Mechanistic Aspects of the Reactions of Bis(pentafluorophenyl)borane with the Dialkyl Zirconocenes Cp_2ZrR_2 (R = CH₃, CH₂SiMe₃, and CH₂C₆H₅)

Rupert E. v. H. Spence,[†] Warren E. Piers,^{*,‡} Yimin Sun,[†] Masood Parvez,[†] Leonard R. MacGillivray,§ and Michael J. Zaworotko§

Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta T2N 1N4, Canada, NOVA Research & Technology Corpoation, 2928 16th Street Northeast, Calgary, Alberta T2E 7K7, Canada, and Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada

Received March 27, 1998

The reactions of bis(pentafluorophenyl)borane with simple dialkyl zirconocenes Cp₂ZrR₂ $(R = CH_3, CH_2SiMe_3, CH_2Ph)$ proceed via initial alkyl/hydride exchange to yield "Cp₂Zr-(H)R" and $RB(C_6F_5)_2$. Two reaction paths are then followed depending on whether further equivalents of $HB(C_6F_5)_2$ are present or not. If present, $HB(C_6F_5)_2$ reacts with the newly formed Zr-H moiety to form dihydridoborate compounds, ultimately yielding $Cp_2Zr[(\mu-H)_2B (C_6F_5)_2$, **1**, and 2 equiv of $RB(C_6F_5)_2$. Compound **1** was characterized by X-ray crystallography. In the absence of more $HB(C_6F_5)_2$, the products of alkyl/hydride exchange react to eliminate RH and produce the borane-stabilized alkylidene compounds $Cp_2Zr(\mu-CH_2)[(\mu-CH_2)]$ H)B(C₆F₅)₂], **2**, and Cp₂Zr{ η^3 -CH(C₆H₅)[(μ -H)B(C₆F₅)₂]}, **4**. The latter compound is formed cleanly in 92% yield and was characterized by X-ray crystallography. Mechanistic studies on these reactions involving partially deuterated compounds reveal that the alkyl/hyride exchange process is reversible and takes place via a stepwise alkide-abstraction-hydridereplacement sequence rather than a concerted, four-centered σ -bond metathesis type mechanism. This is most convincingly demonstrated by the observed inversion of stereochemistry observed when erythro-Cp₂Zr[CH(D)CH(D)-t-C₄H₉](Cl) (³J_{HH} = 12.82 \pm 0.05 Hz) is treated with excess HB(C₆F₅)₂, producing *threo*-(C₆F₅)₂B-CH(D)CH(D)-*t*-C₄H₉ (${}^{3}J_{HH} = 5.00$ \pm 0.05 Hz). Further experiments reveal a H/D scrambling process involving the borane proton and the C_{α} -H positions of the zirconium alkyl groups (R = CH₃, CH₂Ph). For example, treatment of $Cp_2Zr(CD_2C_6D_5)_2$ with 1 equiv of $HB(C_6F_5)_2$ leads to a mixture of isotopomers of **4** and toluene, including $C_6D_5CH_3$ and $C_6D_5CH_2D$, suggesting a scrambling process in which the borane engages in multiple contacts with the metallocene reagent prior to alkane elimination. The H/D scrambling event is proposed to involve hydridoborate attack of the remaining alkyl group on the forming metallocene cation as $HB(C_6F_5)_2$ abstracts the other alkide ligand. The implications of these mechanistic studies within the realms of metallocene activation and metallocene-catalyzed hydroborations are discussed.

Introduction

The reactions of transition-metal complexes with secondary boranes R₂B-H have received increased attention in recent years. This interest stems primarily from the fact that a wide range of organometallic compounds are effective mediators of the addition of B-H bonds across unsaturated organic functions, i.e., hydroboration.¹ While the earliest work in this relatively young area of research focused on the use of late-transitionmetal-based catalysts,² it has recently been shown that early transition metals³ and lanthanides⁴ can also catalyze hydroboration reactions. In the absence of the oxidative addition reaction available to late-transitionmetal catalysts,⁵ these early-transition-metal systems utilize exclusively nonoxidative pathways that effect rapid alkyl/hydride exchange⁶ between boron and the metal center for B-C bond formation (Scheme 1). This exchange process has been categorized as an example of σ -bond metathesis (σ BM) and as such has been as-

^{*} To whom correspondence should be addressed. E-mail: wpiers@chem.ucalgary.ca.

[†] NOVA Research and Technology Corp. [‡] University of Calgary.

[§] Saint Mary's University.

⁽¹⁾ Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.

⁽²⁾ For selected examples, see: (a) Mannig, D.; Nöth, H. Angew. Chem., Int. Ed. Engl. **1985**, 24, 878. (b) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1988, 110, 6917. (c) Burgess, K.;
 Ohlmeyer, M. J. Tetrahedron Lett. 1989, 30, 395. (d) Westcott, S. A.;
 Blom, H. P.; Marder, T. B.; Baker, R. T. J. Am. Chem. Soc. 1992, 114, 8863

^{(3) (}a) He, X.; Hartwig, J. F. *J. Am. Chem. Soc.* **1996**, *118*, 1696. (b) Erker, G.; Noe, R.; Wingbermühle, D.; Petersen, J. L. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 1213. (c) Pereira, S.; Srebnik, M. *J. Am. Chem.* Soc. 1996, 118, 909. (d) Pereira, S.; Srebnik, M. Organometallics 1995, 14, 3127. (e) Bijpost, E. A.; Duchateau, R.; Teuben, J. H. J. Mol. Catal. A: Chem. 1995, 95, 121.

⁽⁴⁾ Harrison, K. M.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 9220.

sumed to occur via the four-centered transition state commonly invoked for σ BM reactions. The most favored transition state for σ BM involving B–H and early metal-transition-carbon-bonds leads to formation of B-C and M-H; generation of alkane and metal boryl products via an alternative σ BM transition state has not, to our knowledge, been observed in these systems. Olefin insertion into the resultant M-H bond rapidly regenerates the metal alkyl species; in the absence of olefin, excess borane R₂B-H can complex M-H, forming a metal borate complex.^{5a-b,7} Stoichiometric examples of alkyl/hydride exchange reactions were observed some time ago in the pioneering work of Marsella and Caulton in their study of the reactions of Cp₂ZrMe₂ with diborane⁸ and have also been documented more recently in other systems.^{7b,9} Despite these studies, however, a detailed picture of the mechanism for alkyl/hydride exchange between (ETM)-R and B-H has not been developed.

Many of the more recent studies examining these types of reactions have focused on relatively unreactive boronic esters such as catechol borane, not surprising in light of the reluctance of these boranes to add across C=C or C=C bonds of their own volition. We, on the other hand, have been exploring the chemistry of the highly electrophilic borane bis(pentafluorophenyl)borane, $HB(C_6F_5)_2$,¹⁰ in this regard. While this borane is an extremely effective hydroboration reagent which requires no aid from a transition-metal catalyst to perform, it nonetheless is also highly reactive toward early-transition-metal organometallic compounds. This stoichiometric reactivity is germane to the realm of group 4 metal-catalyzed hydroborations. In addition to relevance to metal-catalyzed hydroboration chemistry,

F1

F4

F3

C4

Figure 1. ORTEP drawing of the molecular structure of 1.

F18

F17

 F^{2}

the interactions of highly Lewis acidic pentafluorophenyl-substituted boranes with group 4 metal metallocenes are of interest in the field of homogeneous olefin polymerization.¹¹ We have, therefore, examined the reactions of HB(C₆F₅)₂ with simple dialkyl zirconocenes in some detail. A preliminary account of the reactions of Cp_2ZrMe_2 with $HB(C_6F_5)_2$ has appearred.¹²

Results and Discussion.

A. Synthetic Chemistry. In benzene or toluene, the reaction of 1 equiv of $HB(C_6F_5)_2$ with Cp_2ZrMe_2 gives an intractable mixture of products. In contrast, addition of 4 equiv of borane to the zirconocene results in one major zirconium-containing product as well as 2 equiv of $MeB(C_6F_5)_2$ (eq 1). The zirconocene product is the

bis-dihydridoborate complex Cp₂Zr[(*µ*-H)₂B(C₆F₅)₂]₂, **1**, a colorless white solid with poor solubility in aromatic hydrocarbons. Compound 1 is characterized by a relatively sharp triplet in the ¹¹B NMR spectrum (${}^{1}J_{HB} =$ 64 Hz). In the ¹H NMR spectrum, a resonance centered around 0.38 ppm consisting of four broad humps separated by 64 ± 2 Hz (¹¹B, ~80% abundant, $I = \frac{3}{2}$) corroborates the ¹¹B data. After our initial report, ¹² we have obtained the solid-state structure of this molecule, confirming its formulation.

