Novel Reaction of Silyl Carbonyl Complexes with Hydride-Transfer Reagents: Reduction of a Carbonyl Ligand and Coupling with a Silyl Group

Rie Shiozawa, Hiromi Tobita,* and Hiroshi Ogino*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Received March 20, 1998

Treatment of CpFe(CO)₂SiR₃ (Cp = η ⁵-C₅H₅; R₃ = ν Tol₂Cl, ν Tol₂H, ν Tol₂Me, MePh(1-Nap), and $(n-C_5H_{11})_2H$; 1-Nap = 1-naphthyl) with LiAlH₄ in ether or THF at room temperature gave CH₃SiR₃ as the major product in moderate to high yield together with HSiR₃. Reaction of $\text{CpFe(CO)}_2\text{SiMes}_2\text{H}$ with LiAlH₄ afforded only H₂SiMes₂. Labeling experiments using LiAlD4 gave the deuterated methylsilanes. These results proved that the hydrogen source for the methyl group is LiAlH₄. Furthermore, the reduction of CpFe(*CO)₂Si^{*p*}Tol₂R′ (*C = ¹³C enriched; R′ = H, Me) produced *CH₃Si^{*p*}Tol₂R′ where the methyl group introduced on Si was ¹³C-enriched. These experimental results suggested that the carbonyl ligand was reduced by LiAlH₄ and coupled with the silyl group to give the methylsilane. $\mathbb{C}p^*F\mathbb{e}(\mathbb{C}O)_2\mathbb{S}i^p\mathbb{C}ol_2\mathbb{H}$ $(Cp^* = \eta^5 \text{-} C_5Me_5)$, having a Cp^* ligand which is bulkier and more electron-donating than a Cp ligand, did not react with LiAlH₄ at room temperature, but it did so at 50 °C to give CH3Si*^p*Tol2H and HSi*^p*Tol2H, probably because nucleophilic attack of LiAlH4 at a carbonyl ligand was retarded both sterically and electronically by the Cp^* ligand. When the reactions were performed in sealed NMR tubes and monitored by NMR spectroscopy, the signals due to the anionic complexes Li⁺[CpFe(CO)(CH₃)Si^pTol₂R']⁻ were observed in addition to those of silane products. These anionic complexes are considered *not* to be intermediates but to be byproducts because the anionic complexes did not change to methylsilanes on heating. The anionic complexes reacted with MeOH and MeI to give hydrosilanes HSi^pTol₂R' and methylsilanes CH₃Si^pTol₂R', respectively.

Introduction

Reactions of hydride-transfer reagents with transition-metal carbonyl complexes have attracted much attention. They usually give transition-metal hydrides,¹ transition-metal anions, 2 and formyl-transition-metal complexes,3 but there are also a few examples reported in which a carbonyl ligand is further reduced to a methyl group. Thus, Treichel and Shubkin reported that $[CpM(CO)₃PPh₃]PF₆$ (M = Mo, W) reacted with NaBH₄ in THF to give $CpM(CO)_2PPh_3(CH_3).4$ The reduction of carbonyl ligands by hydride-transfer reagents accompanied by subsequent $C-C$ coupling also was reported: Wong and Atwood found that treatment of $\text{Cp}_2\text{Fe}_2(\text{CO})_4$ with LiAlH₄ produced CH₄, CH₂=CH₂, CH_3CH_3 , $CH_2=CHCH_3$, $CH_3CH_2CH_3$, C_4H_8 , and C_4H_{10} .⁵ The exact ratio depended on the amount of LiAlH₄ used and the reaction time. Employment of $LiAlD₄$ resulted in formation of CD_3CH_3 . Treatment of potential intermediates $CpFe(CO)_2R$ ($R = CH_3$, C_2H_5 , CH_3CO) with $LiAlH₄$ produced $CH₃CH₃$ mainly. These reactions also occurred with NaBH₄ or LiBEt₃H, and the reactivity for

the reduction of a carbonyl ligand decreased in the order LiAlH4 > NaBH4 > LiBEt3H. van der Woude *et al.* also observed the reduction of carbonyl ligands in M*n*(CO)*^m* $(n=1, m=6, M=Cr, Mo, W; n=3, m=12, M=Ru)$ by LiAlH4, AlH3/THF, or BH3/THF to hydrocarbons with chain lengths up to C_4 .⁶

