Synthesis of Carbodiimidotitanium Complexes by the **Reaction of (Trimethylstannyl)carbodiimides with** Titanium Chlorides

Guilaine Veneziani, Shigeru Shimada, and Masato Tanaka*

National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305-8565, Japan

Received December 29, 1997

Summary: $Me_3Sn - N = C = N - R^1$ ($R^1 = Si^i Pr_3$, $SiPh_2^t Bu$, Ph) reacts with Cp_2TiCl_2 ($Cp = \eta^5 - C_5H_5$) or $Cp_2^*TiCl_2$ $(Cp^* = \eta^5 - C_5 Me_5)$ selectively at the Sn–N bond to give the corresponding bis(carbodiimido)titanium complexes $(Cp_2Ti(N=C=N-SiR_3)_2, Cp_2Ti(N=C=N-SiR_3)_2, and$ $Cp_2Ti(N=C=N-Ph)_2$) in moderate to high yields. The structure of $Cp_2Ti(N=C=N-Ph)_2$ was determined by X-ray crystallography. Oligomeric complexes were formed by the reaction of $Me_3Sn-N=C=N-X-N=C=N-SnMe_3$ $(X = -C_6H_3Cl - CH_2 - C_6H_3Cl -)$ with $Cp_2^*TiCl_2$.

Introduction

Titanium complexes having amido-type nitrogen ligands are attracting much interest because of their potential use as new catalysts for polymerization and organic reactions¹ and as pyrolytic precursors for titanium nitride and titanium carbonitride.² Accordingly, a number of amidotitanium complexes have been synthesized.¹⁻³ Among amido-type nitrogen ligands, carbodiimido ligands with their linear N=C=N moiety are sterically less demanding and can retain larger space around the metal center than the usual amido ligands and a variety of substituents can be introduced onto the terminal nitrogen. However, no useful method for the preparation of carbodiimidotitanium complexes has been reported. A paper by Plenio and Roesky disclosed the synthesis of Cp2Ti(N=C=O)(N=C=N-SiMe₃) (Cp = η^5 -C₅H₅) and Cp₂Ti(N=C=N-SiMe₃)₂ by

Scheme 1

2 Me ₃ SnN=C=NR ¹ +	R ² 2TiCl2	- 2 Me ₃ SnCl	N=C=NR ¹	
		THF, rt	N=C=NR ¹	
1 a : R ¹ = Si [/] Pr ₃ 1b: R ¹ = Si [/] BuPh ₂ 1c: R ¹ = Ph		2 : $R^1 = Si^{I}Pr_3$, $R^2 = Cp$		
	3 : $R^1 = Si^t BuPh_2$, $R^2 = C$			
		4 : $R^1 = Si^i Pr_3, R^2 = Cp^*$		
		5 : R	¹ = Ph, R ² = Cp	

the reaction of Cp₂Ti(N=C=O)₂ with LiN(SiMe₃)₂,⁴ but the product yields were low (<15%). Here, we report a general and high-yield synthesis of carbodiimidotitanium complexes and the X-ray crystal structure determination of $Cp_2Ti(N=C=N-Ph)_2$.

Results and Discussion

Transmetalation reactions between R₃Si-N=C=N-X and L_pM -Cl (M = B, Sb, Ta, Mo, W) have been used to synthesize (carbodiimido)metal species L_nM-N=C=N-X with elimination of R₃SiCl.⁵ The use of trialkylstannylcarbodiimides seems more attractive because they have higher reactivities toward transmetalation reactions.⁶ For example, selective monosubstitution proceeds at the Sn-N bond in the reaction of R₃Sn-N=C=N-SiR'₃ with $(Pr_2N)_2PCl^7$ This procedure proved to work nicely for the synthesis of carbodiimidotitanium complexes. Thus, (silyl)(stannyl)carbodiimides 1a,b reacted selectively at the Sn–N bond with R_2^2 TiCl₂ (R^2 = Cp or Cp* (= η^5 -C₅Me₅)) in THF at room temperature to form bis[(trialkylsilyl)carbodiimido]titanium complexes 2-4 nearly quantitatively (by ¹³C NMR spectroscopy). These complexes were readily purified by recrystallization to give thin orange or red plates (2, 85%; 3, 94%; 4, 45%), Scheme 1.8 Phenyl(stannyl)carbodiimide **1c** reacted similarly with Cp₂TiCl₂ to give **5** nearly quantitatively. The color of the resulting THF solution of 5 was very strongly purple-violet, but 5 crystallized to form shiny metallic thin green plates.

