Hydroboration. 96. Synthesis and Chemistry of Sterically Modified α-Pinene-Related 2-Organylapoisopinocampheylchloro- and -bromoboranes, Potentially Valuable for Asymmetric Hydroboration

Ulhas P. Dhokte¹ and Herbert C. Brown*

H. C. Brown and R. B. Wetherill Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907

Received March 9, 1998

Optically pure and sterically varied 2-organylapoisopinocampheylchloro- and -bromoboranes (RapBHX; X = Cl and Br; R = Et (EapBHX), Pr (PraBHX), *i*-Bu (*i*-BapBHX), Ph (PapBHX), and *i*-Pr (*i*-PraBHX)), potentially valuable for asymmetric hydroboration of prochiral alkenes, are conveniently prepared by a number of simple approaches from the corresponding 2-organylapoisopinocampheyldihaloboranes (RapBX₂) and 2-organylapoisopinocampheylboranes (RapBH₂). All of these reagents can be readily obtained from 2-organylapopinenes (2-R-apopinenes). Increasing the steric bulk at the 2-position of the apopinene moiety significantly influences the formation of the desired RapBHCl. Thus, when $\mathbf{R} = i$ -Pr, a significantly lower amount of the sterically bulkier alkylchloroborane reagent, *i*-PraBHCl (47–52%), is formed in equilibrium with *i*-PraBH₂ (22–23%) and *i*-PraBCl₂ (22– 23%). Surprisingly, a higher equilibrium composition for PapBHCl (84–86%), a sterically demanding borane reagent, is observed in equilibrium with 7-8% each of PapBH₂ and PapBCl₂. This result closely resembles the values realized in the formation of IpcBHCl, the least sterically hindered reagent among the organylchloroboranes examined in this study. However, it is possible to shift this equilibrium conveniently to achieve an increased concentration of RapBHCl (>95%) in ethyl ether (Et₂O) in the presence of known amounts (1-4 equiv) of strongly coordinating solvents (CS), such as dimethyl sulfide (SMe₂) and tetrahydrofuran (THF), solvents which readily coordinate with the chloroborane intermediates. Interestingly, irrespective of the bulk at the 2-position of the apopinene structure, the mere replacement of chloride in the RapBHCl reagents by bromide provides essentially pure RapBHBr·CS (>95%, R = Me, Et, Pr, *i*-Bu, Ph, and *i*-Pr; CS = Et_2O , THF, and SMe₂) reagents.

Asymmetric syntheses to achieve the preparation of chiral compounds of interest is well-reviewed in the literature.² Currently, much emphasis is being given to the synthesis of easily accessible, improved chiral auxiliaries and reagents. We have been actively pursuing research on chiral syntheses via enantiomerically pure organoboranes conveniently obtained from terpenes.³

Although diisopinocampheylborane (Ipc₂BH), derived from α -pinene, provides high ee's with the less sterically hindered *cis*-alkenes, it failed to achieve high optical induction for the more hindered trans and trisubstituted alkenes.^{4,5} However, isopinocampheylborane (IpcBH₂) provides moderate to excellent optical purities (54% to \geq 99%) in the hydroboration of trans and trisubstituted alkenes, with the higher values realized with phenyl-substituted alkenes.⁶ Later, a number of terpene-based borane reagents, obtained from abundant low-cost terpenes, e.g., limonene, longifolene, and (+)-2- and (+)-3-carenes, were developed and applied to the hydroboration of prochiral alkenes.^{5,7} Regrettably, these reagents provided less satisfactory results in asymmetric hydroboration.

Therefore, with the growing importance of organoboranes for asymmetric synthesis, the search for new chiral reagents continues. Over the years of our research involving α -pinene as a chiral director, as well

⁽¹⁾ Present address: Chemical Process R & D, Lilly Technology Center, A Division of Eli Lilly & Co., DC 4813, Indianapolis, IN 46485. (2) (a) *Asymmetric Synthesis*; Morrison, J. D., Ed.; Academic: New

^{(2) (}a) Asymmetric Synthesis, Morrison, J. D., Ed.; Academic: New York, 1983; Vols. 1-5. (b) Crosby, J. Tetrahedron 1991, 47, 4789. (c) Duhamel, P. Bull. Soc. Chim. Fr. 1996, 133, 457. (d) Noyori, R.; Hashiguchi, S. Appl. Homogeneous Catal. Organomet. Compd. 1996, 1, 552. (c) Davies, I. W.; Reider, P. J. Chem. Ind. 1996, 11, 412.