Figure 1 shows an ORTEP diagram of the molecule, while Table 1 gives selected metrical data. The hydrogen atoms bridging boron and zirconium were located on the Fourier difference map and refined in those positions. The molecule crystallizes with 1 equiv of benzene in the lattice. Parameters associated with the Cp ligands and C₆F₅ rings are unremarkable. The dihydridoborate ligands are bidentate, with Zr-H distances of \sim 2.0 Å and B–H lengths of \sim 1.25 Å. The Zr-B separations of 2.696(10) and 2.679(10) Å are somewhat longer than the 2.558(4) Å observed for the

F12

⁽⁵⁾ Alkyl and dialkyl boranes can react with late-transition-metal compounds via nonoxidative pathways: (a) Baker, R. T.; Ovenall, E. W.; Harlow, R. L.; Westcott, S. A.; Taylor, N. J.; Marder, T. B. Organometallics 1990, 9, 3028. (b) Baker, R. T.; Calabrese, J. C.; Westcott, S. A.; Marder, T. B. J. Am. Chem. Soc. 1995, 117, 8777. (c) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T.; Calabrese, J C. Inorg. Chem. 1993, 32, 2175. (d) Hartwig, J. F.; Bhandari, S.; Rablen, P. R. J. Am. Chem. Soc. 1994, 116, 1839.

⁽⁶⁾ In this paper, "alkyl/hydride" exchange refers to an alkyl transfer from the metal to boron with concomitant transfer of hydride from boron to the metal. The term "hydride/alkyl" exchange, on the other hand, refers to the reverse process, i.e., alkyl from boron to metal and hydride from metal to boron.

^{(7) (}a) Hartwig, J. F.; De Gala, S. R. J. Am. Chem. Soc. 1994, 116, 3661. (b) Lantero, D. R.; Ward, D. L.; Smith, M. R. J. Am. Chem. Soc. 1997. 119. 9699

⁽⁸⁾ Marsella, J. A.; Caulton, K. G. J. Am. Chem. Soc. 1982, 104, 2361

^{(9) (}a) Motry, D. H.; Smith, M. R., III *J. Am. Chem. Soc.* **1995**, *117*, 6615. (b) Sun, Y.; Piers, W. E.; Rettig, S. J. Organometallics **1996**, *15*, 4110. (c) Hartwig, J. F.; Muhoro, C. N.; He, X. J. Am. Chem. Soc. **1996**, 118, 10936. (d) Motry, D. H.; Brazil, A. G.; Smith, M. R., III J. Am. Chem. Soc. 1997, 119, 2743. (e) Sun, Y.; Spence R. E. v. H.; Piers, W.
 E.; Parvez, M.; Yap, G. P. A. J. Am. Chem. Soc. 1997, 119, 5132.
 (10) Parks, D. J.; Spence, R. E. v. H.; Piers, W. E. Angew. Chem.,

Int. Ed. Engl. 1995, 34, 809.

⁽¹¹⁾ Piers, W. E.; Chivers, T. Chem. Soc. Rev. 1997, 345.

⁽¹²⁾ Spence, R. E. v. H.; Parks, D. J.; Piers, W. E.; MacDonald, M.; Zaworotko, M. J.; Rettig, S. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1230.

 Table 1.
 Selected Bond Distance and Angle Data for Complex 1

ioi compiex i					
bond lengths (Å)		bond angles (deg)			
Zr(1)-C(25)	2.503(9)	H(1)-Zr(1)-H(2)	50.30		
Zr(1)-C(26)	2.506(10)	H(1)-Zr(1)-H(3)	159.38		
Zr(1)-C(27)	2.501(8)	H(1)-Zr(1)-H(4)	105.24		
Zr(1)-C(28)	2.478(8)	H(2)-Zr(1)-H(3)	109.43		
Zr(1)-C(29)	2.450(8)	H(2)-Zr(1)-H(4)	55.44		
Zr(1)-C(30)	2.454(9)	H(3)-Zr(1)-H(4)	54.19		
Zr(1) - C(31)	2.502(9)				
Zr(1) - C(32)	2.496(10)	H(1)-B(1)-H(2)	91.65		
Zr(1)-C(33)	2.497(9)	H(3)-B(2)-H(4)	97.32		
Zr(1)-C(34)	2.479(9)	C(1)-B(1)-C(7)	113.5(7)		
		C(13)-B(2)-C(19)	113.2(7)		
C(1) - B(1)	1.63(1)				
C(7)-B(1)	1.60(1)	C(2)-C(1)-C(6)	113.9(9)		
C(13)-B(2)	1.61(1)	C(2)-C(1)-B(1)	119.6(8)		
C(19)-B(2)	1.62(1)	C(6)-C(1)-B(1)	126.5(8)		
		C(8) - C(7) - C(12)	113.7(9)		
Zr(1) - H(1)	2.043	C(8)-C(7)-B(1)	121.9(9)		
Zr(1)-H(2)	2.054	C(12)-C(7)-B(1)	124.4(9)		
Zr(1)-H(3)	2.177	C(14)-C(13)-C(18)	113.9(9)		
Zr(1)-H(4)	1.991	C(14)-C(13)-B(2)	121.0(8)		
		C(18)-C(13)-B(2)	125.0(8)		
B(1) - H(1)	1.234	C(20)-C(19)-C(24)	114.3(8)		
B(1)-H(2)	1.193	C(20)-C(19)-B(2)	122.8(8)		
B(2)-H(3)	1.295	C(24)-C(19)-B(2)	122.9(8)		
B(2)-H(4)	1.243				
Zr(1) - B(1)	2.696(10)				
Zr(1)-B(2)	2.679(10)				

same parameter in the bidentate¹³ borate complex $Cp_2Zr(H)(\eta^2-H_3BCH_3)$,¹⁴ a reflection of the greater steric congestion in **1**. This crowding is apparent in the close nonbonded approaches between adjacent *ortho* fluorines (F(1)-F(16) = 2.64 Å; F(10)-F(11) = 2.73 Å) and partially accounts for the compound's moderate tolerance of air and moisture.

Production of **1** as in eq 1 involves initial alkyl/hydride exchange between B–H and Zr–CH₃ to produce a zirconium hydride complex. In the presence of excess borane, the Zr–H moiety is immediately complexed, forming a borate ligand, a process with precedence in transition-metal hydride chemistry.^{5a–b,7} The facility of this latter process is demonstrated by the fact that **1** can also be prepared conveniently from the oligomeric dihydride [Cp₂ZrH₂]_n and 2 equiv of HB(C₆F₅)₂.

A clean reaction between Cp₂ZrMe₂ and 1 equiv of HB(C₆F₅)₂ occurs under slightly different conditions. When carried out in *hexanes* as opposed to toluene, a nearly totally insoluble brick-red solid precipitates from the reaction medium while methane gas evolves (identified by ¹H NMR, 0.16 ppm). As described previously,¹² the product was identified as the HB(C₆F₅)₂-complexed zirconocene methylidene compound Cp₂Zr(μ -CH₂)[(μ -H)B(C₆F₅)₂], **2** (an analogue of Cp₂Ti(μ -CH₂)(μ -Cl)AlMe₂, Tebbe's reagent¹⁵), by completely characterizing its PMe₃ adduct, **2**·PMe₃. Uncomplexed **2** is moderately stable as a solid but decomposes ($t_{1/2} \approx 20$ min) to a variety of products in benzene solution. In addition to reacting with Lewis bases, **2** reacts further with HB-(C₆F₅)₂ to form mixtures of bis(borate) **1** (via attack from

trajectory **a**, Scheme 2) and the intriguing complex $Cp_2Zr(\mu-H)_2(CH_2(B(C_6F_5)_2)_2)$, **3**, if the borane utilizes approach b. The bonding interactions in **3** have been described in detail elsewhere.^{12,16}

Since formation of **2** is accompanied by loss of methane, it likely forms from the products of alkyl/ hydride exchange in a way similar to that proposed for the formation of Tebbe's reagent.¹⁷ According to this model, Cp_2TiCl_2 reacts with AlMe₃ to effect chloro/alkyl exchange and then methane elimination takes place from a six-membered transition state akin to that depicted in **I**. The observation that separately synthe-

sized $[Cp_2Zr(H)Me]_n$ and $MeB(C_6F_5)_2$ react immediately in C_6D_6 to produce **2**¹⁸ along with vigorous evolution of CH_4 (eq 2) supports the notion that alkane elimination takes place after alkyl/hydride exchange in these systems. This process must be extremely facile since the

methyl hydrido zirconocene is an almost completely insoluble oligomer in benzene.