Complexes 2-4 are air- and light-stable in the crystalline state, while in solution they gradually de-

^{(1) (}a) Patten, T. E.; Novak, B. M. J. Am. Chem. Soc. 1996, 118, 1906. (b) Scollard, J.; McConville, D. H. J. Am. Chem. Soc. 1996, 118, 10008. (c) Scollard, J.; McConville, D. H.; Payne, N. C.; Vittal, J. J. Macromolecules 1996, 29, 5241. (d) Fuhrmann, H.; Brenner, S.; Arndt, P.; Kempe, R. Inorg. Chem. 1996, 35, 6742.

⁽²⁾ For recent examples, see: (a) Seyferth, D.; Mignani, G. J. Mater. Sci. Lett. 1988, 7, 487. (b) Brown, G. M. Inorg. Chem. 1989, 28, 3028. (c) Gross, M. E.; Siegrist, T. Inorg. Chem. 1992, 31, 4898. (d) Laurent, F.; Zhao, J. S.; Valade, L.; Choukroun, R.; Cassoux, P. J. Anal. Appl. *Pyrolysis* **1992**, *24*, 39. (e) Laurent, F.; Cyr-Athis, O.; Legros, J. P.; Choukroun, R.; Valade, L. New J. Chem. **1994**, *18*, 575. (f) Narula, C. K.; Demczyk, B. G.; Czubarow, P.; Seyferth, D. J. Am. Ceram. Soc. 1995, 78, 1247. (g) Weiller, B. H. J. Am. Chem. Soc. 1996, 118, 4975.

⁽³⁾ For recent examples, see: (a) Visciglio, V. M.; Fanwick, P. E.; Rothwell, I. P. *Acta Crystallogr.* **1994**, *C50*, 896. (b) Irigoyen, A. M.; Martín, A.; Mena, M.; Palacios, F.; Yélamos, C. J. Organomet. Chem. 1995, 494, 255. (c) Bowen, D. E.; Jordan, R. F. Organometallics 1995, 14, 3630. (d) Warren, T. H.; Schrock, R. R.; Davis, W. M. Organome-tallics **1996**, *15*, 562. (e) Minhas, R. K.; Scoles, L.; Wong, S.; Gam-barotta, S. Organometallics **1996**, *15*, 1113. (f) Johnson, A. R.; Davis, barotta, S. Organometallics **1996**, *15*, 1113. (f) Johnson, A. R.; Davis, W. M.; Cummins, C. C. Organometallics **1996**, *15*, 3825. (g) Friedrich, S.; Memmler, H.; Gade, L. H.; Li, W.-S.; Scowen, I. J.; McPartlin, M.; Housecroft, C. E. Inorg. Chem. **1996**, *35*, 2433. (h) Kempe, R.; Arndt, P. Inorg. Chem. **1996**, *35*, 2644. (i) Guérin, F.; McConville, D. H.; Payne, N. C. Organometallics **1996**, *15*, 5085. (j) Tsuie, B.; Swenson, D. C.; Jordan, R. F. Organometallics **1997**, *16*, 1392. (k) Guérin, F.; McCo-nville, D. H.; Vittal, J. J. Organometallics **1997**, *16*, 1491. (l) Guzei, I. A.; Baboul, A. G.; Yap, G. P. A.; Rheingold, A. L.; Schlegel H. B.; Winter, C. H. J. Am. Chem. Soc. **1997**, *119*, 3387.

⁽⁴⁾ Plenio, H.; Roesky, H. W. Z. Naturforsch. 1989, 44b, 94.

^{(5) (}a) Rajca, G.; Schwarz, W.; Weidlein, J. Z. Naturforsch. 1984, (a) Rajca, G.; Schwarz, W.; Weidlein, J. Z. Naturiorsch. 1984, 39b, 1219.
(b) Rajca, G.; Weidlein, J. Z. Anorg. Allg. Chem. 1986, 538, 36.
(c) Einholz, W.; Haubold, W. Z. Naturforsch. 1986, 41b, 1367.
(6) Réau, R.; Bertrand, G. Rev. Heteroat. Chem. 1996, 14, 137.
(7) Veneziani, G.; Réau, R.; Bertrand, G. Organometallics 1993, 12,

⁴²⁸⁹

⁽⁸⁾ The lower isolated yield of 4 was due to its high solubility in the recrystallization solvents. Most of the products described in this paper were reluctant to burn in combustion analysis. Use of a larger quantity of combustion promoter (V2O5) proved to improve elemental analyses but was not sufficiently helpful to obtain satisfactory data.