^{(3) (}a) Brown, H. C.; Ramachandran, P. V. Advances in Asymmetric Synthesis; Hassner, A., Ed.; JAI Press: Greenwich, CT, 1995; Vol. 1, pp 147–210. (b) Brown, H. C.; Ramachandran, P. V. J. Organomet. Chem. **1995**, 500, 1.

as theoretical calculations based on α -pinene-derived borane reagents,⁸ suggest that the success of these reagents probably has its origin in the steric influence of the 2-methyl group of α -pinene (Ipc), as well as the steric and electronic environment around the boron atom. Therefore, we decided to modify the 2-position of the α -pinene structure. Consequently, we synthesized 2-ethyl- (Eap, 1b),⁹ 2-*n*-propyl- (Pra, 1c),¹⁰ 2-isobutyl- (*i*-Bap, **1d**),¹¹ 2-phenyl- (Pap, **1e**),¹² and 2-isopropylapopinenes (i-Pra, 1f)¹¹ (2-organylapopinenes, 2-Rapopinenes, 1a-f).

Representative borane reagents derived from these chiral auxiliaries $(\mathbf{1b} - \mathbf{f})$ are achieving greatly improved stereochemical results in their reactions. For example, EapBH₂ (**2b**)⁹ and *i*-PraBH₂ (**2f**),¹³ derived from terpenes 1b and 1f, respectively, achieve higher asymmetric results than the parent IpcBH₂ (2a).⁶ An improvement in asymmetric reduction of prochiral ketones is evident with the diorganylchloroborane (Eap₂BCl, **5b**), derived from 2-ethylapopinene (**2b**), in comparison with Ipc_2 -BCl (**5a**).¹⁴ A new asymmetric hydroborating agent, isopinocampheylchloroborane (IpcBHCl, 3a)¹⁵ proved to be excellent for the asymmetric cyclic hydroboration of 1-allyl-1-cyclohexene, achieving \geq 99% enantiomeric excess for the product trans-1-decalone.¹⁶ Finally, we discovered that the corresponding isopinocampheylbromoborane (IpcBHBr) achieved improved asymmetric induction in the hydroboration of prochiral alkenes at -78 °C, compared with those realized with IpcBHCl.¹⁷ It is interesting, however, to note that asymmetric hydroboration of prochiral alkenes with IpcBHCl prepared in situ from the reduction of IpcBCl₂ with Me₃-SiH in pentane at -25 °C requires several days for completion.¹⁵ However, under similar conditions, a major improvement in the reactivity of IpcBBr₂ with Me₃SiH in pentane is observed. Thus, in situ generated

- (8) (a) Houk, K. N.; Rondan, N. G.; Wu, Y.-D.; Metz, J. T.; Paddon-Row, M. N. Tetrahedron 1984, 40, 2257. (b) Egger, M.; Keese, R. Helv. Chim. Acta 1987, 70, 1843.
- (9) Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewicz, M.; Wiessman, S. A.; Jadhav, P. K.; Perumal, P. T. J. Org. Chem. 1988, 53. 5513
- (10) Brown, H. C.; Ramachandran, P. V.; Weissman, S. A.; Swami-(11) Brown, H. C.; Dhokte, U. P. J. Org. Chem. 1994, 59, 2025.
 (12) Brown, H. C.; Weissman, S. A.; Perumal, P. T.; Dhokte, U. P.
- J. Org. Chem. 1990, 55, 1217.
- (13) Dhokte, U. P.; Brown, H. C. Tetrahedron Lett. 1994, 35, 4715. (14) Brown, H. C.; Ramachandran, P. V.; Teodorović', A. V.; Swaminathan, S. *Tetrahedron Lett.* **1991**, *32*, 6691.
- (15) Dhokte, U. P.; Kulkarni, S. V.; Brown, H. C. J. Org. Chem. 1996, 61. 5140.
- (16) Brown, H. C.; Mahindroo, V. K.; Dhokte, U. P. J. Org. Chem. 1996, 61, 1906.
- (17) Dhokte, U. P.; Brown, H. C. Tetrahedron Lett. 1996, 37, 9021.

IpcBHBr, from the reduction of IpcBBr₂ with Me₃SiH, hydroborates olefins in pentane in 4-6 h, even at -78°C.¹⁷ Therefore, in this context, it was of interest to investigate the chemistry of the IpcBHBr system. It was also desirable to systematically study the chemistry and synthesis of the higher analogues of IpcBHX (X = Cl, Br) reagents, such as the 2-organylapoisopinocampheylchloroborane reagents (3) and their bromo (4) counterparts, potentially useful for the asymmetric hydroboration of prochiral alkenes. Thus, in this paper we wish to report a systematic study of the formation of RapBHX (3, 4) (R = Et, Pr, *i*-Bu, Ph, and *i*-Pr; X =Cl, Br) reagents.