As the discussion above demonstrates, the effect of the solvent medium on the result of the reaction between Cp_2ZrMe_2 and $HB(C_6F_5)_2$ is dramatic. Although both outcomes likely involve alkyl/hydride exchange as a first step, subsequent reactivity is quite different, depending on the solvent environment. It is possible that in the aliphatic hydrocarbon medium the two products of exchange (i.e., " $Cp_2Zr(H)Me$ " and MeB- $(C_6F_5)_2$) are not effectively solvated and do not fully

⁽¹³⁾ Zr–B distances in tridentate borohydride ligands are substantially shorter, e.g. 2.341(3) Å in Zr(η^3 -BH₄)₄: Bird, P. H.; Churchill, M. R. *Chem. Commun.* **1967**, 403.

⁽¹⁴⁾ Kot, W. K.; Edelstein, N. M.; Zalkin, A. *Inorg. Chem.* **1987**, *26*, 1339.

 ^{(15) (}a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem.
 Soc. 1978, 100, 3611. (b) Klabunde, U.; Tebbe, F. N.; Parshall, G. W.;
 Harlow, R. L. J. Mol. Catal. 1980, 8, 37.

⁽¹⁶⁾ Radius, U.; Silverio, S. J.; Hoffmann, R.; Gleiter, R. Organometallics 1996, 15, 3737.

⁽¹⁷⁾ Ott, K. C.; de Boer, E. J. M.; Grubbs, R. H. Organometallics 1984, 3, 223.

escape from each other after alkyl/hydride exchange. Perhaps the borane reagent $HB(C_6F_5)_2$, which is very poorly hexane soluble, cannot effectively compete with $MeB(C_6F_5)_2$, which is hexane soluble, for the methyl hydrido zirconocene product. Furthermore, the extremely low solubility of product 2 in hexanes essentially precludes its further reactions with $HB(C_6F_5)_2$ (Scheme 3) in this solvent. Likely, each of these factors conspire to allow for the selective formation of 2 over 1 (and/or in hexane solvent as opposed to aromatic media.

It is worthwhile comparing these results to the recently disclosed chemistry of Hartwig and co-workers who have examined the reactions of dimethyltitanocene with the less electrophilic boranes HB(cat) (cat = catecholate and substituted catecholates). While much of this work was done within the context of titaniumcatalyzed alkene hydroboration chemistry,^{3a} the boranes react with Cp₂TiMe₂ in the absence of olefins^{9c} with loss of methane and MeB(cat), producing remarkable borane σ -complexes of titanocene (eq 3).¹⁹ In the absence of

detailed mechanistic studies, it thus appears that in the reactions of these very different boranes with Cp₂TiMe₂, alkyl/hydride exchange is again the initial reaction. However, formation of the σ -complex suggests that in the titanium chemistry, reductive elimination of CH₄ from in-situ-generated "Cp2Ti(H)Me" (either spontaneous or borane-induced) competes effectively with the other possible reaction channels, i.e., borate formation or alkane loss involving MeB(cat). Clearly, subtle effects are at play in the reactions of HBR₂ with Cp₂M-(CH₃)₂ derivatives.

The reactions of bulkier bis(trimethylsilylmethyl) zirconocene with $HB(C_6F_5)_2$ provide further support for an alkyl/hydride-exchange-borane-complexation sequence leading to 1 (Scheme 3). In this instance, the alkyl groups can be selectively removed one at a time by treatment of the zirconocene with 2 equiv of borane in sequence. The alkyl borate complex Cp₂Zr(CH₂- $SiMe_3$ [(μ -H₂)B(C₆F₅)₂] could be isolated or treated with a further dual portion of borane to yield 1. The alkyl borane byproduct of this reaction, Me₃SiCH₂B(C₆F₅)₂,

characterized by a broad signal at 2.01 ppm for the methylene protons, was also generated by transmetalation²⁰ from Cp₂Zr(CH₂SiMe₃)₂ and ClB(C₆F₅)₂ to confirm its identity.

While the trimethylsilylmethyl group favors the pathway leading to formation of 1, dibenzyl zirconocene reacts smoothly and cleanly with 1 equiv of $HB(C_6F_5)_2$ in the alkane elimination manifold, yielding the benzylidene analogue of **2** Cp₂Zr{ η^3 -CH(C₆H₅)[(μ -H)- $B(C_6F_5)_2$, **4**, and 1 equiv of toluene (eq 4). Sonication

of the reaction mixture was employed to induce the reaction. Unlike 2, complex 4 is stable in the absence of Lewis-base donors, due to the internal electronic stabilization provided by the phenyl group on C_{α} . Multihapto bonding in the benzyl moiety is suggested by the separate resonances observed in the ¹H and ¹³C-¹H} NMR spectra for each of the inequivalent phenyl hydrogen and carbon atoms of the C₆H₅ unit. One of the *ortho* C–H units is shifted upfield both in the ¹H (4.25 ppm) and ${}^{13}C{}^{1}H{}$ (98.0 ppm) NMR spectra, suggestive of interaction with the metal center.²¹ Further, an increased ${}^{1}J_{\rm CH}$ coupling constant of 133 \pm 2 Hz²² for the benzylic C-H bond in comparison to the value of 120 Hz measured for the methylene ${}^{1}J_{CH}$ coupling constant in Cp₂Zr(CH₂C₆H₅)₂ and those for normal sp³-hybridized carbon centers²³ is indicative of a distorted geometry about this carbon atom. A broad resonance at -2.2 ppm in the ¹H NMR spectrum confirmed the presence of a $B-(\mu-H)-M$ group, while the chemical shift of the boron atom in the ¹¹B NMR spectrum (-16.6 ppm, whh = 190 Hz) is diagnostic of a fourcoordinate boron center with anionic character.²⁴

The solid-state structure of 4 was determined by X-ray analysis and confirmed many of the features deduced from the spectroscopic data; Figure 2 shows an ORTEP diagram of the compound, while Table 2 gives pertinent bond distance and angle data. In general terms, 4 may be formulated as a zwitterionic zirconocene²⁵ in which the borate counterion is attached covalently to the α -carbon of the alkyl ligand. The

(24) Kidd, R. G. In NMR of Newly Accessible Nuclei, Laszlo, P., Ed.; Academic Press: New York, 1983; Vol. 2.

(25) Piers, W. E. Chem. Eur. J. 1998, 4, 13.

⁽¹⁸⁾ As identified by its characteristic ¹H NMR spectrum.¹² (¹H (19) As the function of the second activity o

Engl. 1997, 36, 1510.

^{(20) (}a) Fagan, P. J.; Burns, E. G.; Calabrese, J. C. J. Am. Chem. *Soc.* **1988**, *110*, 2979. (b) Fryzuk, M. D.; Bates, G. S.; Stone, C. J. Org. Chem. **1988**, *53*, 4425. (c) Cole, T. E.; Quintanilla, R.; Rodewald, S. Organometallics 1991, 10, 3777. (d) Fagan, P. J.; Nugent, W. A.; Calabrese, J. C. J. Am. Chem. Soc. 1994, 116, 1880.

⁽²¹⁾ Addition of a small amount of THF to benzene solutions of 4 results in formation of an adduct in which the phenyl resonances for the benzylidene moiety return to a "normal" pattern. Although we have not fully characterized 4.THF, it is apparent that the THF donor is able to displace the multihapto benzylidene ligand

^{(22) (}a) Because C1 is bonded to a boron atom, its resonance in the ^{13C} NMR spectrum was broad; measurement of the C1–H coupling constant was accomplished using the HMQC pulse sequence with gated decoupling. (b) Robinson V. J.; Bain, A. D. *Magn. Reson. Chem.* **1993**, 31, 865. (c) Bax, A.; Subramanian, S. J. Magn. Reson. 1986, 67, 565.