Figure 1. A view of the molecular structure of 5.

Table 1. Crystallographic Data for 5			
formula	C24H20N4Ti		
fw	412.35		
cryst size, mm	$0.40\times0.20\times0.03$		
a, Å	11.674(2)		
b, Å	21.154(2)		
<i>c</i> , Å	9.226(2)		
β , deg	112.82(1)		
V, Å ³	2100.0(1)		
cryst syst	monoclinic		
space group	$P2_1/c$ (No. 14)		
Z	4		
$D_{\rm calc}$, g cm ⁻³	1.304		
μ (Cu K α), cm ⁻¹	35.75		
λ, Å	1.541 78		
$2\theta_{\rm max}$, deg	120.1		
no. of rflns measd	3454		
no. of unique rflns	3234		
no. of rflns $I_0 > 3.0\sigma(I_0)$	1876		
$R, R_{\rm w}$	0.047, 0.062		
GoF	1.53		

Table 2. Selected Bond Lengths (Å) and Angles (deg) for 5

	-		
Ti-N1	2.002(4)	N2-C3	1.404(6)
Ti-N3	1.985(5)	N3-C2	1.177(6)
N1-C1	1.187(7)	N4-C2	1.247(7)
N2-C1	1.260(7)	N4-C4	1.399(6)
N1-Ti1-N3	95.4(2)	C2-N4-C4	125.4(5)
Ti1-N1-C1	168.1(4)	N1-C1-N2	173.8(6)
Ti1-N3-C2	174.5(4)	N3-C2-N4	171.3(5)
C1-N2-C3	123.3(5)		

compose under sunlight, even under a nitrogen atmosphere to give insoluble materials. In the decomposition of 2 and 4, the major soluble product was Pr₃Si-N=C=N-Si^PPr₃, as characterized by comparison of its spectral data with those of an authentic sample. On the other hand, the insoluble products did not show N=C=N nor C=O absorptions in the IR spectra. In a patent it was reported that a polymer containing -SiPh₂-N=C=N- repeat units underwent cross-linking upon exposure to an electron beam.⁹ In our photodegradation process, not only the metathesis reaction leading to the formation of 'Pr₃Si-N=C=N-Si'Pr₃ but also a cross-linking process may have been involved. However, further characterization of the insoluble products was not undertaken. On the other hand, complex 5 is air stable in the solid state and insensitive to the light. When a THF solution of 5 was exposed to air, slow decomposition occurred to precipitate a light

Scheme 2

orange powder. The IR spectrum of the latter showed several new bands assignable to C=O stretching vibrations, formed at the expense of the N=C=N bands. This suggests the formation of urea-type products, as in the case of the usual organic carbodiimides. Such hydrolytic degradation has never been observed for complexes 2-4.

The molecular structure of complex 5 was determined by X-ray diffraction, and the ORTEP drawing¹⁰ is shown in Figure 1. Crystallographic data and selected bond lengths and angles for 5 are given in Tables 1 and 2, respectively. The structure of M-N=C=N-M' is known to be highly dependent on the nature of M and M'. For example, even in the case of symmetric R₃Si-N=C=N-SiR₃, the Si–N–C angle can vary between 180° (R =Ph) and $142.0(11)^{\circ}$ (R = Me).¹¹ Complex 5 has asymmetric N=C=N linkages; the N1-C1 and N3-C2 bond lengths are 1.187(7) and 1.177(6) Å, respectively, which are close to the N-C triple bond length. On the other hand, the N2-C1 and N4-C2 bond lengths are 1.260-(7) and 1.247(7) Å, respectively, suggesting a doublebond character of these bonds. The bond angles distinctly reflect the difference in these N–C bond lengths; Ti-N1-C1 (168.1(4)°) and Ti-N3-C2 (174.5(4)°) are almost linear, while C1-N2-C3 (123.3(5)°) and C2-N4-C4 (125.4(5)°) are those of usual trigonal nitrogens.