With regard to (silyl)carbonyliron complex CpFe(CO)_{2} -SiMePh(1-Nap), reaction with hydride-transfer reagents was reported to result in substitution of the CpFe(CO)_2 moiety with a hydride to give the corresponding hydrosilane HSiMePh(1-Nap), 7a but CO reduction was not demonstrated. Reactions of other metal complexes such as Co(CO)₄SiPh₃,^{7b} Co(CO)₄SiMePh(1-Nap),^{7c} (η⁵-Me-Cp)Mn(CO)₂(H)SiMePh(1-Nap),^{7d} and Mn(CO)₅SiMePh- $(1-Nap)^{7e}$ with LiAlH₄ also produced the corresponding hydrosilanes.

Recently we found a novel reaction of (silyl)carbonyliron complexes $CpFe(CO)_2SiR_3$ with LiAlH₄ which gave methylsilanes $CH₃SiR₃$, the mechanism of which involves the reduction of a CO ligand and migration to the Si atom.⁸ We report herein the reactions of several

⁽¹⁾ Kaesz, H. D.; Saillant, R. B. *Chem. Rev.* **1972**, *72*, 231.

⁽²⁾ Gladysz, J. A.; Williams, G. M.; Tam, W.; Johnson, D. L.; Parker, D. W.; Selover, J. C. *Inorg. Chem.* **1979**, *18*, 553.

⁽³⁾ Gladysz, J. A. *Adv. Organomet. Chem.* **1982**, *20*, 1. (4) Treichel, P. M.; Shubkin, R. L. *Inorg. Chem.* **1967**, *6*, 1328.

^{(5) (}a) Wong, A.; Atwood, J. D. *J. Organomet. Chem.* **1980**, *199*, C9. (b) Wong, A.; Atwood, J. D. *J. Organomet. Chem.* **1981**, *210*, 395.

⁽⁶⁾ van der Woude, C.; van Doorn, J. A.; Masters, C. *J. Am. Chem. Soc.* **1979**, *101*, 1633.

^{(7) (}a) Cerveau, G.; Colomer, E.; Corriu, R. J. P.; Douglas, W. E. *J. Organomet. Chem.* **1977**, *135*, 373. (b) Colomer, E.; Corriu, R. J. P.; Vioux, A. *J. Chem. Soc., Chem. Commun.* **1976**, 175. (c) Colomer, E.; Corriu, R. J. P. *J. Organomet. Chem.* **1977**, *139*, 159. (d) Colomer, E.; Corriu, R. J. P.; Vioux, A. *Inorg. Chem.* **1979**, *18*, 159. (e) Cerveau, G.; Colomer, E.; Corriu, R. J. P. *J. Organomet. Chem.* **1982**, *236*, 33.

(silyl)carbonyliron complexes having different ligands and substitutions with $LiAlH₄$ and some other hydridetransfer reagents.

Results and Discussion

Reactions of CpFe(CO)₂Si^pTol₂Cl (2a) with Li- $AIH₄$. Treatment of 2a with an excess of LiAlH₄ in refluxing THF afforded $pTol_2SiH(CH_3)$ (3) in 42% yield (eq 1). The formation of a methylsilane was unexpected

because a number of closely related reactions had been reported to give different products: reduction of chlorosilyl-metal complexes $Cp'M(CO)_nSiCl_mR_{3-m}$ ($Cp' =$ *η*⁵-C₅H₅, *η*⁵-C₅Me₅; *n* = 3, M = Mo, W; *n* = 2, M = Fe, Ru; $R = H$, alkyl, aryl) to hydrosilyl-metal complexes $\text{Cp'M(CO)}_n\text{SiH}_m\text{R}_{3-m}$ with LiAlH₄ has been reported by Malisch.9 Moreover, the nucleophilic substitution of the $CpFe(CO)_2$ fragment by hydride on $CpFe(CO)_2SiR_3^7$ has been well-established by Corriu *et al.* In our case, the reaction in eq 1 required more forcing conditions than Malisch's reactions. This is probably because the nucleophilic attack of LiAlH4 at the Si atom in **2a** was inhibited by the bulky substituents, *^p*Tol and Cl.