Results and Discussion

The synthesis of 2-R-apopinenes (1b-f) has been reported in our earlier papers.9-12 The desired RapBH₂ (2a-f) can be readily obtained in quantitative yields through hydroboration of these apopinenes, reaction with TMEDA, followed by removal of the TMEDA from the resultant bis(2-organylapoisopinocampheylborane). TMEDA adducts by treatment with boron trifluorideetherate (BF₃·Et₂O) (Scheme 1).¹⁸

The formation of alkyldichloroborane from the reaction of boron trichloride with a mixture of the alkene and trialkylsilane has been reported by Matteson.¹⁹ We investigated the utility of this remarkable reaction by synthesizing the sterically demanding $RapBX_2$ (X = Cl (6), Br (7), and I (8)) in quantitative yields from the reaction of 2-R-apopinenes (1a-f) with boron trihalides (BX₃) and trialkylsilane (eq 1).²⁰

In our recent paper, we did a quantitative study of the preparation of optically pure IpcBHCl.¹⁵ This reagent is made by four possible approaches: (1) the reaction of stoichiometric amounts of IpcBH₂ with IpcBCl₂ in Et₂O; (2) the reduction of IpcBCl₂ with Me₃-SiH in Et₂O; (3) the reduction of IpcBCl₂ with lithium aluminum hydride (LAH) in Et₂O; (4) the reaction of IpcBH₂ with anhydrous hydrogen chloride (HCl) in Et₂O. The first and second approaches were also

(20) Dhokte, U. P.; Brown, H. C. Organometallics 1996, 15, 3504.

⁽⁴⁾ Brown, H. C.; Zwiefel, G. J. Am. Chem. Soc. 1961, 83, 486. (5) Brown, H. C.; Jadhav, P. K.; Mandal, A. K. Tetrahedron 1981, 37, 3547.

⁽⁶⁾ Brown, H. C.; Jadhav, P. K.; Mandal, A. K. J. Org. Chem. 1982, 47, 5074.

^{(7) (}a) Brown, H. C.; Jadhav, P. K. In Asymmetric Syntheses; Morrison, J. D., Ed.; Academic: New York, 1983; Vol. 2, p 1. (b) Brown, H. C.; Vara Prasad, J. V. N.; Zaidlewicz, M. *J. Org. Chem.* **1988**, *53*, 2916.

⁽¹⁸⁾ Brown, H. C.; Dhokte, U. P. *J. Org. Chem.* **1994**, *59*, 2365. (19) (a) Soundararajan, R.; Matteson, D. S. *J. Org. Chem.* **1990**, *55*, 2274. (b) Soundararajan, R.; Matteson, D. S. *Organometallics* **1995**, 14, 4157

Table 1.¹¹B NMR Chemical Shifts of the RapBH2, RapBHCl, RapBCl2, RapBBr2, and RapBHBr Derivativesin Various Representative Solvents at 24 °C

		¹¹ B NMR values (δ)			
solvent	RapBH ₂	RapBCl ₂ ^a	RapBHCl ^b	RapBBr ₂	RapBHBr
pentane Et ₂ O THF SMe ₂	22-23 (br) 22.5-23.0 (br) 22 (br) and 10.3 (br) -2.9 to -3.0^{b}	$\begin{array}{c} 62 \\ 18 - 19 \\ 16 - 17 \\ 12 - 13 \end{array}$	$\begin{array}{r} 42\\ 14-16\\ 12-14\\ 5.0-7.0^{b}\end{array}$	$65 \\ 14 \\ 12.5^d \\ 6.8$	$\begin{array}{c} 41{-}42 \text{ (br)} \\ 12.8^{b,c} \\ 11.5^{b,d} \\ 3.0{-}3.5^{b} \end{array}$

^{*a*} *i*-PraBCl₂ loosely complexed with Et₂O (~0.8–1.0 M solution) (¹¹B NMR: δ 50–55). ^{*b*} Proton-decoupled ¹¹B NMR. ^{*c*} Cleaves Et₂O slowly at 0 °C. ^{*d*} Cleaves THF slowly in less than 2 h (¹¹B NMR: δ 32 br singlet).

investigated in tetrahydrofuran (THF) and in nonethereal solvents, such as pentane and dichloromethane (CH₂Cl₂). We decided to extend these procedures to understand the chemistry involved in the preparation of RapBHCl (**3b**-**f**) and RapBHBr (**4a**-**f**) from RapBH₂ (**2b**-**f**) and RapBBr₂ (**7a**-**f**), respectively.