⁽²³⁾ This ${}^{1}J_{CH}$ value is similar to that found in cyclobutane: Gordon, A. J.; Ford, R. A. The Chemist's Companion; Wiley: New York, 1972 Cf. also the ${}^{1}J_{CH}$ value of 120 Hz measured for the methylene C-H bonds in Cp₂Zr(CH₂C₆H₅)₂

Figure 2. ORTEP drawing of the molecular structure of

Table 2. Selected Bond Distance and Angle Data for Complex 4

bond lengths (Å)		bond angles (deg)	
Zr-Cp1	2.509(8)	Zr-C1-C2	82.2(6)
Zr–Cp2	2.516(8)	Zr-C1-B	87.6(6)
Zr-Cp3	2.492(9)	C2-C1-B	133.5(8)
Zr-Cp4	2.526(10)	C1-C2-C3	117.3(9)
Zr-Cp5	2.506(9)	C1-C2-C7	126.3(9)
Zr-Cp6	2.518(12)	C3-C2-C7	116.2(8)
Zr-Cp7	2.477(13)	C2-C3-C4	122.1(9)
Zr-Cp8	2.413(17)	C3-C4-C5	119.0(10)
Zr-Cp9	2.492(22)	C4-C5-C6	118.5(10)
Zr-Cp10	2.532(15)	C5-C6-C7	122.9(10)
-		C2-C7-C6	121.2(9)
Zr-C1	2.341(10)	C1-B-C20	113.8(8)
C1-C2	1.456(12)	C1-B-C30	124.0(9)
C1-B	1.545(15)	C20-B-C30	107.7(8)
C20-B	1.661(15)	Zr-HB-B	107(4)
C30-B	1.612(15)	Cpcent-Zr-Cpcent	127.10(5)
Zr-HB	2.02(7)		
B-HB	1.35(8)		
C2-C3	1.408(14)		
C2-C7	1.421(15)		
C3-C4	1.416(15)		
C4-C5	1.411(18)		
C5-C6	1.372(18)		
C6-C7	1 365(16)		

electron-deficient zirconium center gains electron density from a μ -hydride ligand shared with the boron center and the multihapto benzyl unit. The Zr-C1 distance of 2.341(10) Å is typical of a normal $Zr-C_{alkyl}$ linkage,²⁶ and the Zr-C2 length of 2.583 Å, while longer, is within the range (2.627–2.648 Å) of M–C_{ipso} lengths observed in known η^2 -benzyl complexes of zirconium.²⁷ Although the Zr–C3 distance is longer still at 2.737 Å, the perturbations in the chemical shifts of the C3–H unit discussed above argue for an η^3 -bonding description. The geometery about C1 is indeed distorted, as evidenced by the acute Zr-C1-C2 and Zr-C1-B angles of 82.2(6)° and 87.6(6)°, respectively. The B-C1-C2 angle is 133.5(8)° because C2 dips below the

plane of the metallocene which bisects the two Cp rings. Indeed, the centroid of C1-C2-C3 essentially lies in this plane, a further point in favor of an η^3 -benzyl bonding description.

The multihapto benzylidene unit affects the reactivity of **4** with further equivalents of $HB(C_6F_5)_2$. By blocking the other face of the alkylidene unit, the coordinated phenyl group effectively precludes attack of the borane via approach b (eq 5) and formation of the benzylidene analogue of 3. Consequently, the only zirconium prod-

uct observed in this reaction is 1. The diboryl toluene compound shown in eq 5 is presumed to be the other major product, on the basis of its NMR spectra (see Experimental Section), particularly the very broad²⁸ (whh \approx 850 Hz) ¹¹B chemical shift of 74.0 ppm diagnostic for neutral borane centers.²⁴

B. Mechanistic Studies. The poor solubility of HB- $(C_6F_5)_2$ in solvents it does not react with tends to preclude detailed kinetic studies of these reactions. The stoichiometric synthetic studies described above, particularly those involving Cp₂ZrMe₂, point to an initial exchange reaction followed by competing processes leading either to borate 1 or Tebbe-type compounds such as 2 and 4. While formation of borate ligands from metal hydrides and HB(C₆F₅)₂ seems a straightforward process, the nature of the alkyl/hydride exchange and the alkane elimination step leading to 2 and 4 are unclear. Experiments making use of deuterium labeling provide fundamental insights into these processes.

I. Alkyl/Hydride Exchange. 1,2-Dideuterated neohexyl groups have been used extensively as probes for determining the character of a reaction by observing the effect of the transformation on the stereochemistry of this group.²⁹ Through hydrozirconation,³⁰ organozirconium derivatives of such probes are readily prepared with >95% diastereospecificity.³¹ We, thus, prepared erythro-Cp₂Zr[CH(D)CH(D)-t-C₄H₉](Cl) as a model substrate for the alkyl/hydride exchange reaction with HB- $(C_6F_5)_2$. This compound reacts rapidly with an excess (2.5-3 equiv) of HB(C₆F₅)₂ to give monoborate species $Cp_2Zr[(\mu-H)_2B(C_6F_5)_2]Cl$, **5**, as the zirconium-containing product. Compound 5's identity was confirmed via its independent synthesis from [Cp₂Zr(Cl)H]_n (Schwartz's reagent) and $HB(C_6F_5)_2$ (see Experimental Section). As the ¹H{²H} NMR spectra in Figure 3 demonstrate, the stereochemistry associated with the $1,2-d_2$ -neohexyl probe in the zirconium starting material (A) undergoes clean inversion (>95%) to yield threo-(C₆F₅)₂B-CH(D)-

^{(26) (}a) Hunter, W. E.; Hrncir, D. C.; Vann Bynum, R.; Penttila, R. A.; Atwood, J. L. *Organometallics* **1983**, *2*, 750. (b) Jordan, R. F.; [27] (a) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Willett, R.; Scott, B. J. Am. Chem. Soc. 1986, 108, 7410.
 (27) (a) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.;
 Willett, R. J. Am. Chem. Soc. 1987, 109, 4111. (b) Jordan, R. F.; LaPointe, R. E.; Baenziger, N.; Hinch, G. D. Organometallics 1990, 9, 1539. (c) Bochmann, M.; Lancaster, S. J. Organometallics 1993, 12, 633. (d) Bochmann, M.; Lancaster, S. J.; Hursthouse, M. B.; Abdul Malik, K. M. Organometallics 1994, 13, 2235.

⁽²⁸⁾ Due to the quadrupolar nature of the boron nucleus, extremely broad ¹¹B resonances are characteristic of 1,1-diboryl compounds.

^{(29) (}a) Bock, P. L.; Boschetto, D. J.; Rasmussen, J. R.; Demers, J. P.; Whitesides, G. M. J. Am. Chem. Soc. 1974, 96, 2814. (b) Igau, A.; Gladysz, J. A. Organometallics 1991, 10, 2327. (c) Piers, W. E. J. Chem. Soc. Chem. Commun. 1994, 309.

⁽³⁰⁾ Labinger, J. A. In Comprehensive Organic Synthesis, Trost, B.

⁽³¹⁾ Labinger, J. A.; Hart, D. W.; Seibert, W. E.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 3851.

Figure 3. (A) Partial ¹H NMR spectrum of *erythro*-Cp₂-Zr[CH(D)CH(D)-*t*-C₄H₉](Cl). (B) Partial ¹H NMR spectrum of the product mixture obtained from reaction of *erythro*-Cp₂Zr[CH(D)CH(D)-*t*-C₄H₉](Cl) and excess HB(C₆F₅)₂. (C) Partial ¹H NMR spectrum of *erythro*-(C₆F₅)₂B-CH(D)CH-(D)-*t*-C₄H₉ formed from reaction of HB(C₆F₅)₂ and *E*-1-*d*₁-3,3-dimethyl-1-butene. All spectra were recorded at 300 MHz.

CH(D)-*t*-C₄H₉ (${}^{3}J_{\text{HH}} = 5.00 \pm 0.05$ Hz) as the boron exchange product (**B**). For comparison, the top trace in Figure 3 (**C**) is that of *erythro*-(C₆F₅)₂B-CH(D)CH-(D)-*t*-C₄H₉ (${}^{3}J_{\text{HH}} = 11.30 \pm 0.05$ Hz), independently generated from *E*-1-*d*₁-3,3-dimethyl-1-butene and DB-(C₆F₅)₂.

This result has significant mechanistic implications for the alkyl/hydride exchange step in these systems. A concerted, four-centered σ BM-type mechanism would be expected to result in retention of configuration in the probe (Scheme 4). The observation of inversion is suggestive of a stepwise process in which the borane abstracts via backside attack of the alkyl group and replaces it with a hydride ligand from the resulting borate counterion, as depicted on the left-hand side of Scheme 4. Abstraction of alkide groups from alkyl zirconocenes by $B(C_6F_5)_3$ is a well-known method for generating metallocene cations.^{27d,32} The fact that abstraction using HB(C₆F₅)₂ results in an inversion of stereochemistry at the abstracted carbon atom supports electrophilic attack on the back lobe of the Zr–C σ bonding orbital instead of in the internuclear region of

this orbital, two possibilities which have been suggested for this process.³² If this mechanism for alkyl/hydride exchange is general, there are also ramifications of this result vis-à-vis early-transition-metal catalyzed hydroborations, particularly asymmetric reductions where the stereochemistry at C_{α} is at issue. It should be noted that for less electrophilic boranes the alkide abstraction pathway may be disfavored and the concerted σ BM pathway dominant; this is a question that remains to be addressed.

