.964(8)	Re(2)-B(23)	2.283(8)
Re(2)-B(25)	2.292(7)	Re(2)-B(22)	2.309(8)	Re(2)-B(24)	2.341(7)	Re(2)-C(21)	2.354(7)
Re(2)-Rh(2)	2.8526(6)	Rh(2)-B(23)	2.301(8)	Rh(2) - B(22)	2.331(7)	Rh(2)-H(3)	1.87(6)
Rh(2)-H(4)	1.88(6)	C(22)-O(22)	1.158(8)	C(23)-O(23)	1.147(7)	C(24)-O(24)	1.123(8)
$Rh(2)-C(C_5Me_5)$	average 2.151						
Re(2) - B(22) - Rh(2)	75.9(2)	Re(2)-B(2	23)-Rh(2)	77.0(2)	O(22)-C	(22) - Re(2)	177.4(6)
O(23) - C(23) - Re(2)	177.6(5)	O(24) - C(24)	24)-Re(2)	175.7(6)			
			Moloculo 3				
$R_{e}(3) - C(33)$	1 909(7)	Re(3) - C(34)	1 931(8)	$R_{e}(3) - C(32)$	1 934(7)	$R_{e}(3) - R(32)$	2 297(7)
Re(3) - B(33)	2.302(8)	Re(3) - C(31)	2 313(7)	Re(3) - B(35)	2 329(8)	Re(3) - B(34)	2.348(8)
Re(3) - Rh(3)	2.8214(6)	Rh(3) - B(33)	2.316(7)	Rh(3) - B(32)	2.370(8)	Rh(3) - H(5)	1.95(6)
Rh(3) - H(6)	1.83(6)	C(32) - O(32)	1.151(8)	C(33) - O(33)	1.164(7)	C(34) - O(34)	1.154(8)
$Rh(3) - C(C_5Me_5)$	average 2.154						
Re(3) - B(32) - Rh(3)	74.4(2)	Re(3)-B(3	33)-Rh(3)	75.3(2)	O(32) - C(32) - C(32	(32)-Re(3)	177.5(6)
O(33)-C(33)-Re(3)	172.7(6)	O(34) - C(34)	34) - Re(3)	175.3(6)	- (02) - 01	(,(0)	(0)

Scheme 1. Dynamic Processes in Complex 3a^a

cage surface at ambient temperatures

^a Part of the cage is omitted in some molecules for clarity.

a maximum of three B-H-Rh bonds, involving B-H vertexes both in the coordinating lower CB₄ and the upper B_5 pentagonal belts. This would leave a $Re(CO)_3$ unit bound to the CBBBB cage face, effectively giving a zwitterionic complex. The Re(CO)₃ moiety must be spinning rapidly relative to the remainder of the nido-7-CB₁₀H₁₁ group about an axis along the Re atom and

the centroid of the CBBBB ligating face, a process which

Table 5. Variable-Temperature ¹H and ¹³C{¹H} NMR Study on Complex 3a

<i>T</i> /°C	δ (Me) ^a	δ (CH) ^a	$\nu_{1/2}$ (CH) ^b /Hz	$\delta(CO)^c$
22	2.06	2.82	12	194.8
-38	2.03	2.79	35	
-88	2.02	2.78	11	194.0, 193.9 (1:2)

^a ¹H NMR spectral data. ^b Peak line width. ^c ¹³C{¹H} NMR spectral data.

occurs in the parent complex 1a.^{3b} In this manner, local $C_{3\nu}$ symmetry is generated with respect to the CO ligands, giving rise to the observation of one CO carbon resonance in the ${}^{13}C{}^{1}H$ NMR spectrum. Very similar dynamic exchange processes have been documented for the complexes [exo-5,10-{Rh(PPh₃)₂}-5,10-µ-(H)₂-endo-10-X-7,8-Me₂-*nido*-7,8-C₂B₉H₇] (X = H,^{7a} Au(PPh₃)^{7b}). In these species, the Rh(PPh₃)₂ fragment traverses the B-H vertexes in an exopolyhedral manner, scrambling about the polyhedral cage surface both at ambient and at low (-80 °C) temperatures in solution, i.e., the fluxionality could not be "frozen" out at the lowest temperatures measured. A variable-temperature ¹H NMR study of **3a** revealed an interesting change in the signal due to the cage CH proton (Table 5) as the temperature is lowered to -88 °C. The signal broadens to a maximum value $v_{1/2} = 35$ Hz at ca. -38 °C and then sharpens as the temperature is lowered further to -88 °C ($\nu_{1/2}$ = 11 Hz). This is accompanied by a slight change in chemical shift, along with a small but perceptible variation for the methyl protons. The change in CH peak width is indicative of a solution process which has been subdued. It was notable that the ¹H NMR spectrum at -88 °C did not show the presence of a B-H-Rh system, with the expected diagnostic broad high-field resonance(s). Thus, the

⁽⁶⁾ Kang, H. C.; Do, Y.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1988, 27, 1716.

^{(7) (}a) Long, J. A.; Marder, T. B.; Behnken, P. E.; Hawthorne, M. F. J. Am. Chem. Soc. **1984**, 106, 2979. (b) Jeffery, J. C.; Jelliss, P. A.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. **1993**, 1073.

species in solution at this temperature cannot be equated with the solid-state structure, which, as discussed previously, contains two B-H-Rh bonds. It would appear that the migration of the $Rh(\eta^5-C_5Me_5)$ group about the closo-2,1-ReCB₁₀ framework has been frozen out with a Re-Rh bond probably in place at -88 °C. However, the exchange of B–H bonds in the (B– $H \rightarrow Rh_2$ system ($\alpha \beta \leftrightarrow \beta \beta' \leftrightarrow \alpha' \beta'$, Scheme 1) must still be occurring. The ¹³C{¹H} NMR spectrum measured at -88 °C verifies this by revealing two peaks due to the carbonyl carbon nuclei at δ 194.0 (CO \times 1) and 193.9 (CO \times 2). The generation of a pseudomirror plane encompassing the Re, Rh, and cage C atoms and the CO ligand transoid to the Rh atom is therefore confirmed. It is possible that the species at low temperature is the static $\beta\beta'$ isomer (Scheme 1), which contains a permanent mirror plane, but this is unlikely for two reasons: (i) as mentioned, no $B-H \rightarrow Rh$ protons could be detected in the ¹H NMR spectrum at this temperature, and (ii) such a static structure, were it to exist in solution, might be expected to correspond to that observed in the X-ray structure (Figure 1), i.e., the unsymmetrical $\alpha\beta$ isomer.