The reaction of $2a$ with LiAlD₄ produced P_{10} ₂SiD-(CD3) (**3**-*d***4**; ∼100%D) (eq 2). The formation of **3**-*d***⁴**

unambiguously proved that the hydrogen source for the methyl group on the Si atom is $LiAlH₄$. A possible intermediate in the formation of **3** is the hydrosilyliron complex $\text{CpFe(CO)}_2\text{Si}^p\text{Tol}_2\text{H}$ (2b). Thus, we next examined the reaction of **2b** with several other hydridetransfer reagents.

Reactions of CpFe(CO)2Si*p***Tol2H (2b) with Hy**dride-Transfer Reagents. CpFe(CO)₂Si^pTol₂H (2b) was synthesized by reaction of ^pTol₂SiHCl (1b) with $K[CPFe(CO)₂]$. The reaction of 2**b** with LiAlH₄ proceeded at room temperature in diethyl ether to give **3** in 75% yield (eq 3). The yield of **3** was 48% in refluxing THF and 21% in refluxing DME.

Interestingly, the reaction of $2b$ with LiAlD₄ exclusively produced *^p*Tol2SiD(CHD2) (**3**-*d***3**), which was characterized by its 1H NMR spectrum showing the

Si-C*H*D₂ signal at 0.51 ppm as a quintet (${}^2J_{HD} = 2.0$ Hz) and the mass spectrum showing the molecular ion peak at *m*/*z* 229 (eq 4). This result suggests that the

source of two of the hydrogen atoms of the methyl group in **3** is LiAlH4, while the third hydrogen on the silyl group may migrate from Si to the carbonyl carbon during the course of the reaction.

Employment of NaBH₄, LiBEt₃H, or KH as a hydridetransfer reagent in refluxing THF did not convert **2b** to the methyl- or hydride-substituted silanes but resulted in partial recovery of 2**b** and formation of Cp₂- $Fe₂(CO)₄$ and some unidentified products. Use of $Na[(CH₃OCH₂CH₂O)₂AlH₂]$ or DIBAL-H (diisobutylaluminum hydride) gave no reaction. This implies that these reagents are not strong enough either to reduce the carbonyl ligand to a methyl group or to attack the silyl group nucleophilically.

Reactions of (Silyl)carbonyliron Complexes Having Various Substituents on the Si Atom with LiAlH4. To investigate the generality of the formation of a methylsilane, we synthesized (silyl)carbonyliron complexes having various substituents on the Si atom and carried out reactions of these with $LiAlH₄$ (eq 5).

Table 1 summarizes the reaction conditions, products, and their yields. Reactions of **2c**, **2d**, and **2f** with LiAlH4 produced not only the corresponding methylsilanes CH3SiR3 but also hydrosilanes HSiR3, and in the case of **2e**, only the hydrosilane $Mes₂SiH₂$ (7) was formed. Corriu *et al.* reported the formation of only the hydrosilane HSiMePh(1-Nap) (**6**) in the reaction of **2d** with LiAlH4 in diethyl ether, but in our case, we observed the formation of an appreciable amount of a methylsilane, CH3SiMePh(1-Nap) (**5**), together with HSiMePh(1-Nap) (**6**). These results seem to indicate that the ratio of methylated product to hydrogenated product increases as the bulkiness of substituents on the silicon atom decreases.