The present method should be applicable to the synthesis of polymeric complexes. The reaction of Me₃- $Sn-N=C=N-SnMe_3$ with Cp_2TiCl_2 , Cp_2TiCl_2 , and TiCl₄ gave red or reddish-brown materials. However, high air and/or light sensitivity and insolubility prevented characterization of the products. To ensure the characterization of possible polymeric complexes by improving the air- and light-stability and solubility, bis-(stannylcarbodiimido) compound 6, having an organic spacer, was synthesized by the procedure of Hänssgen and Hajduga.¹² The reaction of **6** with Cp*₂TiCl₂ gave a deep violet solid 7, which indeed was more stable to air and light than the products derived from Me₃Sn-N=C=N-SnMe₃, Scheme 2. Product **7** was soluble in CHCl₃ and THF. Its IR spectrum showed a typical N=C=N absorption band at 2130 cm⁻¹. GPC (gel permeation chromatography; THF, polystyrene standards) analysis of the crude mixture revealed that the molecular weight of the product ranged from 300 to 3000, indicative of the formation of low molecular weight

⁽⁹⁾ Klebe, J. F.; Murray, J. G. U.S. Patent 3352799 (to General Electric Co.), 1967; Chem. Abstr. 1968, 68, 14164x.

⁽¹⁰⁾ Johnson, C. K. Ortep, a FORTRAN Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL-3794; Oak

<sup>Ridge National Laboratory: Oak Ridge, TN, 1970.
(11) Sheldrick, G. M.; Taylor, R. J. Organomet. Chem. 1975, 101,
19. Hammel, A.; Volden, H. V.; Haaland, A.; Weidlein, J.; Reischmann,
R. J. Organomet. Chem. 1991, 408, 35. Obermeyer, A.; Kienzle, A.;
Weidlein, J.; Riedel, R.; Simon, A. Z. Anorg. Allg. Chem. 1994, 620,</sup> 1357

⁽¹²⁾ Hänssgen, D.; Hajduga, D. Chem. Ber. 1977, 110, 3961.

(a)

65

65

20

(b)

10

10

4

25

mol wt, ×100

RT / min

mol wt, ×100

RT / min

Figure 2. GPC profiles of (a) a crude mixture of **7** and (b) an isolated needle of **7**.

25

oligomers (Figure 2a; the formula weight of the repeat unit of 7 is 633). The ¹H NMR spectrum of crude 7 displayed signals arising from $C_5(CH_3)_5$ and aromatic hydrogens as well as a small amount of $Sn(CH_3)_3$, which was assignable to the unreacted -NCN-SnMe₃ terminus. A small amount of purer 7 could be isolated by recrystallization as fine needles¹³ and showed the same retention time in the GPC analysis (Figure 2a; $M_{\rm w}$ (polystyrene standard) = 631, $M_w/M_n = 1.08$) as that of the major fraction of the crude material. Although the $M_{\rm w}$ estimated by GPC corresponds to the formula weight of one repeat unit, the absolute value is meaningless since the polystyrene standards are used. Indeed, the FAB mass spectrum of the needle showed a signal at m/z 1267 (with the expected isotope pattern), which corresponds to the molecular ion peak of a cyclic dimer (-Cp*₂Ti-N=C=N-C₆H₃Cl-CH₂-C₆H₃Cl- $N=C=N-)_2$. This result suggests that GPC analysis using the standards underestimates the molecular weight of 7. Similar underestimations are reported for dendrimers and organometallic oligomers and polymers.¹⁴ The ¹H and ¹³C NMR spectra of the needle verified the presence of Cp* and C₆H₃Cl-CH₂-C₆H₃Cl groups and the absence of Me₃Sn. These spectra also are consistent with the cyclic structure.

Experimental Section

General Procedures. All manipulations of air-sensitive materials were carried out under a nitrogen atmosphere using standard Schlenk tube techniques. Me₃Sn–N=C=N–SnMe₃,¹⁵ Me₃Sn–N=C=N–Si/Pr₃,⁷ and Me₃Sn–N=C=N–Ph¹² were prepared according to the literature procedures. ¹H, ¹³C, and ²⁹Si NMR spectra were recorded on Bruker AC200 and ARX300 spectrometers.