An attempt to use the same preparative methodology to isolate and fully characterize an analogous rhenium– iridium complex [ReIr(CO)₃(η^5 -C₅Me₅)(η^5 -7-CB₁₀H₁₁)] (**3b**) did not succeed. However, **3b** could be formed at temperatures below 0 °C by treatment of **1a** with [Ir(NCMe)₃(η^5 -C₅Me₅)][BF₄]₂ in CH₂Cl₂. An IR spectrum of an aliquot taken from the solution at -30 °C showed a pattern of ν_{max} (CO) absorptions very similar to those for **3a** with peaks at 2026vs, 1954m, and 1918s cm⁻¹. If allowed to warm to room temperature, solutions of **3b** decomposed. Nevertheless, it was deemed probable that **3b** could still be a useful reagent if produced and reacted in situ at or below 0 °C. Results employing this reagent will be discussed after reactions of **3a** with phosphines are presented.

Treatment of **3a** with 1 equiv of PMe₃ at -10 °C yielded a green complex $[ReRh(CO)_3(PMe_3)(\eta^5-C_5Me_5) (\eta^5 - 7 - CB_{10}H_{11})$] (**4b**). The IR spectrum of **4b** is straightforward (Table 1) with $v_{max}(CO)$ absorptions at 2020vs, 1936s, and 1872m cm^{-1} and gives no hint of the complications arising from the possibility of the presence of different isomers. Before the NMR data and specific structure for **4b** can be rationalized, it is informative to discuss the reaction of **3a** with 1 equiv of PMe_2Ph . This gave a mixture of green and red compounds which could be separated on a chromatography column. However, within minutes in solution, the fractions reverted to mixtures of identical proportions. The red and green complexes are clearly in equilibrium in solution. After microanalytical, IR (Table 1), and NMR data (Tables 2 and 3) were obtained, the mixture was formulated as having the composition $[ReRh(CO)_3(PMe_2Ph)(\eta^5-C_5Me_5) (\eta^{5}-7-CB_{10}H_{11})$] (5). Both green and red crystals were grown from the mixture; those of the green complex were regrettably intractable, but the red crystals were suitable for X-ray diffraction analysis. The structure is shown in Figure 2 and is designated as 5a-anti because of the relative disposition of the η^5 -C₅Me₅ group and the cage C(1) atom, a feature discussed further below. Selected bond lengths and angles are given in Table 6.

Figure 2. Structure of $[ReRh(CO)_3(PMe_2Ph)(\eta^5-C_5Me_5)-(\eta^5-7-CB_{10}H_{11})]$ (**5a**-*anti*), showing the crystallographic labeling scheme. Thermal ellipsoids are shown at the 40% probability level. Only the agostic hydrogen atom is shown for clarity.

The Re(1)–Rh(1) bond length (2.9821(4) Å) is marginally longer than the distances observed in complex **3a** (average of the three molecules Re–Rh 2.8362 Å) and the structures of [ReRh{ μ - σ , η ⁵-7,8-Me₂-10-CH₂(C₆H₄Me-4)-7,8-C₂B₉H₇}(CO)₄(η ⁵-C₅H₄Me)] (2.888(1) Å)^{4a} and [ReRh(μ -CO)₂{ μ -Ph₂P(CH₂)PPh₂}₂(Me)(CO)₂][CF₃SO₃] (2.8510(5) Å).^{4b} The Re(1)–Rh(1) bond of **5a**-anti is spanned by the *nido*-7-CB₁₀H₁₁ cage, which is itself η ⁵-

coordinated through the CBBBB face to the rhenium atom (Re(1)-C(1) 2.324(3) Å, Re(1)-B(2) 2.260(3) Å, Re(1)-B(3) 2.363(3) Å, Re(1)-B(4) 2.373(3) Å, Re(1)-B(5) 2.361(3) Å). The Re(1)-B(2) distance is ca. 0.1 Å shorter than the remaining Re-B contacts because of the presence of the bridging B(2)-H(2)-Rh(1) agostic bond. This system also results in a B(2)-Rh(1) connectivity of 2.307(3) Å. Thus a B_{α} -H bond is utilized for three-center two-electron bonding, i.e. the boron

atom adjacent to the carbon in the CBBB coordinating face of the cage is involved. The Re-C-O units are all near-linear (Re(1)-C-O average 175.3°). The Rh(1)-P(1) distance (2.3369(8) Å) is very close in magnitude to the average found for a range of Rh-PMe₂Ph bonds (2.325 Å).⁸ The η^5 -C₅Me₅ ligand is perceptibly slipped [Rh(1)-C(21) 2.227(2) Å, Rh(1)-C(22) 2.235(2) Å, Rh(1)-C(23) 2.204(2) Å, Rh(1)-C(24) 2.259(3) Å, Rh(1)-C(25)2.323(3) Å). This is probably in response to the build up of electron density on the rhodium atom due to the ligation of three strong donor groups, viz. PMe₂Ph, B–H–Rh, and the η^5 -C₅Me₅ ligand itself, in addition to the steric congestion caused by the presence of all of these groups around the Rh(1) atom. However, slippage is insufficient to consider lowering the hapticity of the pentamethylcyclopentadienyl group from η^5 . It is important to note that this structure reveals that the η^{5} -C₅Me₅ ligand bound to the Rh(1) atom lies anti relative to the cage carbon atom C(1), hence the assignment 5aanti.

The IR spectrum of the isomeric mixture **5** in the CO stretching region consists of three absorptions at 2024vs,

⁽⁸⁾ Allen, F. H.; Brammer, L.; Kennard, O.; Orpen, A. G.; Taylor, R.; Watson, D. G. *J. Chem. Soc., Dalton Trans.* **1989**, S1.

Table 6. Selected Internuclear Distances (Å) and Angles (deg) for $[ReRh(CO)_3(PMe_2Ph)(\eta^5-C_5Me_5)(\eta^5-7-CB_{10}H_{11})]$ (5a-anti) with Estimated Standard Deviations in Parentheses

	-						
Re(1)-C(3)Re(1)-C(1)Re(1)-Rh(1)C(2)-O(2)	1.930(3) 2.324(3) 2.9821(4) 1.143(3)	Re(1)-C(4) Re(1)-B(5) Rh(1)-B(2) C(3)-O(3)	1.948(3) 2.361(3) 2.307(3) 1.152(3)	Re(1)-C(2) Re(1)-B(3) Rh(1)-P(1) C(4)-O(4)	1.959(3) 2.363(3) 2.3369(8) 1.143(3)	Re(1)-B(2) Re(1)-B(4) Rh(1)-H(2) Rh(1)-C(23)	2.260(3) 2.373(3) 1.66(3) 2.204(2)
Rh(1)-C(21)	2.227(2)	Rh(1)-C(22) 2.235(2)	Rh(1) - C(24)	2.259(3)	Rh(1) - C(25)	2.323(3)
$\begin{array}{c} C(3)-Re(1)-Rh(1)\\ B(2)-Rh(1)-P(1)\\ O(2)-C(2)-Re(1)\\ B(2)-Re(1)-Rh(1)\\ \end{array}$	1) 80 100 172 1) 49	6.86(8) 0.27(7) 2.6(2) 9.92(7)	C(4)-Re(1)-Rh(1) B(2)-Rh(1)-Re(1) O(3)-C(3)-Re(1) Re(1)-B(2)-Rh(1)	157.59(8) 48.55(7) 174.1(2) 81.54(9)	C(2)-R P(1)-R O(4)-C	e(1)-Rh(1) h(1)-Re(1) C(4)-Re(1)	77.51(8) 100.74(2) 179.2(3)

X-ray F Re (Re) B-H -RI PMe₂Ph PMe₂Pl syn anti 5a (α) d red C PMe₂Ph PMe₂Ph Re Re B−⊢ B anti X-rav Re) B Re PMe₂Ph PMe₂Ph svn anti 5b (β)d d green PMe₂Ph PMe₂Ph Re (Re) **-**RI anti

Scheme 2. Possible Isomers of Complex 5a^a

e = enantiomeric relationship d = diastereomeric relationship

^a Part of the cage is omitted in all molecules for clarity.