⁽⁸⁾ Tobita, H.; Shiozawa, R.; Ogino, H. *Chem. Lett.* **1997**, 805. (9) (a) Wekel, H.-U.; Malisch, W. *J. Organomet. Chem.* **1984**, *264*, C10. (b) Malisch, W.; Lankat, R.; Schmitzer, S.; Pikl, R.; Posset, U.; Kiefer, W. *Organometallics* **1995**, *14*, 5622. (c) Malisch, W.; Neumayer, M.; Fey, O.; Adam, W.; Schuhmann, R. *Chem. Ber.* **1995**, *128*, 1257. (d) Möller, S.; Fey, O.; Malisch, W.; Seelbach, W. *J. Organomet. Chem.*
1996, *507*, 239. (e) Malisch, W.; Lankat, R.; Seelbach, W.; Reising, J.; Noltemeyer, M.; Pikl, R.; Posset, U.; Kiefer, W. *Chem. Ber.* **1995**, *128*, 1109. (f) Malisch, W.; Möller, S.; Fey, O.; Wekel, H.-U.; Pikl, R.; Posset,
U.; Kiefer, W. *J. Organomet. Chem.* **1996**, *507*, 117.

 $p = 1, 1, 6, 6$

Table 1. Reaction of (Silyl)iron Complexes 2a-**g with LiAlH4**

		product yield (%)		
complex	reacn conditions	$HSiR_3$	CH_3SiR_3	
$CpFe(CO)_2SiPTol_2Cl$ (2a)	THF, reflux, 18 h		42	
$CpFe(CO)_2Si/Tol_2H(2b)$	ether, room temp, 2 h		75	
$CpFe(CO)_2Si/Tol_2Me$ (2c)	THF, room temp, 2 h	32	64	
$CpFe(CO)2SiMePh(1-Nap)$ (2d)	ether, room temp, 48 h	14	72	
$CpFe(CO)2SiMePh(1-Nap)$ (2d)	THF, room temp, 20 h	26	26	
$CpFe(CO)_2SiMes_2H (2e)$	THF, room temp, 16 h	65		
$CpFe(CO)2Si(n-C5H11)2H (2f)$	THF, room temp, 46 h	5.3	42	
$Cp*Fe(CO)_2SiPTol_2H(2g)$	THF, $50 \degree C$, 1 week	25	25	

Treatment of $2c$ with LiAlD₄ yielded P_{10} SiMe(CD₃) (**3**-*d***3**; ∼100%D) and *^p*Tol2SiDMe (**3**-*d*; ∼100%D) in 63 and 37% yields, respectively. In this case, all the three hydrogens of the methyl group in **3**-*d***³** are deuterated, since a Si-H bond was not present in **2c**.

Employment of Na[$(CH_3OCH_2CH_2O)_2AlH_2$] or DI-BAL-H as a hydride-transfer reagent in a sealed tube also did not convert **2c** to the methyl- or hydridesubstituted silanes.

Reaction of Cp*Fe(CO)₂Si^pTol₂H (2g) with Li-**AlH₄.** The reaction of **2g**, which contains a Cp^{*} (= η ⁵- C_5Me_5) ligand which is bulkier and more electrondonating than a Cp ligand, did not proceed at room temperature but did so on heating at 50 °C to give not only **3** but also hydrosilane P_{10} Ti Ti Ti Ti Ti Ti Ti

result can be explained by the following factors. (1) The carbonyl ligands on **2g** are less vulnerable to nucleophiles than those on **2b** because a Cp* ligand is much more electron-donating than a Cp ligand. This is clearly reflected in the shift of *ν*(CO) values to the lower wavenumber side in the IR spectra (**2b**, 1988, 1934 cm-1; **2g**, 1978, 1917 cm-1). (2) The carbonyl ligands on **2g** are sterically protected against attack of LiAlH4 by the bulky Cp* ligand more effectively than by a Cp ligand in **2b**.