Preparation and Chemistry of 2-Organylapoisopinocampheylchloroborane (RapBHCl, 3b–f) Reagents. Approach 1: Optically pure RapBCl₂ (6b–f) were prepared as described in eq 1.²⁰ The reaction was monitored by ¹¹B NMR spectroscopy.^{15,21} The ¹¹B NMR spectral chemical shifts for RapBH₂, RapBCl₂, and RapBHCl in representative solvents at 24 °C are given in Table 1. Mixing equimolar amounts of RapBH₂ and RapBCl₂ in Et₂O at 0 °C gave an equilibrium mixture containing a major amount of the desired RapBHCl· Et₂O, along with almost equal percentages of RapBH₂ and RapBCl₂·Et₂O (eq 2). The reaction was complete

in 0.25-0.50 h. Interestingly, in the formation of EapBHCl·Et₂O and PraBHCl·Et₂O, there was not much difference in the constitution of the equilibrium mixture. Thus, 79–80% of RapBHCl·Et₂O (R = Et, Pr) was obtained along with 10-11% each of RapBH₂ (R = Et, Pr) and RapBCl₂·Et₂O (R = Et, Pr).²¹ Under similar experimental conditions, a further decrease in the major product, RapBHCl·Et₂O (R = *i*-Bu, *i*-Pr), was observed in the equilibrium mixtures involving the bulkier 2-R groups, 2-isobutyl (3d) and 2-isopropyl (3f).²¹ In these cases, i-BapBHCl·Et₂O was formed in 66-70% yield while a significantly lower percentage of *i*-PraBHCl· Et₂O (only 47-52%) was observed. Apparently, 6-7%of dimeric (*i*-PraBHCl)₂ was formed in this reaction.²¹ In contrast to these results, interestingly, the reaction of PapBH₂ (2e), the 2-phenyl derivative, with PapBCl₂ (6e) in Et₂O at 0 °C provided a much higher equilibrium concentration of the major component, i.e., 84-86% of PapBHCl·Et₂O along with 7–8% each of **2e** and **6e**;²¹

values comparable with those obtained for the formation of IpcBHCl·Et_2O. 15

We further investigated the effect of addition of known amounts of tetrahydrofuran (THF) and SMe₂ to the above equilibrium mixtures to provide RapBHCl· CS (CS = coordinating solvent = THF, SMe_2). Thus, addition of 2 and 1 equiv of THF and SMe₂, respectively, to the equilibrium mixture, except for R = i-Pr, of RapBHCl·Et₂O, RapBH₂, and RapBCl₂·Et₂O provided RapBHCl·THF (~98% purity) and RapBHCl·SMe₂ (~95% pure), produced in \sim 1 and \sim 12 h, respectively at 0 °C (eq 2). When 1 equiv of SMe_2 was added to the equilibrium mixture containing *i*-PraBHCl·Et₂O (47-52%), the desired *i*-PraBHCl·SMe₂ was formed in 75-80% purity, along with other undesirable haloborane derivatives at 0 °C in \sim 12%, while 4 equiv of THF was required to provide the desired *i*-PraBHCl·THF in >95% purity at 0 °C in \sim 2 h (eq 2).²¹

The results obtained in approach 1 were further substantiated by the other approaches. Thus, RapBHCl were prepared by the reduction of RapBCl₂ (**6b**-**f**) with Me₃SiH (approach 2) or 0.25 equiv of LAH (approach 3) in Et₂O at 0 °C (eq 3).¹⁵ Similarly, in approach 4, RapBH₂ (**2b**-**f**) were allowed to react with an equivalent amount of HCl in Et₂O at 0 °C (eq 4). All of these

R = Me, Et, Pr, *i*-Bu, Ph, and *i*-Pr

reactions were followed by ¹¹B NMR spectroscopy.²¹ Results comparable to those realized in approach 1 were obtained (Table 2). To better understand the effect of Et₂O in stabilizing RapBHCl·Et₂O formation, we decided to examine the effect of more basic solvents, such as THF and SMe₂, introduced as coordinating solvents (CS = THF and SMe₂) in Et₂O and pentane, on the reduction of RapBCl₂ with either Me₃SiH or 0.25 equiv of LiAlH₄ (eq 5).

Thus, the reduction of RapBCl₂·THF with Me₃SiH (or 0.25 equiv of LiAlH₄) in THF was smooth and over in 0.25–0.5 h to provide the desired RapBHCl·THF (R = Et, Pr, *i*-Bu, Ph, and *i*-Pr) in quantitative yield. However, the reaction in Et₂O required 2–3 equiv of THF to achieve the clean formation of the desired RapBHCl·

⁽²¹⁾ All borane species mentioned in this paper showed distinct ¹¹B NMR signals adequate for their approximate percentage determination. Srebnik, M.; Cole, T. E.; Ramachandran, P. V.; Brown, H. C. *J. Org. Chem.* **1989**, *54*, 6085.