1945s, and 1868m cm⁻¹, a pattern similar to that of **4b**. It was immediately apparent from the ³¹P{¹H} NMR spectrum (Table 3) of 5, resulting from overnight accumulation of data, that there were several isomers present in solution. This spectrum revealed four doublet signals with a relative peak integral ratio of ca. 1:10:70:30. As Scheme 2 shows, this is in accordance with the fact that it is possible to generate four diastereomeric pairs of enantiomers for complex 5. This complication arises out of two distinct isomeric variations: (i) the involvement of B_{α} -H or B_{β} -H bonds in the B−H→Rh three-center two-electron system leading to complexes 5a or 5b, respectively; (ii) the relative disposition in either **5a** or **5b** of the η^5 -C₅Me₅ ligand with respect to the cage carbon atom as syn or anti. Thus, the X-ray structure corresponds to the two enantiomers of 5a-anti, and these are highlighted in Scheme 2 by shadow box outlines; both enantiomers are present in the crystal structure as dictated by the achiral space group *P*1. We infer from these results and from the rhenium-iridium work to be discussed shortly that the red material consists of the α -series of isomers **5a** and the green material contains the β -bonded isomers **5b**. On the basis of additional observations during the chromatography (i.e., more red than green compound formed), the signal at δ 1.5 in the $^{31}P\{^{1}H\}$ NMR spectrum of 5 must correspond to the major enantiomeric pair of isomers of 5a, tentatively assigned as 5aanti as found in the X-ray structure. The doublet peak at δ -0.1 is most likely due to one of the green isomers of **5b** (hereafter designated **5b**-syn/anti), although it is not possible to specifically assign this or the remaining two weak signals (δ 12.9 and 5.8) without direct structural proof.

The ³¹P{¹H} NMR spectrum remained broadly unaffected by lowering the temperature to -90 °C, with minor adjustment in the equilibrium between all four diastereotopic pairs of enantiomers. The ¹¹B{¹H} NMR spectrum of 5 displays two low-field signals at δ 22.0 and 22.5 (ca. 2:1) arising from the enantiomeric pair of 5a-anti (major) and from one pair of 5b-syn/anti (minor), respectively. These signals are due to the B-H horon nuclei, this being verified by running a fully coupled ¹¹B NMR spectrum of 5. These peaks broaden slightly in comparison with the other signals, but a ¹H-¹¹B coupling, normally expected to lie in the range 60–90 Hz for this type of system,^{5b} could not be resolved. The remaining two enantiomeric pairs of isomers (which must include 5a-syn and the other isomeric pair **5b**-*anti/syn*) are not present in sufficient quantity in solution to give rise to observable resonances in this spectrum. The ¹H NMR spectrum of **5** (Table 2) was also informative with two broad high-field peaks for the B-H-Rh groups at δ -10.47 (**5a**-anti) and -11.26 (5b-syn/anti), having a peak integral ratio of ca. 2:1. No other peaks in this region ($\delta < -2.00$) could be identified. The cage CH protons gave rise to broad peaks at δ 1.96 (**5a**-*anti*) and 2.11 (**5b**-*syn/anti*), and in particular, the diastereotopic methyls of the PMe₂-Ph ligands in 5a-anti produce two doublet resonances at δ 1.50 and 1.85 (*J*(PH) = 10 and 10 Hz) while those of **5b**-*syn/anti* gave doublets at δ 1.70 and 2.00 (*J*(PH) = 10 and 11 Hz, respectively). Assignments are based on the relative peak intensities of the major red complex **5a**. The ${}^{13}C{}^{1}H$ NMR spectrum did not reveal all of the expected signals due to the carbonyl carbon nuclei with just two observable peaks, chiefly because of poor complex solubility. The major enantiomeric pair 5aanti gives rise to two η^5 -C₅Me₅ signals (δ 10.7 (C₅Me₅) and 106.2 (dd, C_5Me_5 , J(PC) = 5, J(RhC) = 2 Hz)) and two doublets as a result of the inequivalent PMe groups $(\delta 13.7 (J(PC) = 28) \text{ and } 20.8 (J(PC) = 27 \text{ Hz}))$. The minor green complex 5b-syn/anti is responsible for a similar set of smaller peaks (Table 2). Again, the remaining two minor enantiomeric pairs of isomers (5asyn and **5b**-anti/syn) did not produce observable resonances in this spectrum.

With the availability of a complete X-ray-determined

Table 7.UV-Vis Spectral Data for Complexes 4band 5^a

	4b			5	
λ_{\max}	$\epsilon_0{}^b$	$\epsilon_{\rm r}{}^c$	λ_{\max}	$\epsilon_0{}^b$	$\epsilon_{r}{}^{c}$
604	0.17	0.11	558	0.50	0.17
412	0.57	0.39	408	1.18	0.40
324	0.52	0.35	310	1.31	0.44
256	1.48	1.00	250	2.99	1.00
230	1.43	0.97	236	2.92	0.98

^{*a*} Measured in CH₂Cl₂. ^{*b*} ϵ_0 = measured absorbance. ^{*c*} $\epsilon_r = \epsilon_0/\epsilon_{0,max}$, where $\epsilon_{0,max}$ = measured absorbance of largest peak.

