C–H versus C–C Activation of Biphenylene in Its **Reactions with Iron Group Carbonyl Clusters**

Wen-Yann Yeh* and Sodio C. N. Hsu

Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan 804

Shie-Ming Peng^{*} and Gene-Hsiang Lee

Department of Chemistry, National Taiwan University, Taipei, Taiwan 107

Received January 23, 1998

Co-thermolysis of biphenylene ((C_6H_4)₂) with Fe₃(CO)₁₂ or Fe₂(CO)₉ leads to activation of a biphenylene C–C bond to generate $Fe_2(CO)_5(\mu$ -CO) $(\mu$ - η^2 , η^4 - $(C_6H_4)_2$) (1). Similar reaction with Ru₃(CO)₁₂ affords Ru₂(CO)₅(μ -CO)(μ - η^2 , η^4 -(C₆H₄)₂) (**2**) and Ru₆(CO)₁₇(μ_6 -C) (**3**), and the reaction with $Os_3(CO)_{12}$ affords $Os_2(CO)_6(\mu - \eta^2, \eta^4 - (C_6H_{4)2})$ (4) and $Os_4(CO)_{12}(\mu_4 - \eta^2 - (C_6H_3)Ph)$ (5). In contrast, treating biphenylene with $Os_3(CO)_{10}(NCMe)_2$ leads to C-H bond activation to give $(\mu-H)_2Os_3(CO)_9(\mu_3-\eta^2-C_6H_2(C_6H_4))$ (**6**). The new compounds have been characterized by elemental analyses and mass, IR, and NMR spectroscopy. The structures of 2, 4, and 5 were determined by an X-ray diffraction study. Compound 2 and 4 can be viewed to contain a metallacyclopentadienyl unit which binds the other metal atom in an η^5 -fashion. Compound **5** is the first butterfly cluster of the type $Os_4(CO)_{12}(aryne)$.

Introduction

The insertion of transition-metal atoms into a carboncarbon bond through oxidative addition is known for many type of hydrocarbons, especially strained-ring compounds and compounds which become aromatic on C-C cleavage.¹ The biphenylene ligand itself has been known for many years.² An X-ray diffraction study of biphenylene suggests that the central ring of the molecule has little delocalization.³ Theoretical calculations show that biphenylene has a relatively low resonance energy of about 15 kcal/mol,⁴ while the strain energy of the four-membered ring is high, about 63 kcal/ mol.⁵ This should facilitate formation of a metallacycle when biphenylene is treated with a metal complex.

Four papers concerning activation of biphenylene by mononuclear^{6–8} and binuclear⁹ metal complexes were previously reported. However, the coordination chemistry of biphenylene with metal clusters has received little attention. We have been interested in the systematic chemistry of small organic substrates bound to transition-metal carbonyl clusters.¹⁰ Presented in this work are reactions of $M_3(CO)_{12}$ (M = Fe, Ru, and Os) with biphenylene, leading to several new complexes containing metallacycle and benzyne moieties.

Experimental Section

General Methods. All manipulations were carried out under an atmosphere of purified dinitrogen with standard Schlenk techniques. 11 Fe₃(CO)₁₂, Fe₂(CO)₉, and Ru₃(CO)₁₂ were purchased from Strem and used as received. $Os_3(CO)_{12}$ was prepared from OsO₄ and CO by the literature method.¹² Biphenylene was prepared by flash vacuum pyrolysis of phthalic anhydride as described in the literature.¹³ Solvents were dried over the appropriate reagents under dinitrogen and

^{(1) (}a) Adams, D. M.; Chatt, J.; Guy, R. G.; Sheppard, N. J. Chem. Soc. 1961, 738. (b) Bailey, N. A.; Gillard, R. D.; Keeton, M.; Mason, R.; Russell, D. R. *J. Chem. Soc., Chem. Commun.* **1966**, 396. (c) McQuillin, F. J.; Powell, K. C. *J. Chem. Soc., Dalton Trans.* **1972**, 2123. (d) Barretta, A.; Cloke, F. G. N.; Feigenbaum, A.; Green, M. L. H.;
(d) Barretta, A.; Cloke, F. G. N.; Feigenbaum, A.; Green, M. L. H.;
(e) Barretta, A.; Chong, K. S.; Cloke, F. G. N.; Feigenbaum, A.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 1983, 861. (f) Flood, T. C.; Statler, J. A. Organometallics 1984, 3, 1795. (g) Berris, B. C.; Hovakeemian, G. H.; Lai, Y.-H.; Mestdagh, H.; Vollhardt, K. P. C. J. Am. Chem. Soc. **1985**, 107, 5670. (h) Periana, A.; Bergman, R. G. J. Am. Chem. Soc. **1986**, 108, 7346. (i) Schwager, H.; Spyroudis, S.; Vollhardt, K. P. C. J. Organomet. Chem. **1990**, 382, 191. (j) Lu, Z.; Jun, C.-H.; de Gala, S. R.; Sigalas, M.; Eisenstein, O.; Crabtree, R. H. J. Chem. Soc., Chem. Commun. 1993, 1877. (k) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 8285.

 ^{(2) (}a) Cohen, S. G.; Massey, A. G. J. Organomet. Chem. 1967, 10,
 (471. (b) Gardner, S. A.; Gordon, H. B.; Rausch, M. D. J. Organomet. Chem. 1973, 60, 179, (c) Usón, R.; Vicente, J.; Cirac, J. A.; Chicote, M. T. J. Organomet. Chem. 1980, 198, 105. (d) Cornioley-Deuschel, C.;
 von Zelewsky, A. Inorg. Chem. 1987, 26, 3354. (e) Becker, S.; Fort, Y.;
 Vanderesse, R.; Caubere, P. J. Org. Chem. 1989, 54, 4848.
 (3) (a) Mak, T. C. W.; Trotter, J. J. Chem. Soc. 1962, 1. (b) Toda, F.;

⁽a) Mai, T. C. W., Hotter, J. J. Chem. Soc. 1902, 1. (b) Fuda, F., Garratt, P. Chem. Rev. 1992, 92, 1685.
(4) (a) Cass, R. C.; Springall, H. D.; Quincey, P. G. J. Chem. Soc. 1955, 1188. (b) Dewer, M. J. S. The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill: New York, 1969.