Preparation of Me₃Sn–N=C=N–SiPh₂'Bu (1b). To a THF solution (10 mL) of Me₃SnNCNSnMe₃ (0.55 g, 1.5 mmol) was added dropwise 'BuPh₂SiCl (0.41 g, 1.5 mmol) at room temperature. After 2 h, the solvent and Me₃SnCl were removed under vacuum to give **1b** as a colorless oil, which was used in the following reaction without further purification. ¹H NMR (CDCl₃): δ 0.47 (s, 9H, $J_{H^{119}Sn} = 58.7$ Hz, $J_{H^{117}Sn} = 56.6$ Hz, SnCH₃), 1.06 (s, 9H, 'Bu), 7.33–7.39 (m, 6H), 7.72–7.76 (m, 4H). ¹³C NMR (CDCl₃): δ – 4.14 ($J_{C^{119}Sn} = 401$ Hz, $J_{C^{117}Sn} = 381$ Hz, Sn*Me*₃), 19.55 (*C*Me₃), 26.27 (*CMe*₃), 127.10, 128.84, 130.41 (N*C*N), 134.51, 134.76 (*ipso*). ²⁹Si NMR (CDCl₃): δ – 15.96. IR (neat, cm⁻¹): 2148 (NCN). HRMS calcd for C₁₆H₁₉N₂-SiSn (M⁺ – 'Bu): 386.0328. Found: 386.0323.

General Procedure for the Synthesis of Compounds 2–4. To a THF solution (8 mL) of $\mathbb{R}^2_2 \mathrm{TiCl}_2$ (0.3 mmol) was added dropwise a THF solution (8 mL) of \mathbb{R}^1 –N=C=N–SnMe₃ (0.6 mmol) at room temperature. After the mixture was stirred overnight, the solvent and Me₃SnCl were removed under vacuum (3 h, 10⁻² mmHg) to give **2–4**, which were recrystallized from pentane (**2**, 85%), hexane (**3**, 94%), or a THF/acetonitrile mixture (3/7, **4**, 45%).

Cp₂Ti(N=C=N−Si'Pr₃)₂ (2). Orange thin plates (85% yield), mp 112 °C. ¹H NMR (CDCl₃): δ 1.07 (m, 42H, ¹Pr), 6.24 (s, 10H, C₅H₅). ¹³C NMR (CDCl₃): δ 12.89 (*C*HMe₂), 18.19 (CHMe₂), 115.68 (C₅H₅), N*C*N was not observed. ²⁹Si NMR (CDCl₃): δ 2.39. IR (KBr, cm⁻¹): 2146, 2112 (NCN). MS (EI, relative intensity): *m*/*z* 572 (M⁺, 8), 529 (M⁺ – ¹Pr, 100), 507 (M⁺ – C₅H₅, 100), 486 (56). HRMS Calcd for C₃₀H₅₂N₄Si₂Ti: 572.3210. Found: 572.3176. Anal. Calcd for C₃₀H₅₂N₄Si₂Ti: C, 62.90; H, 9.15; N, 9.18. Found: C, 62.34; H, 9.19; N, 9.14.

Cp₂Ti(N=C=N−SiPh₂'Bu)₂ (3). Orange-red thin plates (94% yield), mp 105 °C. ¹H NMR (CDCl₃): δ 1.09 (s, 18H, CMe₃), 6.14 (s, 10H, C₅H₅), 7.38−7.78 (m, 20H, Ph). ¹³C NMR (CDCl₃): δ 19.84 (CMe₃), 26.77 (CMe₃), 116.12 (C₅H₅), 127.60, 129.27, 135.19, 135.88 (*ipso*), 138,63 (N*C*N). ²⁹Si NMR (CDCl₃): δ −15.53. IR (KBr, cm⁻¹): 2156, 2094 (NCN). MS (EI, relative intensity): m/z 679 (M⁺ – 'Bu, 63), 223 (100), 178 (42). Anal. Calcd for C₄₄H₄₈N₄Si₂Ti: C, 71.71; H, 6.57; N, 7.60. Found: C, 72.04; H, 6.67; N, 7.60.

Cp*₂Ti(N=C=N-Si'Pr_3)₂ (4). Red plates (45% yield), mp 182 °C. ¹H NMR (CDCl₃): δ 1.04 (m, 42H, 'Pr), 1.95 (s, 30H, C₅*Me*₅). ¹³C NMR (CDCl₃): δ 11.99, 13.06, 18.32, 124.74 (*C*₅-Me₅), N*C*N was not observed. ²⁹Si NMR (CDCl₃): δ -1.66. IR (KBr, cm⁻¹): 2166, 2102 (NCN). MS (EI, relative intensity): *m*/*z* 712 (M⁺, 0.4), 669 (M⁺ - 'Pr, 0.59), 578 (M⁺ - C₅Me₅, 100). HRMS Calcd for C₄₀H₇₂N₄Si₂Ti: 712.4775. Found: 712.4786.