structure of 5a-anti and an appreciation of all the isomers which can be generated for complex 5, the formation of and NMR data for complex 4b can be understood. In this case, only a green material was produced. The ³¹P{¹H} NMR spectrum of this product consisted of two doublets at δ –11.3 (*J*(RhP) = 145) and -13.1 (J(RhP) = 150 Hz) which, immediately following chromatography, were present at a peak integral ratio of 5:1. However, after stirring a CH₂Cl₂ solution for an additional 5 days, this ratio adjusted to 1:1. A similar situation occurred when measuring the ${}^{11}B{}^{1}H{}$ and ${}^{11}B{}$ NMR spectra. Initially, these revealed a pair of lowfield resonances at δ 24.6 and 21.2 (peak integral ratio 5:1) assignable to the B-H horon nuclei. After stirring in CH₂Cl₂ for 5 days, these peaks integrated with a ratio of 1:1 also. The ¹H NMR spectrum of 4b displayed the customary high-field broad signals at δ -10.70 and -11.56 (initial peak integral ratio, 5:1; after 5 days, 1:1). Unfortunately, in neither the ¹H nor the ¹¹B NMR spectra did the signals due to the relevant B-H Rh nuclei reveal measurable resolved ¹¹B-¹H coupling constants. However, there is little doubt as to the assignment; the ¹¹B spectral low-field signals, in particular, do not show ¹H-¹¹B coupling greater than 100 Hz, as is typical for terminal B-H bonds,^{5b} but appear as broad signals in the fully coupled ¹¹B NMR spectrum. The remaining signals in the ¹H and ¹³C-{¹H} NMR spectra were as expected, although the very low solubility of the sample did not allow some resonances due to CO and cage carbon nuclei to be observed. It is, thus, apparent that this green material comprises a mixture of the syn and anti isomers of complex 4b, where the B_{β} -H bond takes part in agostic bonding to the rhodium atom. Furthermore, since no red compound could be detected by chromatographic analysis, there would seem to be no formation of 4a, an analogue of the complex 5a.

The UV-vis spectra of CH₂Cl₂ solutions of **4b** and **5** were measured (Table 7) and were almost identical in form. That of 5 confirmed the predominance in solution of the red complex 5a with absorptions in the visible region at 408 and 558 nm, while that of 4b displayed notable broad peaks in the same region at 412 and 604 nm, accounting for the green color. Thus, the discrepancy in color between 5a and 4b is due to a subtle yet significant difference (ca. 50 nm) in the longest wavelength $d \rightarrow \pi^*$ transitions of these complexes. Transitions arising from the minor green complex 5b in the compound 5 mixture are presumably masked by the much larger broad absorptions due to **5a**. It is interesting that these rhenium-rhodium systems seem to be particularly electronically sensitive to the nature of the $B_{\alpha\beta}$ -H-Rh agostic bonds, when they are otherwise structurally very similar. Attempts to form a stable adduct by addition of $PMePh_2$ to **3a** for the purpose of further analysis and comparison of this type of complex were unsuccessful. This may be due to likely steric congestion, which would result in the target complex.

Synthesis of **3b** in situ at low temperatures followed by treatment with phosphines PR₃ (PR₃ = PMe₃, PMe₂-Ph) yielded the rhenium–iridium complexes [ReIr(CO)₃-(PR₃)(η^{5} -C₅Me₅)(η^{5} -7-CB₁₀H₁₁)] (PR₃ = PMe₃ (**6**), PMe₂Ph (**7**)). From both syntheses it was possible to chromatographically separate mixtures of two isomers formed, one orange (**6a**/**7a**) and the other purple (**6b**/**7b**). Single crystals were grown of **6a** and **7b**, and the X-ray structure determinations of these complexes will be discussed prior to evaluation of the NMR data. Selected bond lengths and angles are given in Table **8** (**6a**) and Table 9 (**7b**), and the molecules are shown in Figures 3 (**6a**) and 4 (**7b**).

There are very few previously recorded X-ray structural characterizations of binuclear rhenium–iridium organometallic complexes: $[\text{ReIr}(\mu\text{-CO})_2(\text{CO})_2(\eta^5\text{-}\text{C}_5\text{H}_5)(\eta^5\text{-}\text{C}_5\text{Me}_5)]^{9a}$ contains a Re–Ir bond (2.8081(6) Å) bridged by two CO ligands and $[\text{ReIr}\{\mu\text{-P}(\text{C}_6\text{H}_{11})_2\}_2(\text{CO})_4\text{-}\{\text{P}(\text{C}_6\text{H}_{11})_3\}_2]^{9b}$ has a Re–Ir contact of 2.9117(7) Å. The Re–Ir bond lengths of **6a** (2.9013(6) Å) and **7b** (2.9248(6) Å) are therefore unsurprising.

Complex 6a is structurally very similar to 5a. The *nido*-7-CB₁₀H₁₁ cage is η^{5} -coordinated to the rhenium atom and also bonded to iridium via a $B(2)-H \rightarrow Ir$ system, i.e., a B_{α} boron atom partakes in agostic bonding (B(2)-Ir 2.317(11) Å). The agostic proton bound to B(2)was unfortunately not located, although its presence was fully verified by the NMR spectra. The η^5 -C₅Me₅ ligand, which lies anti to the cage carbon C(1) (giving a structure designation **6a**-anti), is slightly slipped in a direction away from the phosphorus atom (Ir-C(21))2.207(10) Å, Ir-C(22) 2.212(11) Å, Ir-C(23) 2.264(9) Å, Ir-C(24) 2.249(10) Å, Ir-C(25) 2.274(10) Å). While PMe₃ is one of the sterically less-demanding phosphine ligands (Tolman cone angle, $\theta_T = 118^\circ$),¹⁰ it is a strong σ -donor, and along with the donor capacities of the bulky η^5 -C₅Me₅ and B–H–Ir groups, there may be a substantial build-up of electron density on the already electronrich iridium atom. It is, therefore, not surprising that there is some minor slippage of the pentamethylcyclopentadienyl ring. This phenomenon may also be responsible for the tendency of one of the CO ligands toward a semibridging Re-C(O)...Ir situation (Re-C(3)-O(3) 166.5(9)°) (Figure 3), although the carbonyl carbon C(3) is only weakly bound to the iridium atom (Ir···C(3) 2.66 Å). The remaining two Re–CO groups are near-linear (Re-C(2)-O(2) 176.0(13)°, Re-C(4)-O(4) 174.6(9)°). The Ir-P bond length (2.341(3) Å) is almost identical with the average found for several Ir-PMe₃ complexes (2.323 Å).⁸

The gross structural features of **7b** (Figure 4 and Table 9) bear resemblance to both complexes **5a**-*anti* and **6a**-*anti* with two substantial differences: (i) the agostic bridge system B(3)–H(3)–Ir employs a B_β –H bond (Re–B(3) 2.237(4) Å, Ir–B(3) 2.320(4) Å), (ii) the

T.; Calabrese, J. C.; Glassman, T. E. Organometallics **1988**, 7, 1889. (10) Tolman, C. A. Chem. Rev. **1977**, 77, 313.

^{(9) (}a) Zhuang, J.-M.; Batchelor, R. J.; Einstein, F. W. B.; Jones, R.

H.; Hader, R.; Sutton, D. Organometallics **1990**, *9*, 2723. (b) Baker, R.