Table 2. Equilibrium Formation of RapBHCl·Et₂O, with RapBCl₂ and RapBH₂, in the Reactions of RapBCl₂·Et₂O with RapBH₂ or with Me₃SiH (TMS)^{*a*} and RapBH₂ with HCl in Et₂O at 0

	approximate percentage formation from analysis by ¹¹ B NMR				
R	RapBHCl·Et ₂ O	RapBCl ₂	RapBH ₂		
Me	87-90	5 - 6.5	5 - 6.5		
$\mathrm{Et}^{b,c}$	79-80	10-11	10-11		
<i>n</i> -Pr	79-80	10-11	10-11		
<i>i</i> -Bu	66 - 70	15 - 17	15 - 17		
Ph	84-86	7-8	7-8		
<i>i</i> -Pr ^{c-e}	47 - 52	22 - 23	22 - 23		

^{*a*} Identical results were obtained when 0.25 equiv of LAH was used as the reducing agent. ^{*b*} Equilibrium was shifted to clean EapBHCl·THF (>98% pure in ~1 h) by adding 2 equiv of THF, while EapBHCl·SMe₂ (~95% pure formed after 12 h at 0 °C) was obtained by adding 1 equiv of SMe₂. ^{*c*} Reduction of RapBCl₂ (R = Et and *i*-Pr) with Me₃SiH was possible in pentane in the presence of 1 equiv of SMe₂ at 24 °C providing RapBHCl·SMe₂ (R = Et and *i*-Pr; >95% pure) in 6h. ^{*d*} Approximately 6–7% dimeric *i*-PraBHCl was seen by ¹¹B NMR at ca. δ 40–45. ^{*e*} Equilibrium was shifted to *i*-PraBHCl·SMe₂ (75–80% pure along with other haloborane derivatives in ~12 h at 0 °C) in the presence of 1 equiv of SMe₂, while 4 equiv of THF was used to obtain *i*-PraBHCl·THF (>95% pure in ~2 h at 0 °C).

THF (R = Et, Pr, *i*-Bu, Ph, and *i*-Pr). Similarly, we observed that the reduction of RapBCl₂ (R = Et and *i*-Pr) with Me₃SiH was possible in pentane in the presence of 1 equiv of SMe₂ at 24 °C to provide RapBHCl·SMe₂ (R = Et and *i*-Pr; >95% pure) in 6 h. All of these results are summarized in Table 2.

These results imply that as the 2-R group of RapBHCl· Et₂O increases in steric requirements from Me to Et \cong Pr to *i*-Bu and to *i*-Pr, decreasing amounts of RapBHCl· Et₂O (R = Me \cong Ph, Et \cong Pr, *i*-Bu, and *i*-Pr) exist in equilibrium, along with almost equal larger amounts of RapBH₂ (**2a**-**f**) and RapBCl₂ (**6a**-**f**). However, 2-Ph in PapBHCl·Et₂O (**3e**) provides an exception. We previously noted that the behavior of the 2-phenyl derivative was anomalous.¹² Clearly, the electronic effect of the phenyl substituent is quite different from those of the alkyl substituents examined. Interestingly, the synthesis of RapBHCl·THF is possible in Et₂O or pentane as solvent, provided an adequate amount of THF (2–3 equiv) is present.

These observations suggested the desirability of examining the effect of introducing a bromine atom in place of the chlorine atom on the boron atom of the reagents RapBHCl to achieve the synthesis of RapBHBr exclusively.

Preparation and Chemistry of 2-Organylapoisopinocampheylbromoboranes (RapBHBr, 4b–f). The synthesis of RapBBr₂ (**7a–f**) was carried out as described earlier (eq 1). The ¹¹B NMR spectral chemical shifts for RapBBr₂ (**7a–f**) and RapBHBr (**4a–f**) are shown in Table 1. The equilibration of RapBH₂ (**2a–f**) with RapBBr₂ (**7a–f**) in a 1:1 molar ratio was performed in Et₂O at 0 °C as described previously (eq 2). Similarly, the reduction of RapBBr₂ was performed with Me₃SiH in Et₂O at 0 °C, as shown in eq 3. The critical investigation for the formation of IpcBHBr·CS (CS = Et₂O, THF, and SMe₂) is described. The reaction progress was monitored by ¹¹B NMR spectroscopy.²¹ Unlike the equilibrium formation of IpcBHCl·Et₂O, IpcBHBr·Et₂O is formed in 0.25–1.0 h in >98% purity by the methods described in eqs 3 and 5.²¹ The IpcBHBr·Et₂O kept at 0 °C for 12 h did not show any appreciable change in ¹¹B NMR spectrum. The addition of 1 equiv of SMe₂ to IpcBHBr·Et₂O in Et₂O provided IpcBHBr·SMe₂ (¹¹B NMR signal at δ 3.34) quantitatively in ~10 min at 24 °C. This compound kept at 0 °C for 48 h showed unchanged ¹¹B NMR spectrum in comparison with the freshly prepared sample.