Alkide abstraction from Cp₂ZrMe₂ and derivatives using $B(C_6F_5)_3$ has been shown to be rapidly reversible,³³ not surprisingly, therefore, the alkyl/hydride exchange reactions involving $HB(C_6F_5)_2$ are also reversible. When $[Cp_2Zr(Cl)H]_n$ is treated with $H_3CB(C_6F_5)_2$, a product mixture is observed which can only form after hydride/alkyl exchange, which is the reverse of alkyl/ hydride interchange⁶ (Scheme 5). For example, the primary zirconium-containing product in this reaction is 5, which forms from Schwartz's reagent and the HB- $(C_6F_5)_2$ generated from hydride/alkyl exchange. A second product, whose appearance coincides with the elimination of CH₄, we assign as the chloride-bridged analogue of 2, i.e., $[Cp_2Zr(\mu-CH_2)(\mu-Cl)B(C_6F_5)_2]$, on the basis of its ¹H (5.75 ppm, 10H; 2.97 ppm 2H) and ¹¹B (-4.0 ppm, cf. -1.1 ppm for 2) NMR spectra. We have

⁽³²⁾ Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015.

Reactions of Bis(pentafluorophenyl)borane

not been able to synthesize this compound independently, and thus, this assignment is tentative. The presence of **5** and CH_4 in the product mixture of this reaction, however, is strong evidence for an antipodal hydride/alkyl exchange and shows that these processes are reversible under mild conditions. The rapid reversibility of this exchange is crucial for explaining the observed H/D scrambling phenomenon described in the next section.

II. H/D Scrambling. Crossover experiments aimed at probing the nature of the alkane elimination step were performed utilizing specifically deuterated reagents. The results of these experiments failed to address this point conclusively (vide infra) but revealed instead a H/D scrambling process which implies another level of complexity in the reactions of Cp_2ZrR_2 with HB-(C_6F_5)₂. Reaction of HB(C_6F_5)₂ with $Cp_2Zr(CD_2C_6D_5)_2$ gives a complex mixture of isotopomers (eq 6), with the proton label distributed randomly among all possible locations except the phenyl group.³⁴ Significantly, all

three possible proton isotopomers of toluene are observed in the product mixture,³⁵ as demonstrated by the partial 400 MHz ¹H NMR spectrum shown in Figure 4 (toluene methyl region).³⁶ This observation leads to the conclusion that the borane engages in multiple contacts with the metallocene prior to alkane elimination and generation of products. Consistent with this is the observation that when $Cp_2Zr(CD_2C_6D_5)_2$ is treated with only 0.5 equiv of $HB(C_6F_5)_2$, a detectable amount of the proton label is incorporated into the benzylic positions $(\delta 1.82 \text{ ppm})$ of unreacted Cp₂Zr(CD₂C₆D₅)₂. In a separate experiment, it was determined that the benzylic protons of free toluene do not exchange (at room temperature or at 50 °C) with any of the protons of 4 by treating d_7 -4 with perproteo toluene. Thus, the protons are not scrambled in some process involving free toluene. Finally, the inverse experiment, i.e., the reaction of $Cp_2Zr(CH_2C_6H_5)_2$ with $DB(C_6F_5)_2$, yields similar results in that all benzylic positions plus the bridging hydride contain deuterium, as determined by ${}^{2}H{}^{1}H{}$ NMR spectroscopy.

Figure 4. Partial 400 MHz ¹H NMR spectrum (toluene methyl region) of the product mixture formed in the reaction of $Cp_2Zr(CD_2C_6D_5)_2$ and $HB(C_6F_5)_2$.

Figure 5. Partial 400 MHz ¹H NMR spectrum of the reaction between $[Cp_2Zr(H)Me]_n$ and $CD_3B(C_6F_5)_2$ showing the mixture of methane isotopomers produced. Portions of the multiplets due to the CD_2H_2 (5 lines) and CD_3H (7 lines) isotopomers are obscured due to overlapping.

Scrambling of the deuterium label is also observed when one starts with the products of alkyl/hydrideexchange; thus, in the reaction of $[Cp_2Zr(H)Me]_n$ with $CD_3B(C_6F_5)_2$, the full range of proton isotopomers of methane is produced (Figure 5). While the CDH₃ and CD_3H products may be accounted for by "simple" methane elimination, the presence of CH_4 and CD_2H_2 can only be explained by invoking H/D scrambling and multiple contacts between the two reagents. On the surface, this experiment suggests that the scrambling event occurs in the alkane elimination step *after* alkyl/ hydride exchange; however, the facile reversibility of the alkyl/hydride and alkyl/alkyl exchanges must be considered before reaching this conclusion.

^{(34) (}a) H/D exchange between the alkyl groups and the Cp ligands of Cp₂ZrR₂ compounds occurs at higher temperatures (\approx 165 °C).^{34b} In none of the experiments described do we observe involvement of the Cp ligands. (b) Razuvaev, G. A.; Mar'in, V. P.; Andrianov, Y. A. J. Organomet. Chem. **1979**, *174*, 67.

⁽³⁵⁾ Toluene- d_8 may also have been present, but no attempt was made to detect and quantify this isotopomer.

⁽³⁶⁾ The identity of $CHD_2C_6D_5$ was confirmed by its separate synthesis from $KCD_2C_6D_5$ and H_2O ; quenching $KCH_2C_6H_5$ with D_2O gave an essentially identical pattern as that observed for $CH_2DC_6D_5$.

A plausible explanation for these observations is depicted in Scheme 6, using the experiment of eq 6 as an example. As the benzyl group is abstracted from the zirconium center, the developing cationic center is stabilized by an α -agostic interaction. The hydridoborate counterion does not completely dissociate in this model but, instead, nucleophilically attacks the α -carbon atom; in so doing, the hydride displaces the agostic deuteron at C_{α} and alkyl/hydride exchange (a) is complete along with one H/D scrambling event. Although nucleophilic attack of an alkyl ligand at C_{α} is rare, halides have been shown to do this in some systems.^{29a,37} In this case, the alkyl group is rendered susceptible to attack by the developing α -agostic interaction, and thus, another way to view this process is as nucleophilic attack on an incipient alkylidene ligand, which has ample precedent.³⁸ Of course, complete α elimination to yield a cationic alkylidene hydride is precluded in this system since the zirconium center is of d⁰ electron configuration. As a fully concerted process, however, the H/D exchange event is not unlike the modified Green-Rooney mechanism for the insertion of olefins into d⁰ metal-carbon bonds,³⁹ in which an α -agostic interaction stablizes the transition state of olefin insertion without undergoing complete elimination.

Consideration was also given to a H/D scrambling mechanism involving hydride transfer from the newly formed hydridoborate to the abstracted carbon with concomitant loss of a deuteron to the metal center, i.e. **II**. This process resembles internal hydride and alkyl⁴⁰

transfers observed in α -halo boronic esters. Two observations mitigate against such a mechanism for the H/D scrambling observed in the reactions described here. First, no deuterium incorporation into the MeB-(C₆F₅)₂ product is observed when Cp₂Zr(CH₃)Cl is treated with an excess of DB(C₆F₅)₂. Second, if a mechanism involving **II** was operative, the experiments described above involving *erythro*-Cp₂Zr[CH(D)CH(D)*t*-C₄H₉](Cl) would have led to at least some (C₆F₅)₂B-CH₂CH(D)-*t*-C₄H₉, which was not observed (see Figure 3). Thus, when the other metallocene girdle ligand is not an alkyl, as in these experiments where L = Cl, scrambling cannot occur and the alkyl/hydride exchange is completed by direct transfer of the borate hydride to the zirconium.⁴¹

Referring back to Scheme 6, after alkyl/hydride exchange and one H/D scrambling event, the initial product mixture of isotopomers can undergo irreversible elimination of toluene (in this case the PhCD₃ or PhCD₂H isotopomers) or one of two exchanges: hydride/ alkyl exchange (path b) or alkyl/alkyl exchange (path c). The latter event leads to the same mixture of toluene isotopomers upon elimination, but the former leads to dibenzyl zirconocene with a proton in the benzylic position which was formerly fully deuterated. This Cp₂Zr(CDHPh)(CD₂Ph) isotopomer is now able to reenter the process (top of the Scheme 6) to interact with another equivalent of HB(C₆F₅)₂, accounting for the observation of PhCDH₂ and PhCH₃ in the mixture of toluenes produced. Note that entry into the process can also occur at the bottom of the Scheme 6, accommodat-

^{(37) (}a) Halpern, J.; Chan, M. S.; Hanson, J.; Roche, T. S.; Topich, J. A. *J. Am. Chem. Soc.* **1975**, *97*, 1606. (b) Magnuson, R. H.; Halpern, J.; Levitin, I. Y.; Vol'pin, M. E. *J. Chem. Soc. Chem. Commun.* **1978**, 44.