Table 8. Selected Internuclear Distances (Å) and Angles (deg) for [ReIr(CO)₃(PMe₃)(n⁵-C₅Me₅)(n⁵-7-CB₁₀H₁₁)] (6a-*anti*) with Estimated Standard Deviations in Parentheses

[===== (==)3(=					standar a B	e / 14 fi for 11 f	ai enteneses
Ir-B(2)	2.317(11)	Ir-P	2.341(3)	Ir-Re	2.9013(6)	Re-C(4)	1.921(14)
Re-C(2)	1.967(14)	Re-C(3)	1.966(12)	Re-B(2)	2.203(12)	Re-B(3)	2.368(12)
Re-C(1)	2.363(11)	Re-B(5)	2.386(12)	Re-B(4)	2.403(11)	C(2) - O(2)	1.14(2)
C(3)-O(3)	1.169(13)	C(4)-O(4)	1.148(14)	Ir-C(22)	2.212(11)	Ir-C(21)	2.207(10)
Ir-C(24)	2.249(10)	Ir-C(23)	2.264(9)	Ir-C(25)	2.274(10)		
C(4)-Re-Ir	10	1.3(3)	C(2)-Re-Ir	143.0(4)	C(3)-	Re–Ir	62.8(3)
B(2)-Ir-P	9	5.4(3)	B(2)-Ir-Re	48.4(3)	P-Ir-	-Re	97.28(7)
B(2)-Re-Ir	5	1.8(3)	Re-B(2)-Ir	79.8(4)	O(2)-	C(2)-Re	176.0(13)
O(3)-C(3)-Re	16	6.5(9)	O(4)-C(4)-Re	174.6(9)			

Table 9. Selected Internuclear Distances (Å) and Angles (deg) for eIr(CO)₂(PMe₂Ph)(*n*⁵-C₅Me₅)(*n*⁵-7-CB₁₀H₁₁)] (7b-*svn*) with Estimated Standard Deviations in Parentheses

1001 (00)3(1 M			·[011]])] (*6 3ym)	with Lytimatet			areneneses
Ir-C(25)	2.195(3)	Ir-C(22)	2.234(3)	Ir-C(21)	2.241(3)	Ir-C(24)	2.280(3)
Ir-C(23)	2.286(3)	Ir-B(3)	2.320(4)	Ir-P	2.3417(10)	Ir…C(4)	2.557(4)
Ir-Re	2.9248(6)	Ir-H(3)	1.44(5)	Re-C(3)	1.932(4)	Re-C(2)	1.939(4)
Re-C(4)	1.949(4)	Re-B(3)	2.237(4)	Re-B(2)	2.323(5)	Re-C(1)	2.381(4)
Re-B(4)	2.383(4)	Re-B(5)	2.392(4)	C(2)-O(2)	1.140(5)	C(3)-O(3)	1.145(4)
C(4)-O(4)	1.163(4)						
B(3)–Ir–P	9	5.18(11)	B(3) - Ir - C(4)	88.24(13)	P-Ir-	-C(4)	79.85(9)
B(3)-Ir-Re	4	8.84(10)	P–Ir–Re	94.98(3)	C(4)-	Ir-Re	40.97(9)
C(3)-Re-Ir	1	07.13(11)	C(2)-Re-Ir	131.33(13)	C(4)-	Re-Ir	59.33(11)
B(3)-Re-Ir	5	1.32(10)	O(2)-C(2)-Re	175.7(4)	O(3)-	-C(3)-Re	175.1(3)
O(4)-C(4)-Re	1	64.8(3)	O(4) - C(4) - Ir	115.4(3)	Re-C	2(4)-Ir	79.69(14)

79.84(13)

Figure 3. Structure of $[\text{ReIr}(\text{CO})_3(\text{PMe}_3)(\eta^5\text{-}C_5\text{Me}_5)(\eta^5\text{-}7\text{-}CB_{10}\text{H}_{11})]$ (**6a**-*anti*), showing the crystallographic labeling scheme. Thermal ellipsoids are shown at the 40% probability level. Hydrogen atoms are omitted for clarity.

particular isomer studied here has the η^5 -C₅Me₅ ligand lying syn to the cage carbon C(1), i.e., the complex is designated **7b**-syn. The Ir–P bond length (2.3417(10) Å) is comparable with the average found in other complexes which possess Ir-PMe₂Ph bonds (2.319 Å).⁸ The η^5 -C₅Me₅ ring is partially slipped as in **5a**-anti and 6b-anti (Ir-C(21) 2.241(3) Å, Ir-C(22) 2.234(3) Å, Ir-C(23) 2.286(3) Å, Ir-C(24) 2.280(3) Å, Ir-C(25) 2.195(3) Å). The carbonyl C(4)–O(4) very weakly semibridges the Re–Ir bond (Re–C(4) 1.949(4) Å, Ir…C(4) 2.557(4) Å, Re-C(4)-O(4) 164.8(3)°, Ir-C(4)-O(4) 115.4(3)°). As with **5a**-anti and **6a**-anti, the small ring-slippage in **7b**syn may be a combination of the steric demands of the ligands around the iridium atom and the electron density accretion at the iridium due to the presence of several strong electron donors. The latter would also account for the weak semibridging nature of the C(4)-O(4) ligand. From these structure determinations, it

Figure 4. Structure of $[ReRh(CO)_3(PMe_2Ph)(\eta^5-C_5Me_5)-(\eta^5-7-CB_{10}H_{11})]$ (**7b**-*syn*), showing the crystallographic labeling scheme. Thermal ellipsoids are shown at the 40% probability level. Only the agostic hydrogen atom is shown for clarity.

is reasonable to declare that the orange compounds **6a** and **7a** contain B_{α} -H-Ir-bonded complexes and the purple compounds **(6b** and **7b)** are composed of B_{β} -H-Ir-bonded isomers.

In the synthesis of complex **6**, there was a clear preference for the formation **6b** over **6a** (4:1), but the reverse was true with regard to complex **7**, where **7a** was the major product over **7b** (3:1). The IR spectra in the CO stretching region of the rhenium–iridium compounds, **6** and **7**, are similar in form to that of **5**. Notably, in the IR spectra of the complexes which have been characterized structurally by X-ray diffraction are found the lowest frequency ν_{max} (CO) absorptions (1888m (**6a**) and 1865m cm⁻¹ (**7b**)). These values, the latter in particular, border on the frequency range for bridging CO ligands in transition-metal cluster molecules and would seem to correlate with the findings of the crystal structure determinations, especially that of **7b**.