The reaction of equivalent amounts of $IpcBH_2$ (2a) with IpcBBr₂ (7a) in THF and SMe₂ at 0 °C provided the desired IpcBHBr·THF and IpcBHBr·SMe₂ quantitatively in 0.25 and 12 h, respectively. However, IpcBHBr·THF reacted slowly with the cleavage of THF at 0 °C to give possible species, such as IpcBHO(CH₂)₄-Br (¹¹B NMR, δ 21–22 br) and IpcB[O(CH₂)₄Br]₂ (δ 31 br). At 0 °C, after 48 h, approximately 24% and 30% (by ¹¹B NMR) of the former and the latter species, respectively, were observed. In contrast, at 0 °C, the exchange reaction between $IpcBH_2$ and $IpcBBr_2$ in noncoordinating solvents, such as pentane and dichloromethane (CH_2Cl_2) , was extremely slow, providing equilibrium mixtures in which the required IpcBHBr was only 3-4%. The reaction mixture, maintained at 0 °C for 24 h, showed a complex mixture of boron components.

Unlike the reduction of IpcBCl₂·Et₂O with Me₃SiH, the reduction of IpcBBr₂·Et₂O with Me₃SiH provided clean IpcBHBr·Et₂O in less than 0.5 h. Under similar conditions, this reaction in THF provided IpcBHBr·THF in >99% purity in 0.5 h (eq 6).

After critically investigating the formation of IpcB-HBr, we decided to carry out the exchange reactions between RapBH₂ (**2b**–**f**) and RapBBr₂ (**7b**–**f**) in Et₂O at 0 °C. Thus, by mixing stoichiometric quantites of RapBBr₂ and RapBH₂ in Et₂O, the sterically bulkier RapBHBr·Et₂O derivatives (R = Me, Et, Pr, *i*-Bu, Ph, and *i*-Pr) were formed in 0.25–1.0 h in >95% purity.²¹ Similar results were obtained for the reduction of RapBBr₂ (**7b**–**f**) with Me₃SiH in Et₂O at 0 °C. The reduction was complete in 0.5–1 h.²¹ All of these reagents cleave THF slowly at 0 °C, and even Et₂O, albeit very slowly.

Conclusions

This paper describes a detailed quantitative study of the preparation and chemistry of sterically and elec-

tronically varied RapBHX (X = Cl, Br; R = Me, Et, *i*-Pr, Bu, Ph, *i*-Pr) reagents. These reagents can be prepared conveniently in a number of simple operations. In the preparation of RapBHX, all of these procedures provide almost the same results. It is quite evident from these results that the steric and electronic environment around the boron atom of these reagents plays a significant role in their formation. Thus, increasing the bulk of R in the 2-position of apopinene from Me to Et to *i*-Bu to *i*-Pr lowers the equilibrium percentage of RapBHCl for the reactions in Et₂O. However, there is no significant difference between the steric effects of the ethyl- (Et) and the propyl- (Pr) groups. Consequently, equal equilibrium amounts of the corresponding Rap-BHCl (R = Et and Pr) in Et_2O is observed in their reaction. Interestingly, the 2-phenyl group provides a higher equilibrium concentration of PapBHCl in Et₂O, which closely resembles the results realized in the formation of IpcBHCl.¹⁵ The addition of known amounts of coordinating solvents (CS) such as THF and SMe₂, which are known to coordinate chloroboranes, helps to shift the equilibrium in Et₂O in favor of the desired RapBHCl·CS. Similarly, carrying out all of these reactions in THF provides exclusively the desired RapBHCl· THF in >95%.

Interestingly, unlike the preparation of RapBHCl, irrespective of the 2-organyl group in RapBHCl, replacement of the chlorine atom by bromine provides RapBHBr•Et₂O exclusively (>95%). However, the formation of the bulkier RapBHBr·THF is complicated by the concurrent cleavage of THF. Fortunately, this can be circumvented easily by substituting THF with Et₂O or SMe₂. Now that we can control the formation of essentially pure RapBHCl·CS and RapBHBr·CS, we are exploring the possibility of achieving even higher enantioselectivities in applying these reagents to the asymmetric hydroboration of prochiral alkenes.