⁽⁵⁾ Cava, M. P.; Mitchell, M. J. Cyclobutadienes and Related Compounds; Academic Press: New York, 1967.

⁽⁶⁾ Perthuisot, C.; Jones, W. D. J. Am. Chem. Soc. 1994, 116, 3647.

⁽⁷⁾ Lu, Z.; Jun, C.-H.; de Gala, S. R.; Sigalas, M.; Eisenstein, O.; Crabtree, R. H. Organometallics 1995, 14, 1168.

⁽⁸⁾ Eisch, J. J.; Piotrowski, A. M.; Han, K. I.; Krüger, C.; Tsay, Y.

⁽⁸⁾ Elsch, J. J.; Piotrowski, A. M.; Han, K. I.; Krüger, C.; Tsay, Y. H. Organometallics 1985, 4, 224.
(9) Perthuisot, C.; Edelbach, B. L.; Zubris, D. L.; Jones, W. D. Organometallics 1997, 16, 2016.
(10) (a) Yeh, W.-Y.; Chen, S.-L.; Peng, S.-M.; Lee, G.-H. J. Organomet. Chem. 1993, 461, 207. (b) Yeh, W.-Y.; Chen, S.-B.; Peng, S.-M.; Lee, G.-H. J. Organomet. Chem. 1994, 481, 183. (c) Yeh, W.-Y.; Cheng, Y. L.; Chiang, M. Y. Organomet. Chem. 1974, 181, 183. (c) Yeh, W.-Y.; Cheng, Y. L.; Chiang, M. Y. Organomet. Chem. 1974, 183. (c) Yeh, W.-Y.; Cheng, Y. L.; Chiang, M. Y. Organomet. Chem. 1974, 183. (c) Yeh, W.-Y.; Cheng, Y. L.; Chiang, M. Y. Organomet. Chem. 1974, 1974, 183. (c) Yeh, W.-Y.; Cheng, Y. L.; Chiang, M. Y. Organomet. Chem. 1974, 1974

⁽¹⁾ Sintitive Compounds, 2nd ed.; Wiley: New York, 1986.
(12) Johnson, B. F. G.; Lewis, J. *Inorg. Synth.* **1972**, *13*, 92.
(13) Brown, R. F. C.; Gardner, D. V.; McOmie, J. F. W.; Solly, R. K.

Aust. J. Chem. 1967, 20, 139.

distilled immediately before use. Preparative thin-layer chromatographic (TLC) plates were prepared from silica gel (Merck). Infrared spectra were recorded with a 0.1 mm path length CaF₂ solution cell on a Hitachi I-2001 IR spectrometer. ¹H and ¹³C NMR spectra were obtained on a Varian VXR-300 spectrometer at 300 and 75.4 MHz, respectively. Fast-atom bombardment (FAB) and electron-impact (EI) mass spectra were recorded by using a VG Blotch-5022 mass spectrometer. Elemental analyses were performed at the National Science Council Regional Instrumentation Center at National Chen-Kung University, Tainan, Taiwan.

Reaction of Biphenylene with Fe₃(CO)₁₂. A solution of biphenylene (30 mg, 0.2 mmol) and Fe₃(CO)₁₂ (100 mg, 0.2 mmol) in n-heptane (20 mL) was heated to reflux under dinitrogen for 3 h. The mixture was cooled to room temperature, and the solvent was removed under vacuum. The residue was subjected to TLC, eluting with n-hexane. Unreacted Fe₃(CO)₁₂ and biphenylene were recovered from the front two bands. Isolation of material from the red-brown band afforded the known $Fe_2(CO)_5(\mu-CO)(\mu-\eta^2,\eta^4-(C_6H_4)_2)^{14}$ (1) (28 mg, 0.06 mmol, 30%). IR (KBr, vCO): 2064 (m), 2024 (s), 1990 (s), 1974 (s), 1888 (m) cm⁻¹. MS (EI): m/z 432 (M⁺, ⁵⁶Fe), 432 - 28n (n = 1-6). ¹H NMR (CDCl₃, 20 °C): δ 7.23–7.311 (m, 4H), 7.51 (d, J = 8 Hz, 2H), 7.75 (d, J = 8 Hz, 2H).

Reaction of Biphenylene with Fe₂(CO)₉. The reaction of Fe₂(CO)₉ (80 mg, 0.22 mmol) with biphenylene (35 mg, 0.23 mmol) was carried out in refluxing cyclohexane solution (10 mL) for 5 h. Compound 1 (33 mg, 0.08 mmol) was obtained in 36% yield after purification by TLC.

Reaction of Biphenylene with Ru₃(CO)₁₂. A solution of biphenylene (28 mg, 0.18 mmol) and Ru₃(CO)₁₂ (115 mg, 0.18 mmol) in n-octane (20 mL) was heated to reflux for 4 h under dinitrogen. The mixture was cooled to room temperature, and the solvent was removed under vacuum. The residue was separated by TLC, eluting with n-hexane. Unreacted Ru₃(CO)₁₂ and biphenylene were recovered from the front two bands. The material from the orange band was the new complex Ru₂(CO)₅(μ -CO)(μ - η^2 , η^4 -(C₆H₄)₂) (**2**) (32 mg, 0.06 mmol, 33%). The last dark red band afforded the known $Ru_6(CO)_{17}$ - $(\mu_6-C)^{15}$ (3) (26 mg, 0.02 mmol, 33% based on Ru atom). The crystals of 2 found suitable for X-ray diffraction study were grown from a concentrated hexane solution at -20 °C.

Characterization of 2. IR (n-hexane, vCO): 2092 (m), 2032 (vs), 2020 (s), 1980 (m), 1882 (m, μ -CO) cm⁻¹. MS (FAB): m/z 524 (M⁺, ¹⁰²Ru), 523 - 28n (n = 1-6). ¹H NMR (CDCl₃, 20 °C): δ 7.13 (t, J = 8 Hz, 2H), 7.56 (t, J = 8 Hz, 2H), 7.91 (d, J = 8 Hz, 2H), 8.34 (d, J = 8 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 20 °C): δ 125.5 (s), 126.0 (s), 129.9 (s), 132.4 (s), 136.7 (s), 151.6 (s), 188.9 (s, CO). Anal. Calcd for C₁₈H₈O₆-Ru₂: C, 41.39; H, 1.54. Found: C, 40.84; H, 1.88.