The NMR measurements on the orange complex **6a** revealed the presence of two isomers or more correctly

Re-B(3)-Ir

two diastereomeric pairs of enantiomers. The ¹H NMR spectrum (Table 2) shows one broad resonance at δ -13.54, which corresponds to the $B_{\alpha}-H$ Ir nucleus in the major enantiomeric pair of isomers of **6a** in solution. There are the expected set of signals due to the PMe₃ and η^5 -C₅Me₅ ligands for both sets of isomers, and broad singlets due to the cage CH protons at δ 2.10 and 2.18 (4:1) are also observed. The ${}^{11}B{}^{1}H{}$ NMR spectrum (Table 3) displays diagnostic signals for the $B_{\alpha}-H \rightarrow Ir$ boron nuclei at δ 23.4 and 21.3 (4:1).^{5b} No ¹H-¹¹B coupling could be resolved for these two resonances in a fully coupled ¹¹B NMR spectrum, but the assignment is unquestionable. The ${}^{31}P{}^{1}H{}$ NMR spectrum (Table 3) shows two singlets at δ -47.2 and -44.8, once again in a ratio 4:1, while the ${}^{13}C{}^{1}H$ NMR spectrum revealed resonances due to the carbonyl carbon nuclei at δ 196.9 and 195.6. The latter signal is broad and most likely arises from the fortuitous overlap of two separate peaks. The remaining peaks in this spectrum are as expected. It is possible that the major enantiomeric pair of isomers in **6a** is that observed in the X-ray structure, i.e., **6a***anti.* However, without unambiguous detailed X-ray structures of all isomers concerned, this remains inconclusive; such a pursuit would not be practical.

The NMR spectra of the purple complex 6b are dominated by peaks due to a major isomer with a broad resonance in the ¹H NMR spectrum at δ –14.82 and doublets arising from the PMe₃ and η^5 -C₅Me₅ ligands. The diagnostic broad singlet at δ 2.11 due to the cage CH proton was also observed. Very weak peaks were observed for the PMe₃ and η^5 -C₅Me₅ ligands of a minor isomer. Due to very low solubility in suitable solvents, a reasonable ${}^{13}C{}^{1}H$ NMR spectrum was not acquired. The ³¹P{¹H} NMR spectrum, however, revealed the presence of both diastereomeric pairs of enantiomers with singlets at δ -43.0 and -42.1 (9:1). The ¹¹B{¹H} NMR spectrum showed the characteristic^{5b} low-field peak at δ 25.1 for the B_{α} -H \rightarrow Ir boron nucleus of the major isomer, with no observable corresponding resonance due to the minor isomer, most likely because of the poor solubility of the complex. Once again, both syn an anti isomers exist in solutions of **6b**, but assignment of major and minor species is impossible: both are unsymmetrical and would give rise to similar sets of NMR data.

As with the complexes **6**, the B_{α} –H–Ir (orange) and B_{β} -H-Ir (purple) bonded isomers of compound 7 were successfully separated on a silica gel chromatography column. Complex 7a was composed of a mixture of two isomeric species, as indicated by the ³¹P{¹H} NMR spectrum (Table 3, δ -31.8 and -30.3 (7:1)). This was also reflected in the ${}^{11}B{}^{1}H{}$ NMR spectrum with peaks at δ 24.8 and 25.5 (7:1) due to the B_{α} -H \rightarrow Ir boron nuclei. Only one broad B_{α} -H-Ir proton resonance was seen in the ¹H NMR spectrum (δ –13.30) for the major species of 7a, the relevant peak for the minor complex either being masked or too weak to be observed. The latter, however, did produce a doublet at δ 1.64 (C₅Me₅, J(PH) = 3) and two doublets at δ 1.89 and 2.08 (J(PH)= 11 and 11 Hz) resulting from the diastereotopic methyl groups of the PMe₂Ph ligand. These signals may be compared with those for the major species present at δ 1.79 (d, C₅Me₅, J(PH) = 2) and at 1.54 and 1.98 (d \times 2, PMe, *J*(PH) = 10 and 10 Hz). Solubility was yet again a hindrance to the observation of all carbon nuclei in the ¹³C{¹H} NMR spectrum of **7a**, with only one peak positively identified as resulting from carbonyl carbon nuclei (δ 195.2). Signals at δ 102.2 (minor) and 102.1 (major) and at 10.2 (major) and 10.0 (minor) confirm the presence of the η^5 -C₅Me₅ ligand, while the P*Me*₂Ph groups of the major species are also responsible for two doublets at δ 13.9 and 22.3 (*J*(PC) = 36 and 37 Hz, respectively).

Complex **7b**, whose structural features have been discussed above (Figure 4), interestingly consists only of the syn species in solution. Hence, the ³¹P{¹H} NMR spectrum (Table 3) displays only one singlet and the ¹¹B-{¹H} NMR spectrum one low-field signal due to the B_β-H-Tr system. The ¹H NMR spectrum was straightforward with a characteristic broad high-field B_β-H-Tr proton resonance at δ –14.49, a doublet at δ 1.70 (C₅-Me₅, *J*(PH) = 2), and two doublets at δ 1.88 and 2.02 (PMe × 2, *J*(PH) = 11 and 11 Hz). The ¹³C{¹H} NMR spectrum was as expected (Table 2).

A low-energy exchange process between B_{α} -H-M and B_{β} -H \rightarrow M bonded moieties in solution has been documented previously for metallacarborane complexes of the dicarbollide ligands $[nido-7, 8-R_2-7, 8-C_2B_9H_9]^{2-}$ (R = H, Me)¹¹ and more recently for the [*nido*-7-CB₁₀H₁₁]³⁻ ligand in rhenacarborane-palladium work.^{3b} To observe both isomeric forms simultaneously in a binuclear metal complex, as in 6 or 7, and then to cleanly separate these isomers by chromatography is unprecedented in this field. To establish whether the interconversions **6a** \leftrightarrow **6b** or **7a** \leftrightarrow **7b** were feasible at elevated temperatures, benzene suspensions of the complexes were refluxed for 24 h and then their NMR spectra measured. Complex 6b was unaffected, but 6a underwent a ca. 15% conversion into **6b** in this time, along with a small amount of decomposition. Complexes 7a and 7b showed no propensity to interconvert under these conditions.

Conclusions

The new complex **1a** is clearly a versatile reagent for synthesis and has proven useful in groundbreaking work to create new compounds with metal—metal bonds. The novel rhenacarborane—rhodium complex **3a** is a highly dynamic molecule in solution. Addition of phosphines to **3a** forms stable adducts (**4b** and **5**) and anchors the Rh(η^5 -C₅Me₅) unit on to the rhenium atom, although the nature of the resulting product is sensitive to the phosphine used. With the analogous rhenium—iridium complexes **6** and **7**, the presence of the phosphine (PMe₃ or PMe₂Ph) not only fixes the Re–Ir bond into place, but also effectively inhibits the exchange between B_{α}-H→Ir and B_{β}-H→Ir systems at ambient temperatures. We anticipate further advances will be made in this area of research.

Experimental Section

General Considerations. All experiments were conducted under an atmosphere of dry nitrogen using Schlenk tube techniques. Solvents were freshly distilled under nitrogen

^{(11) (}a) Jeffery, J. C.; Ruiz, M. A.; Sherwood, P.; Stone, F. G. A. *J. Chem. Soc., Dalton Trans.* **1989**, 1845. (b) Hendershot, S. L.; Jeffery, J. C.; Jelliss, P. A.; Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A. *Inorg. Chem.* **1996**, *35*, 6561.