Experimental Section

All glassware was dried at 140 °C overnight, assembled hot, and cooled to ambient temperature in a stream of nitrogen.²² All reactions involving air- or moisture-sensitive compounds were performed under a static pressure of dry nitrogen.²² ¹¹B NMR spectra were recorded at 96 MHz and were referenced relative to BF₃·Et₂O. Capillary GC analyses were performed using SPB-5 column (30 m).

Materials. Tetrahydrofuran was distilled from sodium benzophenone ketyl and used as required. Commercial anhydrous SMe₂ was used as received without any further purification. Solutions (1.0 M) of BCl₃ and BBr₃ were prepared in dry pentane and stored in a refrigerator. Anhydrous Et₂O was used without purification. The 2-R-apopinenes (1b-f) were synthesized by the known procedures.⁹⁻¹² The 2-Rapopinenes (**1b**-**d**, **f**) were derived from (+)- α -pinene, while (+)-2-phenylapopinene (1e)¹² was synthesized from (+)- β pinene.²³ The crystalline bis-adducts of 2-organylapoisopinocampheylboranes with TMEDA ((RapBH₂)₂·TMEDA, R =Et, Pr, i-Bu, Ph, and i-Pr) were prepared and transformed into the corresponding mono-2-organylapoisopinylboranes (2b-f)in higher purity according to the literature procedure.¹⁸ The $RapBX_2$ (X = Cl and Br) derivatives were made according to the literature procedure.²⁰

Typical Procedure for the Preparation of EapBHCl· Et₂O from the Reaction of EapBH₂ (2b) with EapBCl₂ (6b) in Et₂O. This procedure is representative for the preparation of RapBHCl·Et₂O. To Et₂O (8.0 mL) cooled at -10 °C, optically pure EapBCl₂ (5.0 mmol) was added slowly (¹¹B NMR spectrum of EapBCl₂·Et₂O is a singlet at δ 17–19). This solution was added to a cold (0 °C) solution of EapBH₂ (1.0 M, 5.0 mL, 5.0 mmol) in Et₂O and stirred for 15 min. At that point, the ¹¹B NMR spectrum of the reaction showed a mixture of 80% of EapBHCl·Et₂O (¹¹B NMR spectrum, broad doublet δ 15.5 and 14.3; ¹H NMR decoupled ¹¹B NMR δ 14.8 singlet) and 10% each of EapBCl₂·Et₂O (¹¹B NMR δ 17-19 singlet) and EapBH₂ dimer (¹¹B NMR δ 21–22 br singlet). The reaction mixture left at 0 °C for 12 h did not show any appreciable change in the equilibrium composition of these species (by ¹¹B NMR spectrum). The molarity of the solution was conveniently determined by hydride analysis.²² The hydrolysis of a 1.0 mL aliquot produced 23.0 mL of H₂, which corresponds to 0.92 M. The chloride content was estimated by hydrolyzing an aliquot and titrating the HCl produced with a standard aqueous solution of NaOH using phenolphthalein as the indicator. The solution was 1.0 M in chloride. This reaction in THF provided EapBHCl·THF in >98% purity in <10 min (¹¹B NMR, δ 11.7 broad singlet).

Under similar conditions, RapBHCl·CS (CS = Et_2O and THF) were prepared in Et₂O and THF, respectively, at 0 °C in 0.25-1.0 h. The collective results of these reactions are shown in Table 2. The effect of the addition of known amounts of coordinating solvents (CS = THF and SMe₂) to the above equilibrium mixture containing varying amounts of RapBHCl· Et₂O in Et₂O was observed by adding THF or SMe₂ in stepwise fashion until the formation of RapBHCl·CS was complete (Table 2). The reaction was followed by a ¹¹B NMR spectrum every 0.50 h for 12 h.

The reaction of equimolar amounts of RapBH₂ with RapBBr₂ in Et₂O was performed as follows. To the solution of RapBH₂ (5-10 mmol) in Et₂O, cooled to -10 °C, RapBBr₂ (5-10 mmol) was added and stirred for 10 min and then stirred for a further 10 min at 0 °C. The reaction period ranged from 0.25 to 0.50 h. The desired RapBHBr·Et₂O derivatives were obtained in >95% purity.