Characterization of 3. IR (n-hexane, vCO): 2068(s), 2049 (s), 2010 (sh), 1998(w), 1958 (w), 1854 (w, br) cm⁻¹. MS (EI): m/z 1094 (M⁺, ¹⁰²Ru) and successive loss of CO. The IR data match the literature values for the compound.¹⁵

Reaction of Biphenylene with Os₃(CO)₁₂. Biphenylene (90 mg, 0.59 mmol), Os₃(CO)₁₂ (90 mg, 0.10 mmol), and n-decane (1 mL) were mixed in a Teflon-sealed Schlenk tube under dinitrogen. The tube was placed in an oil bath at 200 °C for 15 h. After cooling to ambient temperature, the brownred residue was extracted with *n*-hexane $(3 \times 10 \text{ mL})$ to give a red-brown solution. Unreacted $Os_3(CO)_{12}$ (30 mg, 33%) was recovered from the insoluble solids. The extractant was concentrated to ca. 5 mL on a rotary evaporator and separated by TLC with *n*-hexane as the eluant. Unreacted biphenylene was recovered from the first pale yellow band. The material from the second yellow band afforded $Os_2(CO)_6(\mu - \eta^2, \eta^4 - (C_6H_{4)2})$

(4) (16 mg, 0.022 mmol, 23%). The third red band gave Os_4 - $(CO)_{12}(\mu_4-\eta^2-(C_6H_3)Ph)$ (5) (28 mg, 0.02 mmol, 30% based on Os atom). The crystals of 4 and 5 found suitable for X-ray diffraction study were each grown from a concentrated hexane solution at -20 °C.

Characterization of 4. IR (n-hexane, vCO): 2084 (m), 2072 (sh), 2048 (s), 2004 (s), 1996 (s), 1974 (s) cm⁻¹. MS (EI): m/z 704 (M⁺, ¹⁹²Os), 702 - 28n (n = 1-6). ¹H NMR (CDCl₃, 20 °C): δ 7.06 (t, J = 8 Hz, 2H), 7.38 (t, J = 8 Hz, 2H), 8.05 (d, J = 8 Hz, 2H), 8.37 (d, J = 8 Hz, 2H).

Characterization of 5. IR (*n*-hexane, ν CO): 2100 (w), 2076 (s), 2044 (vs), 2008 (s), 1998 (s), 1972 (m) cm⁻¹. MS (EI): m/z 1256 (M⁺, ¹⁹²Os), 1256 - 28n (n = 1-12). ¹H NMR (CDCl₃, 20 °C): δ 6.32 (d, J = 9 Hz, 1H), 6.50 (d, J = 9 Hz, 1H), 7.13 (s, 1H), 7.0-7.8 (m, 5H, Ph). Anal. Calcd for C₂₄H₈O₁₂Os₄: C, 23.08; H, 0.65. Found: C, 22.88; H, 0.87.

Reaction of Biphenylene with Os₃(CO)₁₀(NCMe)₂. A mixture of biphenylene (33 mg, 0.2 mmol) and $Os_3(CO)_{10}$ -(NCMe)₂ (40 mg, 0.043 mmol) was ground and placed in a Teflon-sealed Schlenk tube under N2. The tube was placed in an oil bath at 180 °C for 5 min and then cooled to ambient temperature. The residue was extracted with dichloromethane and subjected to TLC, with *n*-hexane as the eluant. $(\mu$ -H)₂Os₃- $(CO)_9(\mu_3 - \eta^2 - C_6H_2(C_6H_4))$ (6) (15 mg, 0.015 mmol, 36%) was isolated from the major yellow band. IR (*n*-hexane, ν CO): 2112 (m), 2084 (s), 2060 (vs), 2032 (s), 2020 (sh), 2004 (vs), 1986 (s), 1974 (w) cm⁻¹. MS (FAB): m/z 980 (M⁺, ¹⁹²Os), 980 -28n (n = 1-9). ¹H NMR (CDCl₃, 20 °C): δ -18.99 (s, 2 μ -H), 7.04-6.94 (m, 4H), 7.02 (s, 2H).

X-ray Crystallography. A dark orange crystal of Ru₂- $(CO)_5(\mu$ -CO) $(\mu$ - η^2, η^4 - $(C_6H_4)_2$) (**2**, ca. 0.20 × 0.25 × 0.35 mm), a yellow crystal of Os₂(CO)₆(μ - η^2 , η^4 -(C₆H₄₎₂) (4, ca. 0.20 × 0.20 \times 0.10 mm), and a dark red crystal of Os₄(CO)₁₂(μ_4 - η^2 -(C₆H₃)-Ph) (5, ca. $0.30 \times 0.20 \times 0.40$ mm) were each mounted in a thin-walled glass capillary and aligned on the Nonius CAD-4 diffractometer with graphite-monochromated Mo Ka radiation $(\lambda = 0.710~73$ Å). Lattice parameters were determined from 25 randomly selected reflections with 2θ ranging from 23.14° to 25.86° (compound 2), from 15.12° to 24.42° (compound 4), and from 15.00° to 30.40° (compound 5). The data were collected at 298 K using the $\theta/2\theta$ scan technique to maximum 2θ values of 50.0° for **2**, **4**, and **5**. A scan of $2(0.65 + 0.35 \tan \theta)$ θ)° at a variable speed of 2.06–8.24°/min for 2 and 4 and 2(0.90 + 0.35 tan θ)° at a variable speed of 3.30–8.24°/min for 5 was performed. The intensities of three representative reflections, which were measured every 60 min of X-ray exposure time, remained constant throughout data collection, so no decay correction was applied. All data were corrected for Lorentz and polarization effects and for the effects of absorption. The structures were solved by the direct method and refined by least-squares cycles.¹⁶ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. All calculations were performed using the NRCSDP-VAX package. A summary of relevant crystallographic data for 2, 4, and 5 is provided in Table 1.

Results and Discussion

Syntheses. Treatment of biphenylene with Fe₃- $(CO)_{12}$ in refluxing heptane (98 °C) for 3 h and subsequent workup by TLC produces $Fe_2(CO)_5(\mu-CO)(\mu-\eta^2,\eta^4-\eta^4)$ $(C_6H_4)_2)^{14}$ (1), in which one iron atom has inserted into the central carbon-carbon bond of biphenylene, forming a metallacyclopentadienyl moiety, and the cluster nuclearity has changed from 3 to 2. Biphenylene reacts with $Fe_2(CO)_9$ also leading to **1** as the major metalcontaining product (eq 1).