⁽³⁸⁾ Casey, C. P.; Miles, W. M. J. Organomet. Chem. 1983, 254, 333.
(39) (a) Brookhart, M.; Green, M. L. H.; Wong, L. Prog. Inorg. Chem.
1988, 36, 1. (b) Piers, W. E.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 9406. (c) Krauledat, H.; Brintzinger, H. H. Angew. Chem., Int. Ed. Engl. 1990, 29, 1412. (c) Leclerc, M. K.; Brintzinger, H. H. J. Am. Chem. Soc. 1995, 117, 1651. (e) Grubbs, R. H.; Coates, G. W. Acc. Chem. Res. 1996, 29, 85.

^{(40) (}a) Matteson, D. S.; Kandil, A. A.; Soundararajan, R. J. Am. Chem. Soc. **1990**, *112*, 3964. (b) Matteson, D. S.; Majumdar, D. J. Am. Chem. Soc. **1980**, *102*, 7588. (c) Matteson, D. S.; Ray, R.; Rocks, R. R.; Tsai, D. J. Organometallics **1983**, *2*, 1536.

⁽⁴¹⁾ A third possibility involving proton scrambling into the α position of the alkyl ligand in the alkyl hydride product of exchange (i.e., $Cp_2Zr(CD_2Ph)H$) via a σ -complex was proposed as the most likely mode of scrambling by a referee. We also considered this but rejected the possibility on the basis of the following considerations. While precedent for this mode of scrambling certainly exists, in the systems in which it has been observed,^{40a,b} reductive elimination of RH is highly endothermic and scrambling occurs only at or near the high temperatures required for loss of RH. In the absence of Lewis bases,40c scenario would also be the case for Cp₂Zr(R)H and none of the experiments in which we observe facile scrambling were performed anywhere near the temperatures which would be required to induce reductive elimination of alkane from $Cp_2Zr(R)H$. Furthermore, in cases where selectively deuterated $Cp_2Zr(R)X$ (X = H or D) have been where selectively dedefated $Cp_{221}^{(1)}(n)$ (n - 11 of D) have been prepared, ^{40c,d,e} deuterium scrambling of the type that would require the intermediacy of a σ -complex would appear to be very slow at room temperature. (a) Buchanan, J. M.; Stryker, J. M.; Bergman, R. G. J. Am. Chem. Soc. **1986**, 108, 1537. (b) Parkin, G.; Bercaw, J. E. Organometallics 1989, 8, 1172. (c) Gell, K. I.; Schwartz, J. J. Am. Chem. Soc. 1981, 103, 2687. (d) Gell, K. I.; Schwartz, J. J. Am. Chem. Soc. 1978, 100, 3246. (e) Gell, K. I.; Postin, B.; Schwartz, J.; Williams, G. M. J. Am. Chem. Soc. 1982, 104, 1846.

ing the scrambling observed in the reaction of $[Cp_2Zr-(H)Me]_n$ with $CD_3B(C_6F_5)_2$. In this case, only one H/D scrambling event is necessary to allow for production of CH_4 and CH_2D_2 in the product mixture.

III. Alkane Elimination. The loss of alkane from $Cp_2Zr(H)R$ and $RB(C_6F_5)_2$ can occur via a six-membered transition state (**III**) similar to what has been proposed for the alkane elimination step in the formation of Tebbe's reagent (**I** above).¹⁷ An alternative view of this

elimination would invoke deprotonation of the boron methyl group as in **IV**, not unreasonable given the ability of boron to stabilize α -carbanions.⁴² To distinguish between these two possibilities, the reaction of insitu-generated PhCH₂B(C₆F₅)₂ with [Cp₂Zr(H)Me]_n was carried out; elimination through **III** would be expected to produce toluene, while elimination via **IV** would result in the expulsion of methane. In fact, as shown in eq 7, this experiment does not provide a definitive

result since both methane and toluene are observed as products, along with corresponding amounts of **2** and **4**. This could mean that both transition states are accessible, but in light of the facile alkyl/alkyl exchange in these systems (see Scheme 6), it seems likely that equilibration occurs before elimination from either **III** or **IV**. Thus, these experiments cannot distinguish between the two possibilities, although a significant preponderance of **4** over **2** in the product mixture (~3: 1) points toward **IV** as the preferred transition state for elimination.

Summary and Concluding Remarks

The reactions of the highly electrophilic borane HB- $(C_6F_5)_2$ with even the simplest of the bent metallocenes, Cp_2ZrR_2 , are striking for their complexity and variability with respect to changes in reaction conditions and the nature of R. We have shown that reversible alkyl/hydride exchange dominates in the initial stages of these reactions and that the intimate mechanism of this process involves alkide abstraction followed by replacement with a hydride from the resulting hydridoborate counterion. The latter can occur directly to

the metal or via a H/D scrambling nucleophilic attack at the α -carbon of the second alkyl group on the metal, if present. When excess borane is present, Zr–H functions are trapped to form very stable hydridoborate complexes. In the absence of borane, the products of alkyl/ hydride exchange, namely "Cp₂Zr(H)R)" and RB(C₆F₅)₂, react together to eliminate alkane and produce compounds that are essentially HB(C₆F₅)₂-complexed alkylidenes of zirconocene.

The alkide abstraction pathway represents a distinct nonoxidative mechanism for B-C bond formation in the reaction of metal carbon bonds with a secondary boranes. The other previously observed mechanism, namely σ -bond metathesis,^{4,5d} is fundamentally different in terms of the effect on the stereochemistry of the α -carbon. It is, therefore, crucial to determine which mechanism is operative in this step for catalyzed hydroborations where the stereochemistry at C_{α} is at issue; this study helps to delineate the factors which cause one mechanism to dominate over the other. On the basis of this work, it appears that less electrophilic boranes engage in concerted, four-centered σ -bond metathesis and more electrophilic boranes, such as HB- $(C_6F_5)_2$, utilize alkide abstraction as the primary mode of B-C bond formation. Caution must be taken in applying this generalization, since the Lewis acidity of the conjugate acid of L_nM-R (i.e., L_nM^+) will likely also influence the favorability of each pathway. Further studies are necessary to address these questions in detail.

Experimental Section

General. General procedures have been described in detail elsewhere.⁴³ Routinely employed solvents (hexanes, toluene, and THF) were purified using the Grubbs purification system.⁴⁴ For the NMR data reported for new compounds, ${}^{19}F^{-19}F$ couplings are not given nor are the ${}^{13}C$ data for the pentafluorophenyl groups; the former were in all cases unremarkable, while the latter were not always detectable. The reagents Cp₂ZrCl₂, PMe₃, and [Cp₂Zr(H,D)Cl]_n were purchased from Aldrich and used as received. Literature methods were used to prepare [Cp₂ZrH₂]_n,⁴⁵ [Cp₂Zr(H)Me]_n,⁴⁶ Cp₂ZrMe₂,^{26a} Cp₂Zr(CH₂SiMe₃)₂,⁴⁷ Cp₂Zr(CH₂C₆H₅)₂,⁴⁸ KCX₂C₆X₅⁴⁹ (X = H, D), XB(C₆F₅)₂ (X = H/D,¹⁰ Cl⁵⁰), and *erythro*-Cp₂Zr[CH(D)CH-(D)-*t*-C₄H₉](Cl)³¹ and compounds **1**, **2**, **2**•PMe₃, and **3**.¹²

Preparation of Cp₂Zr{ η^3 -CH(C₆H₅)[(μ -H)B(C₆F₅)₂]}, 4. To a flask containing Cp₂Zr(CH₂C₆H₅)₂ (403 mg, 1 mmol) and HB(C₆F₅)₂ (346 mg, 1 mmol) was added dry hexane (30 mL). The reaction suspension was sonicated for 20 min and then stirred for a further 1 h at room temperature. Over this time the yellow zirconocene starting material was replaced by an orange precipitate. This solid was isolated by filtration, washed with hexane, and pumped dry under vacuum. The

⁽⁴²⁾ Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1980, 45, 849.
(b) Yoshida, T.; Negishi, E. J. Chem. Soc., Chem. Commun. 1974, 763.
(c) Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic Press: New York, 1988; pp 22–23.