Cp₂Ti(N=C=N-Ph)₂ (5). To a THF solution (3 mL) of Cp₂-TiCl₂ (0.075 g; 0.3 mmol) was added dropwise a THF solution (3 mL) of PhNCNSnMe₃ (0.168 g; 0.6 mmol) at room temperature. After the mixture was stirred overnight, the solution was poured into pentane (20 mL). Filtration followed by drying in vacuo gave metallic green crystals **5** (95% yield), mp: 123 °C. ¹H NMR (CDCl₃): δ 6.41 (s, 10H, C₅H₅), 6.98− 7.24 (m, 10H, Ph). ¹³C NMR (CDCl₃): δ 116.33 (C_5 H₅), 122.01, 122.26, 129.37, 143.72 (N*C*N), 145.53 (*ipso*). IR (KBr, cm⁻¹): 2132, 2092 (NCN). MS (EI, relative intensity): *m*/*z* 412 (M⁺, 21), 295 (M⁺ − PhNCN, 100), 178 (Cp₂Ti, 87). HRMS Calcd for C₂₄H₂₀N₄Ti: 412.1167. Found: 412.1185. Anal. Calcd for C₂₄H₂₀N₄Ti: C, 69.91; H, 4.89; N, 13.59. Found: C, 69.29; H, 4.90; N, 13.29.

(15) Forder, R. A.; Sheldrick, G. M. J. Chem. Soc. A 1971, 1107.

⁽¹³⁾ We tried the reaction of **6** with Cp*₂TiCl₂ several times. In all cases, GPC profiles of the resulting mixtures of oligomers were almost the same. However, we succeeded only once to obtain a small amount of a purer compound as needles by cooling a saturated THF solution of a mixture of oligomers. FAB mass analyses of the crude products also always showed the signal corresponding to the cyclic dimer ($-Cp*_2$ -Ti-N=C=N-C₆H₃Cl-CH₂-C₆H₃Cl-N=C=N-)₂ at *m*/*z* 1267, 1131, and 633.

⁽¹⁴⁾ For recent examples, see: Hawker, C. J.; Frechet, J. M. J.; Wooley, K. L. *Pure Appl. Chem.* **1994**, *A31*, 1627. Foucher, D.; Ziembinski, R.; Petersen, R.; Pudelski, J.; Edwards, M.; Ni, Y.; Massey, J.; Jaeger, C. R.; Vancso, G. J.; Manners, I. *Macromolecules* **1994**, *27*, 3992. Achar, S.; Vittal, J. J.; Puddephatt, R. J. *Organometallics* **1996**, *15*, 43. Liano, Y.-H.; Moss, J. R. *Organometallics* **1996**, *15*, 4307.

Preparation of 6. To a hexane solution (8 mL) of (Me₃-Sn)₃N (0.505 g; 1.0 mmol) stirred at room temperature was added dropwise an EtOH solution (3 mL) of 1,1'-methylenebis-(3-chloro-4-isothiocyanatobenzene) (0.175 g; 0.50 mmol). After the mixture was stirred overnight, the solvent and (Me₃Sn)₂S were removed by a syringe. The residue was then dissolved in THF (5 mL) and poured into pentane (20 mL) under vigorous stirring. The solvent was again removed by a syringe, and the remaining product was dried under vacuum, affording a pale yellow solid (89% yield), which was used in subsequent reactions without further purification. ¹H NMR (CDCl₃): δ 0.55 (s, 18H, $J_{\text{H}^{119}\text{Sn}} = 58.4 \text{ Hz}$, $J_{\text{H}^{117}\text{Sn}} = 53.5 \text{ Hz}$, SnMe₃), 3.76 (s, 2H, CH₂), 6.91–7.05 (m, 6H). ¹³C NMR (CDCl₃): δ – 1.98 $(J_{C^{119}Sn} = 402 \text{ Hz}, J_{C^{117}Sn} = 384 \text{ Hz}, SnMe_3), 40.85 (CH_2), 124.59,$ 127.79, 128.81, 130.95, 133.14 (NCN), 136.36, 140.02. IR (neat, cm⁻¹): 2128 (NCN). HRMS Calcd for C₂₀H₂₃N₄¹¹⁹Sn₂³⁵-Cl₂ (M⁺ - Me): 628.9342. Found: 628.9360.