⁽¹⁴⁾ Singh, K.; McWhinnie, W. R.; Chen, H. L.; Sun, M.; Hamor, T.

 ⁽¹⁷⁾ Singi, R., Herming, R., 1996, 1545.
 (15) (a) Johnson, B. F. G.; Johnson, R. D.; Lewis, J. J. Chem. Soc., Chem. Commun. 1967, 1057. (b) Johnson, B. F. G.; Johnson, R. D.; Lewis, J. J. Chem. Soc. A 1968, 2865.

⁽¹⁶⁾ SIR92: Altomare, A.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A. J. Appl. Crystallogr. 1993, 26, 343.

The reaction of biphenylene and Ru₃(CO)₁₂ is carried out in refluxing octane (126 °C), giving Ru₂(CO)₅(μ -CO)-(μ - η^2 , η^4 -(C₆H₄)₂) (**2**) and the known carbide cluster Ru₆-(CO)₁₇(μ ₆-C) (**3**) (eq 2). Complex **3** was previously

prepared by Lewis and co-workers from thermolysis of $Ru_3(CO)_{12}$ in hydrocarbon solvents.¹⁵ The source of the carbide carbon in **3** is unknown.

In contrast, the analogous reaction with $Os_3(CO)_{12}$ requires harsher conditions, in which $Os_3(CO)_{12}$, biphenylene (5-fold), and 1 mL of decane are mixed in a Teflonsealed Schlenk tube under N_2 and heated at 200 °C for 15 h, yielding $Os_2(CO)_6(\mu - \eta^2, \eta^4 - (C_6H_{4)2})$ (4) and $Os_4 - (CO)_{12}(\mu_4 - \eta^2 - (C_6H_3)Ph)$ (5) (eq 3); a large amount of $Os_3 - (CO)_{12}$ (33%) still retains intact. The different reactivity

of iron-triad clusters toward biphenylene is consistent with a stronger M–M and M–CO bond as expected for a third-row transition metal compared with a first-row and a second-row metal.¹⁷

The reaction pathways leading to formation of compounds 1-5 are not clear at this stage. Since pure biphenylene is thermally stable to 170 °C, loss of carbonyl ligands from the cluster or breaking a metal-metal bond to generate an unsaturated species seems essen-

Table 1. Crystallographic Data for
$\mathbf{Ru}_{2}(\mathbf{CO})_{5}(\mu - \mathbf{Co})(\mu - \eta^{2}, \eta^{4} - (\mathbf{C}_{6}\mathbf{H}_{4})_{2}) (2),$
$Os_2(CO)_6(\mu - \eta^2, \eta^4 - (C_6H_{4)2})$ (4), and
$Os_4(CO)_{12}(\mu_4 - \eta^2 - (C_6H_3)Ph)$ (5)

	2	4	5
chem formula	$C_{18}H_8O_6Ru_2$	$C_{18}H_8O_6Os_2$	C24H8O12Os4
cryst syst	monoclinic	triclinic	triclinic
space group	$P2_1/c$	$P\overline{1}$	$P\overline{1}$
fw	522.39	700.65	1249.11
<i>a</i> , Å	13.227(3)	8.254(6)	9.253(4)
<i>b</i> , Å	10.104(3)	8.767(1)	10.872(2)
<i>c</i> , Å	13.503(1)	12.841(3)	13.534(3)
α, deg	95.298(17)	85.78(2)	
β , deg	106.51(1)	102.41(3)	80.70(3)
γ , deg	104.57(3)	85.77(3)	
V, Å ³	1730.3(7)	867.7(7)	1337.3(7)
Z	4	2	2
D_{calc} , g cm ⁻³	2.005	2.682	3.102
μ , cm ⁻¹	17.430	146.759	190.255
R ^a	0.023	0.035	0.060
$R_{\rm w}^{\rm a}$	0.021	0.037	0.065
GÖF	2.21	1.73	2.94

^a $R = \sum ||F_0| - |F_c|| / \sum |F_0|; R_w = \{\sum [\omega(|F_0| - |F_c|)^2] / \sum \omega |F_0|^2\}^{1/2}.$

tial to activate biphenylene, as the 16-electron mononuclear metal fragment is known to cleave arene C–H bonds. $^{\rm 18}$

It is of interest to compare the reaction of biphenylene with the more labile cluster $Os_3(CO)_{10}(NCMe)_2$,¹⁹ while a dihydrido benzyne complex (μ -H)₂Os₃(CO)₉(μ_3 - η^2 -C₆H₂-(C₆H₄)) (**6**) is obtained (eq 4). In this reaction, two

biphenylene C–H bonds, instead of C–C bonds, are activated by the osmium atoms. Nevertheless, this reaction resembles previous observations for the reactions of $Os_3(CO)_{10}(NCMe)_2$ with benzene and toluene to give the corresponding benzyne and tolyne complexes.²⁰

Characterization of Products. Fe₂(CO)₅(μ -CO)(μ - η^2 , η^4 -(C₆H₄)₂) (**1**) forms air-stable, brownish-red crystals. The ¹H NMR and IR spectra data agree with those previously reported by McWhinnie and co-workers¹⁴ for **1** resulting from the reaction of Fe₃(CO)₁₂ and dibenzotellurophene ((C₆H₄)₂Te).

Ru₂(CO)₅(μ -CO)(μ - η^2 , η^4 -(C₆H₄)₂) (**2**) forms air-stable, orange crystals. The FAB mass spectrum shows the molecular ion at m/z 524 for ¹⁰²Ru and ions corresponding to successive loss of six carbonyls. The IR spectrum shows a medium absorption at 1882 cm⁻¹, indicating the presence of a bridging carbonyl. The ¹H NMR spectrum (Figure 1) illustrates two doublet and two

⁽¹⁷⁾ Bruce, M. I. in *Comprehensive Organometallic Chemistry*, Pergamon Press: Oxford, U.K., 1982; Vol. 4, pp 661–662.