 ⁽⁴³⁾ Spence, R. E. v. H.; Piers, W. E. Organometallics 1995, 14, 4617.
 (44) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
 Fimmers, F. J. Organometallics 1996, 15, 1518.

⁽⁴⁵⁾ Valles, P. C.; Weigold, H. J. Organomet. Chem. 1970, 24, 405.
(45) Wailes, P. C.; Weigold, H. J. Organomet. Chem. 1970, 24, 405.
(46) Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. Organometallics 1987, 6, 1041.

⁽⁴⁷⁾ Jeffery, J.; Lappert, M. F.; Luong-Thi, N. T.; Webb, M.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Dalton Trans. **1981**, 1593.

^{(48) (}a) Fachinetti, G.; Fochi, G.; Floriani, C. J. Chem. Soc., Dalton Trans. **1977**, 1946. (b) Bradley, P. B.; Scotton, M. J. J. Chem. Soc., Perkin Trans. 2 **1981**, 419.

⁽⁴⁹⁾ Schlosser, M.; Hartmann, J. Angew. Chem., Int. Ed. Engl. 1973, 12, 508.

^{(50) (}a) Chambers, R. D.; Chivers, T. *J. Chem. Soc.* **1965**, 3933. (b) Spence, R. E. v. H.; Piers, W. E.; MacGillivray, L. R.; Zaworotko, M. J. *Acta Crystallogr., Sect. C* **1995**, *C51*, 1688.

yield of compound **4** was 602 mg, 0.92 mmol, 92%. ¹H NMR (C₆D₆): 7.14 (m, 1H, C₆H₅), 6.86 (m, 1H, C₆H₅), 6.68 (m, 2H, C₆H₅), 5.03 (s, 5H, C₅H₅), 4.43 (s, 5H, C₅H₅), 4.25 (m, 1H, C₆H₅), 2.43 (s, 1H, PhC*H*), -2.2 (br, 1H, μ -*H*). ¹³C{¹H} NMR (C₆D₆): 139.2 (*ipso*), 138.5, 133.3, 129.2, 123.8, 98.0 (C₆H₅), 109.4, 106.9 (C₅H₅), 69 (br, Ph*C*H). ¹¹B{¹H} NMR (C₆D₆): -16.6. ¹⁹F{¹H} NMR (C₆D₆) -128.7 (1F), -130.8 (3F), -159.0 (1F), -159.9 (1F), -164.4 (1F), -164.6 (1F), -164.9 (2F). Anal. Calcd for C₂₉H₁₇F₁₀ZrB: C, 52.98; H, 2.61. Found: C, 53.33; H, 2.65. IR (KBr, Nujol, cm⁻¹): 1638 m, 1592 w, 1514 s, 1339 w, 1283 w, 1111 w, 1091 s, 1016 w, 972 s, 895 w, 824 s, 812 s, 766 m.

Reaction of 4 with HB(C₆F₅)₂. Compound 4 (10 mg, 0.015 mmol) was loaded into a 5 mm NMR tube along with $HB(C_6F_5)_2$ (16 mg, 0.045 mmol) and C_6D_6 (0.7 mL). The tube was capped, shaken, and briefly heated (\sim 50 °C) until the contents of the tube were dissolved. The tube was gently heated for a further 10 min, until production of 1 was complete. The C₆D₆ was removed in vacuo, and the solid was extracted with 2×2 mL of hexanes. Removal of the hexanes and redissolution of the resulting solid in C₆D₆ gave a sample enriched in the borane coproduct, $C_6H_5CH[B(C_6F_5)_2]_2$. ¹H NMR (C₆D₆): 6.96 (m, 2H), 6.84 (m, 2H), 6.77 (m, 1H), 4.72 (br s, 1H). ${}^{13}C{}^{1}H$ NMR (partial, C_6F_5 resonances not reported): 137.5, 130.0, 129.3, 127.6 (C₆H₅), 59.8 (CHB₂, a DEPT experiment confirms the presence of one hydrogen atom bonded to this carbon). ${}^{11}B{}^{1}H{}^{\overline{1}}NMR: 74.0 \text{ (whh} \approx 850 \text{ Hz)}.$ ¹⁹F{¹H} NMR (C₆D₆): -131.2, -147.7, -162.3

Reaction of Cp₂Zr(CD₂C₆D₅)₂ with *n* **Equivalents of HB(C₆F₅)₂. Cp₂Zr(CD₂C₆D₅)₂ (12 mg, 0.03 mmol) and HB-(C₆F₅)₂ (10 mg, 0.03 mmol or 5 mg, 0.015 mmol) were loaded into a 5 mm NMR tube. C₆D₆ was added, and the tube was immediately capped and shaken. A rapid color change ensued, and the sample was assayed by ¹H NMR spectroscopy. An analogous procedure using Cp₂Zr(CH₂C₆H₅)₂, DB(C₆F₅)₂, and C₆H₆ was also performed and analyzed via ²H{¹H} NMR spectroscopy.**

Preparation of Cp₂Zr(CH₂SiMe₃)[(µ-H₂)B(C₆F₅)₂]. To an evacuated flask at -78 °C containing Cp₂Zr(CH₂SiMe₃)₂ (380 mg, 0.96 mmol) and HB(C₆F₅)₂ (666 mg, 1.92 mmol) was condensed hexane (20 mL). The reaction was warmed to room temperature and then sonicated for 1 h. During this time, a white precipitate formed, which was isolated by filtration, washed with a little hexane, and pumped dry under vacuum. The yield was 509 mg, 0.78 mmol, 81%. ¹H NMR (C₆D₆): 5.52 (s, 10H, C₅H₅), 0.93 (s, 2H, CH₂Si), 0.01 (s, 9H, SiCH₃), -0.9 (br, 2H, μ -H). ¹³C{¹H} NMR (C₆D₆): 110.8 (Cp), 44.9 (CH₂), 3.3 (Si*C*H₃). ¹¹B NMR (C₆D₆): -8.7 (t, ¹*J*_{BH} = 67 Hz).¹⁹F{¹H} NMR (C₆D₆): -133.7, -158.3, 164.0. Anal. Calcd for C₂₆H₂₃F₁₀ZrBSi: C, 47.64; H, 3.54. Found: C, 49.61; H, 3.54. IR (KBr, Nujol, cm⁻¹): 2190 w (br), 2115 w (br), 2038 w (br), 1644 m, 1515 s, 1334 w, 1286 w, 1112 m, 1098 m, 1015 w, 960 s, 852 m, 816 s.

Preparation of MeB(C₆F₅)₂. To a solution of Cp₂ZrMe₂ (252 mg, 1 mmol) in toluene (10 mL) was added a toluene solution of ClB(C₆F₅)₂ (760 mg, 2 mmol). The reaction was stirred for 1 h at room temperature and filtered to remove precipitated Cp₂ZrCl₂. The toluene was removed in vacuo, and the residue was transferred to a sublimator equipped with a water-cooled probe. Sublimation at ~30–40 °C under high vacuum yielded 552 mg (77%) of pure MeB(C₆F₅)₂. This material had NMR spectroscopic data identical to that reported by Marks et al.^{14c}

Generation of C₆H₅CH₂B(C₆F₅)₂ and Me₃SiCH₂B(C₆F₅)₂. Cp₂Zr(CH₂Ph)₂ (9 mg, 0.02 mmol) was loaded into a 5 mm NMR tube along with ClB(C₆F₅)₂ (18 mg, 0.04 mmol). Benzene d_6 was added, and the tube was capped and shaken. Undissolved material was centrifuged to the top of the tube, and the ¹H NMR spectrum was recorded. The presence of Cp₂-ZrCl₂ was noted. PhCH₂B(C₆F₅)₂. ¹H NMR: 6.90–7.05 (m, C₆H₅, 5H), 3.27 (br m, BCH₂, 2H). ¹³C{¹H} NMR: 137.4, 129.3, 129.0, 126.4 (*C*₆H₅), 39.1 (B*C*H₂). An identical procedure using

Table 3.Summary of Data Collection andStructure Refinement Details for and 1 and 4

1	4
$C_{41}H_{22}B_2F_{20}Zr$	$C_{29}H_{17}BF_{10}Zr$
1007.43	657.46
monoclinic	monoclinic
14.042(5)	13.9296(15)
18.776(5)	8.5508(9)
15.567(4)	21.5196(18)
105.46(2)	94.13(3)
3995(1)	2556.5(4)
$P2_1/n$	$P2_1/c$
4	4
1992.00	1304
1.691	1.71
0.404	0.51
0.046	0.051
0.045	0.047
2.18	2.44
	$\begin{array}{c} 1 \\ \hline C_{41}H_{22}B_2F_{20}Zr \\ 1007.43 \\ monoclinic \\ 14.042(5) \\ 18.776(5) \\ 15.567(4) \\ 105.46(2) \\ 3995(1) \\ P2_1/n \\ 4 \\ 1992.00 \\ 1.691 \\ 0.404 \\ 0.046 \\ 0.045 \\ 2.18 \\ \end{array}$

 $Cp_2Zr(CH_2SiMe_3)_2$ gave a solution of $Me_3SiCH_2B(C_6F_5)_2$. ¹H NMR: 2.01 (s, CH_2 , 2H), -0.08 (s, $SiCH_3$, 9H).