	Table 10. Data for X-	ray Crystal Structure Analy	yses	
	3a	5a -anti	6a -anti	7b-syn
cryst dimens/mm	$0.20 \times 0.30 \times 0.40$	$0.10\times0.26\times0.45$	$0.20 \times 0.35 \times 0.37$	$0.20 \times 0.22 \times 0.38$
formula	$\mathrm{C_{14}H_{26}B_{10}O_{3}ReRh}$	$C_{22}H_{37}B_{10}O_3PReRh\cdot CH_2Cl_2$	$C_{17}H_{35}B_{10}IrO_3PRe$	$\mathrm{C}_{22}\mathrm{H}_{37}\mathrm{B}_{10}\mathrm{IrO_3PRe}$
Mr	639.56	862.62	804.92	866.99
cryst color, shape	red-brown, prism	red, plate	orange, prism	purple, prism
cryst syst	triclinic	monoclinic	monoclinic	triclinic
space group	Pī	$P2_{1/C}$	$P2_{1/n}$	PĪ
T/K Č	173	173	173	173
a/Å	15.210(2)	13.642(3)	9.833(2)	9.800(2)
b/Å	15.569(2)	14.618(2)	11.8491(14)	10.889(3)
c/Å	16.247(2)	16.274(2)	22.623(4)	14.829(3)
a/deg	114.074(7)			72.966(14)
ß/deg	94.308(8)	98.635(13)	100.96(2)	78.017(12)
y/deg	104.421(9)			77.705(10)
V/Å ³	3333.5(6)	3208.7(8)	2587.8(8)	1460.5(6)
Z	6	4	4	2
$d_{calcd}/g \ cm^{-3}$	1.912	1.786	2.066	1.971
μ (Mo K α)/mm ⁻¹	6.197	4.526	9.891	8.771
F(000)/e	1824	1680	1512	820
2θ range/deg	2.8 - 55.0	3.0 - 55.0	2.6 - 45.0	2.0 - 55.0
data frame collcn time (per frame/s, overall/h)	20, ca. 10	20, ca. 10	10, ca. 6	10, ca. 6
no. of rflns measd	21 183	20 134	10 601	15 098
no. of indep rflns	14 525	7335	3392	6611
refinement method	full-matrix least-squares on	full-matrix least-squares on	full-matrix least-squares on	full-matrix least-squares on
	all F^2 data	all F ² data	all F ² data	all F ² data
final residuals	$ m wR_2=0.081^{a}~(R_1=0.035)^{b}$	$ m wR_2=0.047^a~(R_1=0.020)^b$	$ m wR_2=0.096^{a}~(R_1=0.037)^{b}$	$ m wR_2 = 0.042^a~(R_1 = 0.019)^b$
weighting factors	$a = 0.0303; b = 0.0^{a}$	$a = 0.0233; b = 0.0^{a}$	$a = 0.0545; b = 0.0^{a}$	$a = 0.0139; b = 0.0^{a}$
goodness of fit on F ²	0.873	0.89	1.039	0.963
final electron density diff features (max/min)/e ${ m \AA^{-3}}$	2.353, -2.057	0.79, -0.76	2.884, -1.491	1.08, -1.11
^a Structure was refined on F_0^2 using all data: $wR_2 = comparison with refinements based on F. with a truice$	$= [\sum[w(F_0^2 - F_c^2)^2]/\sum w(F_0^2)^2]^{1/2}, when the should of F > 4 \alpha(F) and R.$	$ \text{ are } W^{-1} = [\sigma^2(F_0^2) + (aP)^2 + bP] \text{ an } \\ = \Sigma_{ F } - F /\Sigma_{ F } = and w^{-1} = L_{\sigma} $	d P = $[\max(F_0^2, 0) + 2F_c^2]/3$. ^b The ^{2/F}) + σF^2 1	value in parentheses is given for

÷ < 1 L Str ÷ ć ≥ ç + È 1 hla

J $[\sigma^{4}(F_{0}) + gF_{0}^{4}].$ $|F_{c}|/2|F_{0}|$ and W 2||F0| $4\sigma(F_0)$ and K_1 on F_o with a typical threshold of F_o based comparison with retinements from appropriate drying agents before use. Light petroleum refers to that fraction of boiling point 40–60 °C. Chromatography columns (ca. 60 cm long and 1 cm in diameter) were packed with silica gel (Aldrich, 70–230 mesh). The NMR measurements were recorded at the following frequencies: ¹H at 360.13, ¹³C at 90.56, ¹¹B at 115.55, and ³¹P at 145.78 MHz. The reagents [N(PPh₃)₂]₂[Re(CO)₃(η^{5} -7-CB₁₀H₁₁)] (**1a**)^{3b} and [M(NCMe)₃(η^{5} -C₅Me₅)][BF₄]₂ (M = Rh, Ir)¹² were made as previously described. The ligands PMe₃ and PMe₂Ph were used as purchased from Aldrich.

Synthesis of [ReRh(CO)₃(η^5 -C₅Me₅)(η^5 -7-CB₁₀H₁₁)]. A mixture of the compounds **1a** (1.00 g, 0.68 mmol) and [Rh-(NCMe)₃(η^5 -C₅Me₅)][BF₄]₂ (0.36 g, 0.67 mmol) was treated with MeCN (30 mL), and the solution, which turns instantly redbrown, was stirred for ca. 15 min. Solvent was removed in vacuo, and CH₂Cl₂ (3 mL) was added, followed by chromatographic purification. Elution with CH₂Cl₂–light petroleum (7:3) removed a deep red-brown fraction. Crystallization from CH₂Cl₂–light petroleum (15 mL, 1:3) gave red-brown microcrystals of [ReRh(CO)₃(η^5 -C₅Me₅)(η^5 -7-CB₁₀H₁₁)] (**3a**) (0.35 g).

Syntheses of the Complexes [ReRh(CO)₃(PR₃)(η^{5} -C₅Me₅)(η^{5} -7-CB₁₀H₁₁)]. (i) A solution of **3a** (0.05 g, 0.08 mmol) in CH₂Cl₂ (10 mL) was cooled to -10 °C. A solution of PMe₃ (80 μ L, 1.0 M in THF, 0.08 mmol) was added to CH₂Cl₂ (10 mL) in a dropping funnel, and this was added dropwise to the cold solution of **3a** over a period of ca. 0.5 h. The solution turned deep green in this time. The reaction was stirred for a further 0.5 h, after which time the volume was reduced in vacuo to ca. 4 mL. This was chromatographed, and a deep green fraction was eluted with CH₂Cl₂–light petroleum (3:2). Crystallization from CH₂Cl₂–light petroleum (12 mL, 1:5) gave dark green microcrystals of [ReRh(CO)₃(PMe₃)(η^{5} -C₅Me₅)(η^{5} -7-CB₁₀H₁₁)] (**4b**) (0.04 g).