⁽¹⁸⁾ Crabtree, R. H. Chem. Rev. 1985, 25, 245.

⁽¹⁹⁾ Tachikawa, M.; Shapley, J. R. J. Organomet. Chem. **1977**, *124*, C19.

^{(20) (}a) Deeming, A. J.; Underhill, M. *J. Chem. Soc., Dalton Trans.* **1974**, 1415. (b) Goundsmit, R. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Rosales, M. J. *J. Chem. Soc., Dalton Trans.* **1983**, 2257.

Figure 1. (1) ¹H NMR and (2) ¹³C{¹H} NMR spectra of Ru₂(CO)₅(μ -CO)(μ - η^2 , η^4 -(C₆H₄)₂) (**2**) obtained in CDCl₃ at 20 °C.

triplet signals in the range δ 8.4–7.1 for the phenylene protons. The downfield doublet signal at δ 8.34 can be assigned to the protons ortho to the Ru–C bond, which are expected to be deshielded relative to the other protons.²¹ The ¹³C{¹H} spectrum is also shown in Figure 1. There are six resonance signals for the 12 biphenylene carbons ranging from δ 151.6 to 125.5, implying a time-averaged C_s symmetry for the molecule. The carbonyl ligands are fluxional at 20 °C, as indicated by observing only one broad carbon resonance at δ 188.9.

 $Os_2(CO)_6(\mu-\eta^2,\eta^4-(C_6H_{4)2})$ (4) forms air-stable, yellow crystals. The IR absorptions for the carbonyl groups are observed between 2084 and 1974 cm⁻¹ with no indication of bridging carbonyl. To determine if different metal sizes and the presence/absence of a bridging carbonyl would affect the binding of the biphenylene ligand, single-crystal X-ray diffraction studies of **2** and **4** were performed.

 $Os_4(CO)_{12}(\mu_4 \cdot \eta^2 \cdot (C_6H_3)Ph)$ (5) forms air-stable, orangered crystals. The EI mass spectrum shows the molecular ion peak at m/z = 1256 for ¹⁹²Os and ion multiplets corresponding to successive loss of 12 carbonyls. The isotopic distribution of the envelope surrounding the molecular ion matches that expected for 5, and there is a good agreement between the calculated mass distribution and the observed mass spectrum. The IR absorptions in the carbonyl region show a pattern similar to those recorded for alkyne butterfly clusters $Os_4(CO)_{12}$ - $(\mu_4 \cdot \eta^2$ -alkyne).²² The ¹H NMR spectrum includes a multiplet in the range δ 7.8–7.0 (5H), characteristic of phenyl proton resonances, a singlet at δ 7.13 (1H), a

Figure 2. Molecular structure of $\operatorname{Ru}_2(\operatorname{CO})_5(\mu$ -CO) $(\mu$ - η^2, η^4 - $(C_6H_4)_2)$ (**2**). The hydrogen atoms have been artificially omitted for clarity.

Figure 3. Molecular structure of $Os_2(CO)_6(\mu - \eta^2, \eta^4 - (C_6H_4)_2)$ (4). The hydrogen atoms have been artificially omitted for clarity.

doublet at δ 6.50 (1H), and a doublet at δ 6.32 (1H). Apparently, the biphenylene molecule has changed its appearance to a different type of ligand. A single-crystal X-ray diffraction study of **5** was thus performed.

 $(\mu$ -H)₂Os₃(CO)₉(μ_3 - η^2 -C₆H₂(C₆H₄)) (**6**) forms air-stable, yellow solids. The IR spectrum in the carbonyl region greatly resembles those recorded for $(\mu$ -H)₂Os₃(CO)₉(μ_3 - η^2 -C₆H₄)^{20a} and $(\mu$ -H)₂Os₃(CO)₉(μ_3 - η^2 -C₆H₃CH₃).^{20b} The ¹H NMR spectrum includes a singlet at δ –18.99 for the bridging hydrides, a singlet at δ 7.02 for the benzyne ring protons, and a multiplet in the range δ 7.04–6.94 assigned to the protons on the unactivated phenylene ring.

Crystal Structure of 2. Crystals of $\text{Ru}_2(\text{CO})_5(\mu\text{-CO})$ - $(\mu-\eta^2,\eta^4-(\text{C}_6\text{H}_4)_2)$ (**2**) contain an ordered array of discrete monomeric molecule units which are mutually separated by normal van der Waals distances. The ORTEP

⁽²¹⁾ Eisch, J. J. In *Organometallic Syntheses*; Eisch, J. J., King, R. B., Eds.; Academic Press: New York, 1981; Vol. 1, pp 94, 141.

^{(22) (}a) Jackson, R.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Sankey, S. W. *J. Organomet. Chem.* **1980**, *193*, C1. (b) Chen, H.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. *J. Chem. Soc., Chem. Commun.* **1990**, 373.

Table 2.	Selected Bond Distances (Å) a	and Bond Angles	(deg) for Rug	$_{2}(CO)_{5}(\mu - Co)(\mu - \eta^{2}, \eta)$	$^{4}-(C_{6}H_{4})_{2})$ (2) and
	0	$s_{2}(CO)_{6}(\mu - n^{2}.n^{4} - (C))$	CaHa)) (4)		