Reaction of $[Cp_2Zr(H)Me]_n$ with MeB(C₆F₅)₂. [Cp₂Zr-(H)Me]_n (15 mg, 0.06 mmol) was loaded into a 5 mm NMR tube and covered with ~0.3 mL of C₆D₆. A solution of MeB-(C₆F₅)₂ (23 mg, 0.06 mmol) in C₆D₆ (0.3 mL) was layered onto this suspension; the tube was quickly capped and shaken. An immediate color change to that characteristic of **2** was observed along with gas evolution. Immediate ¹H NMR analysis (prior to decomposition of **2**) revealed the presence of methane along with **2** as the major metallocene product (~80%). Reaction using CD₃B(C₆F₅)₂ was carried out in an analogous fashion.

Reaction of Cp₂Zr (*erythro*-CH(D)CH(D)CMe₃)Cl with HB(C₆F₅)₂. Cp₂Zr (*erythro*-CH(D)CH(D)CMe₃)Cl (11 mg, 0.03 mmol) was loaded into a 5 mm NMR tube and dissolved in C₆D₆. Solid HB(C₆F₅)₂ (33 mg, 0.09 mmol) was added to the tube, which was then capped and shaken. After 5 min, undissolved material was centrifuged to the top of the tube and the ¹H{²H} NMR spectrum was recorded.

Preparation of *erythro*-(C₆F₅)₂**BCH(D)CH(D)**-*t*-C₄H₉: To a suspension of DB(C₆F₅)₂ (18 mg, 0.05 mmol) in C₆D₆ (0.7 mL) was added *E*-1-*d_I*-3,3-dimethyl-1-butene (7 μL, 0.055 mmol) via syringe. The tube was capped and shaken, the suspension cleared. The sample was assayed by ¹H{²H} NMR spectroscopy and found to be >95% pure. ¹H NMR (C₆D₆): 1.80 (C_α-*H*, d, 1H, ³*J*_{HH} = 11.3 ± 0.3 Hz), 1.36 (C_β-*H*, d, 1H), 0.88 (C(*CH*₃)₃, s, 9H). ¹³C{¹H} NMR (C₆D₆): 148.4, 146.0, 144.9, 142.3, 138.9, 136.4, (*C*₆F₅), 38.2 (t, *C*_β), 28.8 (C*C*H₃), 26.7(br, *C*_α). ¹⁹F{¹H} NMR (C₆D₆) -132.4 (d, *J* = 18.4 Hz), -149.0 (t, *J* = 21.4 Hz), -162.8 (m). ¹¹B NMR (C₆D₆): 73.3.

Generation of Cp₂Zr[\mu-H₂B(C₆F₅)₂](Cl). Schwartz's reagent (10 mg, 0.04 mmol) and HB(C₆F₅)₂ (15 mg, 0.042 mmol) were loaded into a 5 mm NMR tube, and C₆D₆ was added. The suspension was shaken and sonicated for 15 min and analyzed by multinuclear NMR spectroscopy. ¹H NMR (C₆D₆): 5.57 (s, 10H, C₅H₅), 0.42 (br q, 2H, μ -H, ¹J_{HB} = 68 ± 3 Hz). ¹¹B NMR (C₆D₆): -10.3 (t, ¹J_{BH} = 68 Hz).¹⁹F{¹H} NMR (C₆D₆): -131.4, -155.7, 162.0.

Reaction of [**Cp₂Zr(H)Me**]_{*n*} **with PhCH₂B(C₆F₅)₂.** A solution of ClB(C₆F₅)₂ (21 mg, 0.054 mmol) in C₆D₆ (0.4 mL) was rapidly added to a solution of Cp₂Zr(CH₂Ph)₂ (11 mg, 0.027 mmol) in C₆D₆ (0.3 mL) with vigorous stirring. The resulting solution was transferred to a 5 mm NMR tube and checked by ¹H NMR, revealing only signals for Cp₂ZrCl₂ and PhCH₂B-(C₆F₅)₂. To this tube was added [Cp₂Zr(H)Me]_{*n*} (13 mg, 0.055 mmol) without allowing it to contact the solution prior to capping. The tube was capped and shaken vigorously, and the sample was immediately analyzed by ¹H NMR spectroscopy.

X-ray Crystallography for 1. A summary of crystal data and refinement details for all structures is given in Table 3. Crystals of **1** were grown from a toluene solution at room

temperature. Suitable crystals were placed in glass capillaries, taking precautions to prevent loss of solvent of crystallization, sealed, and mounted onto a Rigaku AFC6S diffractometer. Measurements were made using graphite-monochromated Mo K α radiation ($\lambda = 0.710$ 69 Å) at -73 °C with the ω -2 θ scan technique to a maximum 2θ value of 50.1°. The structure was solved by direct methods and refined by full-matrix leastsquares calculations. The non-hydrogen atoms were refined anisotropically; hydrogen atoms bridging the B and Zr atoms were included in the refinement at postions located from a difference map, while the rest of the hydrogen atoms were included at geometrically idealized positions with C-H = 0.95Å and were not refined. At convergence, R and R_w were 0.046 and 0.045. The maximum and minimum peaks on the final difference map were 0.72 and $-0.79 \ e^{-}/{\rm \AA^3},$ respectively. All calculations were performed using the TEXAN⁵¹ crystallographic software package of Molecular Structure Corp.

X-ray Crystallography for 4. Single crystals suitable for X-ray crystallography were mounted in thin-walled glass capillaries and optically centered in the X-ray beam of an Enraf-Nonius CAD-4 diffractometer. Measurements were made using graphite-monochromated Mo K α radiation ($\lambda = 0.709$ 30 Å). Unit cell dimensions were determined via least-squares refinement of the setting angles of 24 reflections, and intensity data were collected using the $\omega - 2\theta$ scan mode in the range 29.00–34.00°. Data were corrected for Lorentz, polarization, and absorption effects. The structure was solved using direct methods. Aryl and Cp hydrogen atoms were placed in calculated positions ($D_{C-H} = 1.00$ Å), and H1 was located via inspection of a difference Fourier map and fixed; the temperature factors for these hydrogens were based upon

the carbon atom to which they are bonded. HB was located via inspection of a difference Fourier map and refined. A weighting scheme based upon counting statistics was used with the weight modifier k in kF_o^2 (0.000 050) being determined via evaluation of the variation in the standard reflections that were collected during the course of data collection. Neutral atom scattering factors were taken from *International Tables for X-ray Crystallography.*⁵² Values of R and R_w at convergence were 0.051 and 0.047, respectively. All crystallographic calculations were conducted with the PC version of the NRCVAX program package⁵³ locally implemented on an IBM-compatible 80486 computer.

Acknowledgment. This work was generously supported by the NOVA Research and Technology Corp. of Calgary, Alberta, NSERC of Canada's Research Partnerships office (CRD program), and the University of Calgary. W.E.P. thanks Mr. James Blackwell for valuable discussions and the Alfred P. Sloan Foundation for a Research Fellowship (1996–98).

Supporting Information Available: Tables of atomic coordinates and isotropic thermal parameters, bond lengths and angles, H atom coordinates, and anisotropic thermal parameters for compounds **1** and **4** (25 pages). Ordering information is given on any current masthead page.

OM9802313

⁽⁵¹⁾ Crystal Structure Analysis Package; Molecular Structure Corp: 1985 and 1992.

⁽⁵²⁾ International Tables for X-ray Crystallography, Kynoch Press: Birmingham., England, 1974; Vol. IV. (53) Gabe, E. J.; Le Page, Y.; Charland, J.-P.; Lee, F. L.; White, P.

⁽⁵³⁾ Gabe, E. J.; Le Page, Y.; Charland, J.-P.; Lee, F. L.; White, P. S. *J. Appl. Crystallogr.* **1989**, *22*, 384.