with three portions of *n*-pentane and dried. $[(CO)_4Co]_8Si_8O_{12}$ (1) was isolated as colorless trigonal prisms in a yield of 87% (919 mg). IR (CsI): 2116, 2110, 2053, 2022, 2001, 1084, 562, 547, 512, 490, 463, 403 cm⁻¹. Raman (powder, 70 mW): 2116, 2039, 2022, 2002, 442, 421, 255, 176, $\bar{1}10~\text{cm}^{-1}$. $^{29}\text{Si CP-MAS}$ NMR: δ -55 ppm. Anal. Calcd for C₃₂Co₈O₄₄Si₈: C, 21.53; Co, 26.42. Found: C, 21.38; Co, 26.46.

Catalysis. All hydroformylation reactions were carried out in a 200 mL stainless steel autoclave (Roth). The reaction products were analyzed by $^1\mbox{H}$ and $^{13}\mbox{C}$ NMR spectroscopy and analytical GC. The NMR spectra were recorded on a Bruker Avance DRX 500 spectrometer (1H, 500.1 MHz; 13C{1H}, 125.8 MHz). Analytical GC was performed on a Carlo Erba Fractovap 4200 (Macherey and Nagel OV 17 column, 80/100 mesh, 3 m; carrier gas nitrogen, FID detector) using diethyl ether and toluene as internal standards. The hydroformylation reactions were run with solutions of 16 mL of toluene and 4 mL (32.0 mmol) of 1-hexene. A 65.0 mg (36.4 μ mol) portion of octakis(tetracarbonylcobaltio)octasilsesquioxane and 82.0 mg (313 μ mol) of triphenylphosphine were added under a stream of argon. The reaction solutions were pressurized at room temperature to 70 bar with a mixture of hydrogen and carbon monoxide (partial pressures: 1:1) and then heated to 120 °C for 18 h.

Crystal Structure Determination. Data for 1: $[(CO)_4Co]_8Si_8O_{12}$, $M_r = 1784.48$, cubic, space group $P2_3/1$, a =

4, $\rho_{\text{calc}} = 1.928 \text{ Mg m}^{-3}$, F(000) = 3488, $\lambda = 0.710 73 \text{ Å}$, T =190(2) K, μ (Mo K α) = 2.365 mm⁻¹, 2.49° < 2 θ < 25.87°, 16 652 total reflections, 3947 independent reflections (R(int) = 0.0632), R1 (for $I > 2\sigma(I)$) = 0.0413, wR₂ = 0.0922. The data were collected on a STOE IPDS diffractometer. The structure was solved by direct methods (SHELXS-97) and refined using the least-squares method on F^2 .

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft. We thank Prof. Dr. H. C. Marsmann for the recording of the ²⁹Si CP-MAS spectrum and Dr. Waidelich from Perseptive Biosystems, Wiesbaden, Germany, for the recording of the MALDI TOF spectrum.

Supporting Information Available: Figures giving additional views and tables giving crystal data and structure refinement details, atomic coordinates, bond distances and angles, and thermal parameters for 1 (7 pages). Ordering information is given on any current masthead page.

OM980128D

Additions and Corrections

1998, Volume 17

Fernando Canales, Silvia Canales, Olga Crespo, M. Concepción Gimeno, Peter G. Jones, and Antonio Laguna*: Synthesis and Reactivity of the First (Hydrosulfido)gold(III) Complex. Crystal Structure of the Derivatives $NBu_4[\{Au(C_6F_5)_3\}_2SR]$ with the Isolobal Fragments R = H, AuPPh₃, AgPPh₃.

Page 1617. Reference 4 should read as follows.

(4) Vicente, J.; Chicote, M. T.; González-Herrero, P.; Grünwald, C.; Jones, P. G. Organometallics 1997, 16, 3381.

OM9803321

S0276-7333(98)00332-X Published on Web 05/28/98