	2 (M = Ru)	4 (M = Os)		2 (M = Ru)	4 (M = Os)
		Distance	s		
Ml-M2	2.6998(6)	2.7247(11)	C7-C8	1.418(7)	1.425(18)
Ml-C1	1.910(5)	1.897(15)	C7-C12	1.432(6)	1.463(16)
Ml-C2	1.938(5)	1.937(14)	C8-C9	1.350(8)	1.353(21)
Ml-C3	1.920(6)	1.921(17)	C9-C10	1.390(9)	1.432(20)
M1-C5	2.327(5)	. ,	C10-C11	1.346(9)	1.311(22)
M2-C4	1.859(5)	1.866(16)	C11-C12	1.415(7)	1.423(18)
M2-C5	1.934(5)	1.933(13)	C12-C13	1.474(7)	1.485(18)
M2-C6	1.886(5)	1.890(14)	C13-C14	1.425(6)	1.459(18)
Ml-C7	2.137(4)	2.087(12)	C13-C18	1.419(6)	1.439(16)
Ml-C14	2.125(4)	2.124(11)	C14-C15	1.421(7)	1.406(19)
M2-C7	2.270(4)	2.366(12)	C15-C16	1.360(7)	1.357(20)
M2-C12	2.423(4)	2.357(13)	C16-C17	1.389(9)	1.42(3)
M2-C13	2.410(4)	2.356(12)	C17-C18	1.344(8)	1.305(23)
M2-C14	2.311(4)	2.366(12)			
		Angles			
M2-M1-C1	132.77(14)	149.4(4)	C4-M2-C7	158.60(18)	140.2(5)
M2-M1-C2	114.43(14)	104.1(4)	C4-M2-C12	123.27(18)	151.4(5)
M2-M1-C3	120.10(15)	104.9(4)	C4-M2-C13	98.89(17)	115.8(5)
M2-M1-C5	44.49(12)		C4-M2-C14	100.46(18)	88.3(5)
M2-M1-C7	54.48(10)	57.1(3)	C5-M2-C6	96.27(21)	96.9(6)
M2-M1-C14	55.73(11)	56.8(3)	C5-M2-C7	98.64(18)	123.1(5)
C1-M1-C2	94.20(20)	96.6(6)	C5-M2-C12	129.50(17)	93.1(5)
C1-M1-C3	93.91(22)	96.0(6)	C5-M2-C13	122.89(18)	91.7(5)
C1-M1-C5	175.51(18)		C5-M2-C14	88.61(18)	119.0(5)
C1-M1-C7	88.33(19)	101.2(6)	C6-M2-C7	94.89(18)	89.0(5)
C1-M1-C14	91.72(17)	101.0(5)	C6-M2-C12	104.87(18)	114.1(5)
C2-M1-C3	92.02(22)	93.2(6)	C6-M2-C13	135.99(19)	150.3(5)
C2-M1-C5	90.29(18)		C6-M2-C14	165.77(18)	143.9(5)
C2-M1-C7	94.34(20)	90.3(5)	C7-M2-C12	35.33(15)	36.1(4)
C2-M1-C14	169.69(19)	160.9(5)	C7-M2-C13	62.65(15)	62.8(4)
C3-M1-C5	85.93(20)		C7-M2-C14	71.11(16)	69.1(4)
C3-M1-C7	173.09(19)	161.9(5)	C12-M2-C13	35.52(15)	36.7(4)
C3-M1-C14	95.99(20)	92.1(5)	C12-M2-C14	62.25(15)	63.6(4)
C5-M1-C7	91.33(17)		C13-M2-C14	35.05(15)	36.0(4)
C5-M1-C14	83.84(16)		M1-C5-M2	78.04(18)	
C7-M1-C14	77.39(17)	79.2(5)	M1-C5-O5	133.2(4)	
M1-M2-C4	138.30(15)	92.6(3)	M2-C5-O5	148.7(4)	176.0(13)
M1-M2-C5	57.47(14)	164.6(4)	M1-C7-M2	75.51(l4)	75.1(4)
M1-M2-C6	123.24(14)	95.3(4)	M1-C7-C8	127.8(3)	129.4(9)
M1-M2-C7	50.02(11)	47.8(3)	M1-C7-C12	115.7(3)	117.2(9)
M1-M2-C12	72.70(10)	73.3(3)	C7-C12-C13	113.9(4)	113.1(10)
M1-M2-C13	72.50(10)	73.1(3)	C12-C13-C14	115.3(4)	115.3(9)
M1-M2-C14	49.43(10)	48.7(3)	MI-C14-M2	74.85(13)	74.5(4)
C4-M2-C5	100.81(21)	96.4(5)	MI-C14-C13	115.8(3)	114.9(8)
C4-M2-C6	91.77(20)	91.4(6)	MI-C14-C15	127.7(3)	129.2(9)

drawing is shown in Figure 3. Selected bond distances and bond angles are collected in Table 2.

The Ru1 atom has inserted into the four-membered ring of biphenylene, forming a metallacycle. On the basis of the angles subtended, the coordination about the Ru1 atom can be described as a capped octahedron with the Ru2 atom in the capping position. On the other hand, the coordination about the Ru2 atom is a threelegged piano stool by considering the (Ru1, C7, C12, C13, C14) unit as a metallacyclopentadienyl ligand to bind the Ru2 atom in an η^5 -fashion. The Ru1–Ru2 length is 2.6998(6) Å, typical of a ruthenium-ruthenium single bond. The Ru1 and Ru2 atom are each linked to three and two terminal carbonyl ligands, respectively, with the Ru–C–O angles in the range 175.5(4)–178.7-(4)°. The ruthenium-terminal carbonyl distances range from 1.859(5) to 1.938(5) Å, where the longest Ru1-C2 and Ru1-C3 bond lengths might indicate some trans influence from the opposite C14-Ru1 and C7-Ru1 bonds. The carbonyl C5-O5 bridges the Ru1-Ru2 edge unsymmetrically, such that the Ru1-C5 length (2.327-(5) Å) is ca. 0.4 Å longer than that of the Ru2-C5 length (1.934(5) Å), and the Ru–C–O angle is bent toward the Ru1 atom with Ru1 $-C5-O5 = 133.2(4)^{\circ}$ and Ru2 $-C5-O5 = 148.7(4)^{\circ}$.

The two phenylene rings (C7~C12 and C13~C18) are each planar to within 0.01 and 0.02 Å, respectively while the metallacyclopentadienyl ring is puckered, as evidenced by the torsional angles: Ru1-C7-C12-C13 =11.9(2)°, Ru1-C14-C13-C12 = 7.8(2)°, C12-C7-Ru1- $C14 = 12.3(2)^{\circ}$, and $C14-C13-C12-C7 = 2.7(2)^{\circ}$. The phenylene C-C distances are not equal, ranging from 1.344(8) (C17–C18) to 1.432(6) Å (C7–C12). This may indicate little aromaticity of the phenylene rings, apparently due to complexation with the Ru2 atom. The C12–C13 length (1.474(7) Å) is slightly shorter than that in free biphenylene (1.52 Å) and may imply some inter-ring electron delocalization. The Ru1-C bonds at 2.137(4) Å to C7 and 2.125(4) Å to C14, characteristic of σ -bonds, are shorter than the distances of π interactions associated with the Ru2 atom. The Ru2-C bond distances involving the inner carbon atoms, 2.423(4) (C12), 2.410(4) Å (C13), are significantly longer than those involving the outer atoms, 2.270(4) (C7) and 2.311-(4) Å (C14). If the neutral biphenylenyl ligand donates 2e⁻ to Ru1 and 4e⁻ to Ru2 and the bridging carbonyl

Figure 4. Molecular structure of $Os_4(CO)_{12}(\mu_4 - \eta^2 - (C_6H_3) - Ph)$ (5). The hydrogen atoms have been artificially omitted for clarity.

donates 1e⁻ to each metal, both ruthenium atoms obey the 18-electron rule.