Typical Procedure for the Preparation of EapBHCl· Et₂O from the Reaction of EapBH₂ (2b) with HCl in Et₂O. This reaction is representative for the preparation of RapBHCl· Et₂O. To the solution of optically pure EapBH₂ (1.0 M, 10.0 mL, 10 mmol) in Et₂O, cooled to -5 °C, HCl in Et₂O (2.38 M, 4.20 mL, 10 mmol) was added slowly and the liberated H₂ was measured (9.5 mmol, 95% in \sim 10 min). The ¹¹B NMR spectrum of the solution indicated an equilibrium mixture of 79% EapBHCl·Et₂O and 10.5% each of EapBCl₂·Et₂O and EapBH₂. The solution was 0.68 M in hydride and 0.70 M in chloride. Under similar conditions, the RapBHCl·Et₂O derivatives (3c-f) were prepared in Et₂O, in equilibrium with smaller amounts of RapBCl₂·Et₂O and RapBH₂. However, in the reaction of *i*-PraBH₂ with HCl in Et₂O, the liberation of H₂ was relatively slow at 0 °C and the reaction was complete at \sim 5 °C in <10 min, as observed from the measurement of the total H_2 liberated. The results of the experiments are the same as those described above and compiled in Table 2.

Typical Procedure for the Preparation of EapBHCl· Et₂O from the Reduction of EapBCl₂ (6b) with Me₃SiH in Et₂O. This procedure is representative for the preparation of RapBHCl·Et₂O. To cold (-10 °C) Et₂O (5.0 mL), EapBCl₂ (5.0 mmol) was added slowly, followed by a solution of Me₃-SiH (5.0 mmol) in Et₂O (1.0 mL). The ¹¹B NMR spectrum of the solution after ~ 10 min showed an equilibrium mixture of EapBHCl·Et₂O (~79%) and ~10.5% each of EapBH₂ and EapBCl₂·Et₂O. The same reaction in THF (5.0 mL) provided EapBHCl·THF (>98%). Under similar conditions, RapBHCl· Et_2O (3c-f) were obtained in equilibrium with $RapBCl_2 \cdot Et_2O$ and RapBH₂ in 0.25-1.0 h. The percentage distribution of

⁽²²⁾ Brown, H. C. Organic Synthesis Via Boranes; Wiley-Inter-science: New York, 1975. A reprinted edition, Vol 1, Aldrich Chemical (23) Brown, H. C.; Joshi, N. N. J. Org. Chem. 1988, 53, 4059.

these species is the same as that described previously. The effect of addition of coordinating solvents, such as THF and SMe₂, was the same as observed in the earlier experiments. The reduction of RapBCl₂ (R = Et, *i*-Pr) with Me₃SiH in pentane in the presence of 1.0 equiv of SMe₂ provided >95% RapBHCl·SMe₂ (R = Et, *i*-Pr) after 6 h at 24 °C (Table 2). However, in THF, the reduction of RapBCl₂ with Me₃SiH provided >95% of the desired RapBHCl·THF in ~0.25–0.5 h.

Typical Procedure for the Preparation of EapBHCl-Et₂O from the Reduction of EapBCl₂ (6b) with 0.25 Equiv of LiAlH₄. To cold (-10 °C) Et₂O (5.0 mL), EapBCl₂ (5.0mmol) was added slowly, followed by a clear solution of LAH (1.0 M, 1.25 mmol) in Et₂O. The ¹¹B NMR spectrum of the solution after ~5 min showed an equilibrium mixture of EapBHCl·Et₂O (~80%) and ~10% each of EapBH₂ and EapBCl₂·Et₂O. The same reaction in THF (5.0 mL) provided EapBHCl·THF (>98%). Under similar conditions, RapBHCl· Et₂O (**3c**-**f**) were obtained in equilibrium with RapBCl₂·Et₂O and RapBH₂ in 0.25–1.0 h. The percentage distribution of these species is the same as that described earlier. **Typical Procedure for the Preparation of RapBHBr**-**Et₂O (>95% Pure).** To cold (-10 °C) Et₂O (4.0-9.0 mL), RapBBr₂ (5-10 mmol) was added slowly followed by the addition of a solution of Me₃SiH (5-10 mmol) in Et₂O (1.0 mL). The desired RapBHBr·Et₂O (>95% purity) was formed in ~0.25-0.5 h. LAH was not used in this preparation.

Acknowledgment. This work was initiated with support from the National Institutes of Health (Grant No. GM 10937) and completed with support from the Borane Research Fund.

Supporting Information Available: ¹¹B NMR spectra for RapBHCl·Et₂O (**3b**,**c**) and a representative spectrum for RapBHCl·THF and RapBHBr·Et₂O (7 pages). Ordering information is given on any current masthead page.

OM980172T