Synthesis of 7. To a THF solution (5 mL) of $Cp_{*2}^*TiCl_2$ (0.233 g, 0.60 mmol) stirred at room temperature was added dropwise a THF solution (4 mL) of **6** (0.386 g; 0.60 mmol). After the mixture was refluxed for 2 h, the solution was poured into pentane (20 mL). The precipitate was filtered, redissolved in THF (5 mL), and poured again in pentane (15 mL). Filtration and drying under vacuum afforded the oligomers **7** (0.285 g). ¹H NMR (CDCl₃): δ 1.95 (s), 2.01 (s), 3.7–3.8 (m), 6.7–7.2 (m). IR (KBr, cm⁻¹): 2130 (NCN).

A small amount (ca. 5 mg) of deep brown needles was obtained from a saturated THF solution of crude **7**. ¹H NMR (CDCl₃): δ 2.01 (s, 30H, C₅*Me*₅), 3.73 (s, 2H, C*H*₂), 6.83–7.13 (m, 6H, C₆*H*₃Cl). ¹³C NMR (CDCl₃): δ 12.35 (C₅*Me*₅), 40.03 (*C*H₂), 123.05, 125.91, 126.52, 127.63, 129.98, 134.16, 139.64 (N*C*N), 141.63. IR (KBr, cm⁻¹): 2136, 2102 (NCN). MS (FAB): *m*/*z* 1267, 1131, 633.

X-ray Structure Determination of 5. A red plate crystal was mounted on a glass fiber. All measurements were made on a Rigaku AFC7R diffractometer with graphite-monochromated Cu K α radiation and a 12 kW rotating anode generator. Cell constants and an orientation matrix for data collection were obtained from a least-squares refinement using the setting angles of 22 carefully centered reflections in the range 50.04° < 2 θ < 58.38°. The data were collected at 23 ± 1 °C using the ω -2 θ scan technique to a maximum 2 θ value of 120.1°. Of the 3454 reflections which were collected, 3234 were unique ($R_{\rm int} = 0.025$). The intensities of three representative

reflections were measured after every 150 reflections. Over the course of data collection, the standards decreased by 28.7%. A linear correction factor was applied to the data to account for this phenomenon. The linear absorption coefficient, μ , for Cu K α radiation was 35.8 cm⁻¹. An empirical absorption correction based on azimuthal scans of several reflections was applied, resulting in transmission factors ranging from 0.69 to 1.00. The data were corrected for Lorentz and polarization effects. The structure was solved by direct methods¹⁶ and expanded using Fourier techniques.¹⁷ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full-matrix leastsquares refinement was based on 1876 observed reflections (I $> 3.00\sigma(I)$ and 262 variable parameters and converged (largest parameter was 1.31 times its esd) with unweighted and weighted agreement factors of $R = \sum ||F_0| - |F_c|| / \sum |F_0| = 0.047$, $R_{\rm w} = [\Sigma w (|F_0| - |F_c|)^2 / \Sigma w F_0^2]^{1/2} = 0.062$. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.26 and - 0.26 $e^{-}/\mbox{\AA}^3,$ respectively. All calculations were performed using the teXsan crystallographic software package of Molecular Structure Corp.

Acknowledgment. The authors thank Drs. M. Goto, K. Honda, M. Shibakami, and A. Sekiya for their assistance in X-ray structure determinations. This work was supported in part by CREST (Core Research for Evolutional Science and Technology) program of Japan Science and Technology Corporation (JST).

Supporting Information Available: Details of X-ray analysis and tables of crystal data and structure refinement, atomic coordinates, anisotropic thermal parameters, and bond lengths and angles (14 pages). Ordering information is given on any current masthead page.

OM971129T

⁽¹⁶⁾ Sheldrick, G. M. In *Crystallographic Computing 3*; Sheldrick, G. M., Kruger, C., Goddard, R., Eds.; Oxford University Press: New York, 1985; p 175.

⁽¹⁷⁾ Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. *The DIRDIF program system*; Technical Report of the Crystallography Laboratory; University of Nijmegen: The Netherlands, 1992.