Crystal Structure of 4. The ORTEP drawing of Os₂-(CO)₆(μ - η^2 , η^4 -(C₆H_{4)₂) (**4**) is shown in Figure 3. Selected bond distances and bond angles are given in Table 2. The overall geometry of **4** is very similar to that of **3**, except that no bridging carbonyl is present for **4**. Thus, the coordination about the Os1 atom is a distorted octahedron, and the coordination about the Os2 atom can be described as a three-legged piano stool by considering the metallacycle as an η^5 -ligand. The Os1– Os2 length of 2.725(1) Å is significantly shorter than that observed for the parent compound Os₃(CO)₁₂,²³ in which Os–Os(average) = 2.877(3) Å.}

The biphenylenyl group (C7~C18) and the Os1 atom are coplanar to within ± 0.02 Å. The ring carbon– carbon bonds are localized, such that the C8–C9, C10– C11, C15–C16, and C17–C18 bond lengths, ranging from 1.31(2) to 1.36(3) Å, are typical of carbon–carbon double bonds. The C7–C12 and C13–C14 distances are lengthened to 1.46(2) Å, apparently due to π -donation to the Os2 atom. The C12–C13 distance is 1.49(2) Å.

Os1 and Os2 atoms are each linked to three terminal carbonyl ligands. The Os-C-O angles are in the range 176(1)-178(1)°, and the Os-CO distances range from 1.87(2) to 1.94(1) Å. The Os1 atom forms σ -bonds to C7 and C14 at 2.09(1) and 2.12(1) Å, respectively. The Os2 atom is situated right behind the centroid of the butadiene C7-C12-C13-C14 unit and is about equally bonded to these atoms, with Os-C = 2.36 ± 0.02 Å. Since no bridging carbonyl is present, the Os-Os interaction is best described as a dative bond by donating two nonbonding electrons from Os2 to Os1 to satisfy the 18-electron rule for each osmium atom.

Crystal Structure of 5. An ORTEP diagram of Os₄-(CO)₁₂(μ_4 - η^2 -(C₆H₃)Ph) (**5**) is shown in Figure 4. Selected bond distances and angles are given in Table 3. This complex consists of a tetraosmium butterfly framework bridged by a phenylbenzyne moiety. Complex **5** is the first butterfly cluster of the type [Os₄(aryne)-(CO)₁₂], although there are several alkyne complexes of this type.²² The ruthenium analogues Ru₄(μ_4 - η^2 -naphthyne)(CO)₁₂] and [Ru₄(μ_4 - η^2 -phenanthryne)(CO)₁₂] were recently reported by Deeming and Speel.²⁴

Table 3. Selected Bond Distances and Bond Angles for $Os_4(CO)_{12}(\mu_4 \cdot \eta^2 \cdot (C_6H_3)Ph)$ (5)