(ii) A solution of **3a** (0.09 g, 0.14 mmol) in CH₂Cl₂ (10 mL) was cooled to -78 °C and stirred. A solution of PMe₂Ph (20 μ L, 0.14 mmol) in CH₂Cl₂ (10 mL) was added via a dropping funnel over a 20 min period. After the addition was complete, the reaction mixture was allowed to warm to room temperature to give a green-brown solution and stirred overnight. At this point, no further changes were registered upon IR measurement and TLC (silica gel plate, 250 µm layer, CH₂Cl₂light petroleum (1:1)) revealed two bands: a green fraction running just ahead of a red-brown band. Solvent was reduced in volume in vacuo to ca. 4 mL, and the solution was chromatographed at -30 °C. Initial elution with CH₂Cl₂-light petroleum (1:1) removed a deep green fraction. A red-brown band was then eluted from the column with CH₂Cl₂-light petroleum (4:1). However, after removal from the chromatography column, both fractions reverted to the same green-brown color within 1-2 min. IR, NMR, and microanalytical analysis confirmed that both fractions were of the same composition. Removal of solvent in vacuo and crystallization from CH₂Cl₂light petroleum (10 mL, 1:4) gave a mixture of red and green microcrystals of [ReRh(CO)₃(PMe₂Ph)(η^{5} -C₅Me₅)(η^{5} -7-CB₁₀H₁₁)] (5) (0.09 g)

Synthesis of the Isomers of [ReIr(CO)₃(PR₃)(η^{5} -C₅Me₅)-(η^{5} -7-CB₁₀H₁₁)]. (i) A solution of 1a (0.2 g, 0.14 mmol) in CH₂Cl₂ (10 mL) was cooled to -30 °C. From a dropping funnel, a solution of [Ir(NCMe)₃(η^{5} -C₅Me₅)][BF₄]₂ (0.09 g, 0.14 mmol) in CH₂Cl₂ (10 mL) was added slowly. To make sure no iridium reactant remained in the funnel, a small amount of neat CH₂Cl₂ (2 mL) was washed through. The reaction mixture was warmed to 0 °C, stirred for ca. 15 min, and then cooled to -78°C. A solution of PMe₃ (140 μ L, 1.0 M in THF, 0.14 mmol) was added to CH₂Cl₂ (10 mL), placed in the same dropping funnel, and then added to the reaction mixture over the course of ca. 20 min. After the mixture was gradually warmed to room temperature, it was stirred overnight. Solvent was reduced in volume in vacuo to ca. 5 mL, and the solution was chromatographed. Initial elution with CH₂Cl₂–light petroleum (3:2) removed a purple fraction. Removal of solvent in vacuo and crystallization from CH₂Cl₂–light petroleum (10 mL, 1:1) gave purple microcrystals of the β -isomer of [ReIr-(CO)₃(PMe₃)(η^5 -C₅Me₅)(η^5 -7-CB₁₀H₁₁)] (**6b**) (0.08 g). Further elution of the chromatography column with CH₂Cl₂–light petroleum (4:1) removed an orange fraction. Crystallization from CH₂Cl₂–light petroleum (8 mL, 3:1) gave orange microcrystals of the α -isomer of [ReIr(CO)₃(PMe₃)(η^5 -C₅Me₅)(η^5 -7-CB₁₀H₁₁)] (**6a**) (0.02 g)

(ii) Using a similar procedure, **1a** (0.20 g, 0.14 mmol), [Ir-(NCMe)₃(η^{5} -C₅Me₅)][BF₄]₂ (0.09 g, 0.14 mmol), and PMe₂Ph (20 μ L, 0.14 mmol) in CH₂Cl₂ (30 mL) gave purple microcrystals of the β -isomer of [ReIr(CO)₃(PMe₂Ph)(η^{5} -C₅Me₅)(η^{5} -7-CB₁₀H₁₁)] (**7b**) (0.02 g) and orange microcrystals of the α -isomer of [ReIr(CO)₃(PMe₂Ph)(η^{5} -C₅Me₅)(η^{5} -7-CB₁₀H₁₁)] (**7a**) (0.06 g).

Crystal Structure Determinations and Refinements. Crystals of 3a were grown by diffusion of n-hexane into a CH₂Cl₂ solution of the complex, while those of 5a-anti, 6aanti, and 7b-syn were grown similarly, but with light petroleum replacing n-hexane. Crystals of 5a-anti grow with a molecule of CH₂Cl₂ in the asymmetric unit. All crystals were mounted on glass fibers, and low-temperature data were collected on a Siemens SMART CCD area-detector three-circle diffractometer (Mo Ka X-radiation, graphite monochromator, $\bar{\lambda} = 0.710~73$ Å). For three settings of ϕ , narrow data "frames" were collected for 0.3° increments in ω . In all cases, a total of 1271 frames of data were collected, affording rather more than a hemisphere of data for each experiment. It was confirmed that crystal decay had not taken place during the course of the data collections. The substantial redundancy in data allows empirical absorption corrections (SADABS¹³) to be applied using multiple measurements of equivalent reflections. The data frames were integrated using SAINT,13 and the structures were solved by conventional direct methods and refined by full-matrix least-squares on all F^2 data using Siemens SHELXTL version 5.03.13 The asymmetric unit of 3a contains three crystallographically independent molecules of the complex in general positions. For molecule 2 (containing Re(2)Rh(2), the cage carbon atom could not be unambiguously identified and it is possible that this carbon is disordered over the two sites which are adjacent to the agostic B−H→Rh boron atoms. For all structures, the non-hydrogen atoms were refined with anisotropic thermal parameters with the exception of atom B(35) in molecule 3 of **3a** which was found to be unstable under these conditions and was, therefore, restrained to have approximate isotropic character. Cage carbon atoms were identified from the magnitudes of their anisotropic thermal parameters and from a comparison of bond lengths to adjacent boron atoms. With the exception of **6a**-anti, all agostic B-H→M (Rh, Ir) hydrogen atoms were located and refined. All other hydrogen atoms were included in calculated positions and allowed to ride on the parent boron or carbon atoms with isotropic thermal parameters ($U_{\rm iso} = 1.2 \times U_{\rm iso \ equiv}$ of the parent atom except for Me protons where $U_{\rm iso} = 1.2 \times$ $U_{\rm iso \ equiv}$). The final electron density difference syntheses for 3a and 6a-anti showed large residual peaks in the vicinity of the transition-metal atoms and reflect the comparatively poor quality of the crystals available for data collection and an inability to completely correct for residual absorption effects. All calculations were carried out on Silicon Graphics Iris, Indigo, or Indy computers and experimental data are recorded in Table 10.

Acknowledgment. We thank the Robert A. Welch Foundation for support (Grant No. AA-1201).

⁽¹²⁾ Maitlis, P. M.; Thompson, S. J.; White, C. J. Chem. Soc., Dalton Trans. 1977, 1654.

5a-*anti*, **6a**-*anti*, and **7b**-*syn* (59 pages). Ordering information is given on any current masthead page. OM9800243