8		1. 4 4 7 (- 0 0)	/ (-/
	Dist	ances	
0.1 0.2	9 7400(10)		9 75 40(10)
	2.7489(18)	081-084	2.7549(10)
Os1-C1	1.90(3)	Os1-C2	1.95(3)
Os1–C3	1.908(25)	Os1-C13	2.297(22)
Os1-C14	2.280(21)	Os2–Os3	2.7784(14)
$\Omega s^2 - \Omega s^4$	2 8830(18)	Os2-C4	1 87(3)
0.0 05	1.04(0)		1.07(0)
0sz-C5	1.94(3)	0sz-Cb	1.91(3)
C13-C14	1.57(4)	Os2-C13	2.150(23)
C13-C18	1.42(4)	Os3–Os4	2.7326(17)
C14 - C15	1 43(3)	Os3-C7	1 92(3)
C15 - C16	1.10(0) 1.27(4)	$0c^{2}-C^{8}$	1.02(0) 1.90(2)
C1J-C10	1.37(4)	033-08	1.09(3)
C16-C17	1.41(4)	Os3-C9	1.87(3)
C17-C18	1.37(3)	Os3-C13	2.275(22)
C17-C19	1.48(4)	Os3-C14	2,298(23)
0e4 - C10	1.04(3)	0s4 - C11	1 81(3)
034 010	1.04(0)		1.01(3)
Us4-C12	1.89(3)	Os4-C14	2.101(23)
	4	alaa	
	All	igies	
Os2–Os1–Os4	63.18(5)	Os1–Os4–C10	145.8(10)
Os2-Os1-C1	107.3(8)	Os1-Os4-C11	120.1(11)
0s2-0s1-C2	159 8(7)	0s1 - 0s4 - C12	76 7(7)
0c2 - 0c1 - c2	01.0(9)	0c1 - 0c4 - C14	54.0(6)
052-051-05	91.0(8)	031-034-014	54.0(0)
Os2-Os1-C13	49.4(6)	0s2-0s4-0s3	59.24(4)
Os2-Os1-C14	73.3(6)	Os2-Os4-C10	96.0(10)
0s4-0s1-C1	161.2(7)	0s2 - 0s4 - C11	160.4(10)
0s1 - 0s1 - C2	96 8(8)	$0s^2 - 0s^4 - C1^2$	103 8(7)
$0.54 0.51 C_{2}$	100.0(0)		70.0(7)
US4-US1-U3	100.8(7)	0sz - 0s4 - 014	12.8(1)
Os4-Os1-C13	71.9(6)	Os3–Os4–C10	91.0(8)
Os4-Os1-C14	48.2(6)	Os3-Os4-C11	102.8(9)
C1 - 0s1 - C2	91 1(11)	0s3 - 0s4 - C12	163 0(7)
$C1 O_{2}1 C_{2}$	01.1(11)		540(7)
CI-OSI-C3	95.4(11)	0\$3-0\$4-014	54.9(7)
C1-Os1-C13	89.5(9)	C10-Os4-C11	91.7(16)
C1-Os1-C14	114.7(9)	C10-Os4-C12	89.8(11)
C2-Os1-C3	95.9(11)	C10-Os4-C14	145.3(10)
$C_{2} = 0 s_{1} = C_{13}$	124 3(9)	$C_{11} - 0_{s4} - C_{12}$	94 1(11)
$C_{2}^{2} = 0.31 + C_{10}^{2}$	124.3(0)		00.0(14)
C2-081-C14	91.5(9)	C11=0s4=C14	90.0(14)
C3-Os1-C13	139.4(10)	C12-Os4-C14	124.5(10)
C3-Os1-C14	148.9(9)	C13-Os1-C14	40.1(9)
0s1 - 0s2 - 0s3	92 58(5)	0s1 - 0s2 - 0s4	58 51(4)
0c1 - 0c2 - C4	101 1(10)	0c1 - 0c2 - C5	86 2(8)
0.1 - 0.52 - 0.4	101.1(10)	051-052-05	54.0(0)
Us1-Us2-C6	166.5(9)	0s1 - 0s2 - C13	54.3(6)
Os3–Os2–Os4	57.69(4)	Os3–Os2–C4	128.1(10)
Os3-Os2-C5	135.8(7)	Os3–Os2–C6	79.1(8)
0s3 - 0s2 - C13	53 1(6)	0s1 - C13 - 0s2	76 3(7)
$O_{2} 0_{2} O_{2} O_{2$	00.1(0) 07.0(11)	O_{21} C_{12} O_{22}	191 0(10)
084-082-04	07.9(11)	081-013-083	121.0(10)
Os4-Os2-C5	144.4(8)	Os1-C13-C14	69.4(12)
Os4–Os2–C6	122.9(9)	Os4–Os2–C13	71.2(6)
Os2-C13-Os3	77.7(8)	C4–Os2–C5	95.2(12)
0s2 - C13 - C14	107 8(14)	C4 - Os2 - C6	92 4(14)
	159 4(19)	0^{-2} C_{12}^{12} C_{14}^{14}	70.7(11)
C4-0s2-C13	155.4(15)	0\$3-013-014	70.7(11)
C5-Os2-C6	92.5(12)	C5–Os2–C13	92.8(9)
C6-Os2-C13	112.5(11)	Os1-C14-Os3	121.6(10)
0s2 - 0s3 - 0s4	63.08(4)	0s1 - C14 - 0s4	77.8(7)
0.2 - 0.2 - 0.7	07 7(9)	0c1 - C14 - C12	70.5(11)
052 - 053 - 07	97.7(0)	031-014-013	100.0(11)
052-053-08	160.7(8)	Usz-Us3-C9	102.9(7)
Os3-C14-Os4	76.7(7)	Os2–Os3–C13	49.1(6)
Os3-C14-C13	69.2(12)	Os2-Os3-C14	72.5(5)
0s4 - 0s3 - C7	98 6(8)	0s4 - C14 - C13	108 1(14)
$0c4 - 0c^{2} - 0c^{2}$	100 4(0)	$0_{04} - 0_{02} = 0_{10}$	162 9(7)
054-053-08	100.4(8)	054-053-09	103.3(7)
Us4-Us3-C13	72.6(6)	Os4–Os3–C14	48.4(6)
C7-Os3-C8	94.4(11)	C7–Os3–C9	92.1(12)
C7-Os3-C13	146.4(10)	C7-Os3-C14	146.8(10)
$C8 - 0s^{2} - C9$	91 5(11)	$C8 - 0s^{3} - C1^{3}$	118 8(10)
C_{8}^{-} C_{14}^{-}	01.0(11) 00.0(10)	C0 - 0.0 - 0.10	01 4(0)
	09.3(10)		91.4(9)
C9-Os3-C14	120.8(10)	C13–Os3–C14	40.1(9)
Os1-Os4-Os2	58.31(4)	Os1-Os4-Os3	93.45(5)

Each osmium atom is associated with three terminal carbonyl ligands. The Os–CO distances vary from 1.81-(3) (Os4–C11) to 1.95(3) Å (Os1–C2), while the Os–C–O angles fall in the range $171(3)-173(3)^{\circ}$. The two hinge Os(CO)₃ groups are staggered, apparently to reduce steric interactions between the CO ligands.

(24) Deeming, A. J.; Speel, D. M. Organometallics 1997, 16, 289.

The benzyne ring carbons are coplanar to within 0.01-(3) Å. The Os-C(benzyne) distances to the hinge Os2 and Os4 atoms, averaging 2.13(2) Å, are significantly shorter than those to the wingtip Os1 and Os3 atoms, averaging 2.29(2) Å. It appears that the benzyne ligand forms σ -bonds with the hinge osmium atoms while it donates its π -electrons to the wingtip osmium atoms. The lengthened C13-C14 bond distance of 1.57(4) Å, typical of a carbon-carbon single bond (i.e., 1.53 Å for ethane), is likely due to back-donation of electrons from the Os atoms into the benzyne π^* orbitals. The remaining benzyne ring carbon-carbon distances show an alternative long-short pattern, implying little aromaticity of this ring. The dihedral angle between the benzyne plane and the phenyl plane is 33(1)°.

Conclusions

The results presented here describe interesting C-C and C-H bond activation of biphenylene by the irontriad carbonyl clusters. The harsh thermal reaction conditions also lead to cluster fragmentation with the cluster nuclearity changing from 3 to 2, 4, and 6. Compounds **1**, **2**, and **4** contain a metallacyclopentadienyl group arising from insertion of a metal atom into the central C–C bond of biphenylene. Compound **5** is the first butterfly cluster of the type $Os_4(CO)_{12}(aryne)$, in which the phenylbenzyne ligand is derived from rearrangement of biphenylene molecule. The dihydrido complex **6** comes from C–H bond activation of biphenylene ylene on the triosmium framework.

Acknowledgment. We are grateful for support of this work by the National Science Council of Taiwan.

Supporting Information Available: Complete tables of crystallographic data, positional parameters, anisotropic thermal parameters, bond angles, bond distances, and torsional angles of **2**, **4**, and **5** (24 pages). Ordering information is given on any current masthead page.

OM9800445