NMR Tube Reactions. The reaction of **2b** with LiAlH₄ in THF- d_8 in a sealed NMR tube showed, besides the signals due to **3**, those of another product which can be assigned to the anionic complex $Li[CpFe(CO)(CH₃)$ - Si ^{*P*Tol₂H] (11) (eq 7). The molar ratio of 3 to 11 was}

 $ca. 1:2.$ A similar reaction of $2c$ with LiAlH₄ gave 4 and $Li[CpFe(CO)(CH₃)Si^pTol₂Me]$ (12) in a *ca.* 16:1 molar ratio. In the latter case, unlike the reaction in an open system under nitrogen, only a trace amount of **3** was observed by ¹H and ^{$\bar{z}9$}Si NMR spectroscopy. The reason for the difference so far is unclear. The ${}^{1}\dot{H}$ and ${}^{13}C$ NMR signals of the Fe-*Me* groups in **11** and **12** appear at fairly high field (1H NMR, -0.71 (**11**), -0.65 ppm (**12**); 13C NMR, -23.5 (**11**), -24.6 ppm (**12**)). All other 1H NMR signals of **11** and **12** except those of *p*-tolyl groups also are shifted to higher field compared to the corresponding signals of **2b** and **2c**, respectively. These high-field shifts of 1H NMR signals are consistent with the anionic character of **11** and **12**.

Besides this spectroscopic evidence, the reactions of **11** and **12** with MeOH or MeI afforded further evidence for the structures. Addition of MeOH to the NMR tube reaction mixture containing **11** or **12** caused exclusive conversion of the anionic species to P_{10} SiH₂ (10) or $pTol_2SH(CH_3)$ (3), respectively. In a similar manner, addition of MeI resulted in the formation of 3 or $pTol_2$ -SiMe₂ (4), respectively. These results can be rationalized by a mechanism involving nucleophilic attack of the anionic iron center on these reagents followed by reductive elimination from the resulting neutral intermediate **A** or **B** (Scheme 1).

The reductive elimination of silanes from the neutral Fe(IV) species **A** and **B** would be much easier than that from more electron-rich and lower valent anionic Fe**Scheme 2**

(II) species **11** and **12**. The formation of hydrosilanes instead of methylsilanes on treatment with MeOH may be attributable to the more facile reductive elimination of Si-H compared with Si-Me species.¹⁰ Even on heating to the boiling point of THF-*d*8, the conversion of **11** or **12** in the reaction mixture to the methylated product **3** or **4** was not observed. This result suggests that **11** and **12** are *not* the intermediates in the formation of methylsilanes.

13C-Labeling Experiments. The conversion of a carbonyl ligand in **2b** to a methyl group in **3** was further confirmed by the 13C-labeling experiments. Reaction of $CpFe(*CO)_2Si/Tol_2H$ (2**b**^{*}) (*C = a carbon atom enriched with 13C to 32%) with LiAlH4 produced **3***, in which the methyl carbon was enriched with ^{13}C (eq 8). The ¹H

NMR signal of the Si-13C*H*³ of **3*** appeared at 0.53 ppm as a double doublet coupled with ¹³C and Si-H (¹ J_{CH} = 120.4, ${}^{3}J_{HH} = 3.7$ Hz). Similarly, reaction of CpFe(${}^{*}CO$)₂- SiP Tol₂Me (2c^{*}) (^{*}C = a carbon atom enriched with ¹³C to 46%) with LiAlH₄ afforded ¹³C-enriched ^pTol₂SiMe-(*CH3) (**4***).

Possible Mechanism. Because of a number of technical problems, we have not yet succeeded in observing the intermediates of this complicated reaction. At present, we can only suggest the possible mechanism illustrated in Scheme 2, which is consistent with the above-mentioned experimental results.

Because the formation of substantial amounts of CH3- $SiR₃$ and $HSiR₃$ was observed in a sealed tube, a mechanism involving their formation by hydrolysis of unstable products during workup can be ruled out. Moreover, as mentioned above, the anionic complex Li- $[CpFe(CO)(CH₃)SiR₃]$ is not an intermediate in the formation of CH_3SiR_3 , so that the direct reductive elimination of $CH₃SiR₃$ from this anionic complex can be ruled out. On the basis of these facts, we assume a 1,2-silyl shift on the silyl-methylene complex **^A** to form silylmethyl complex **B**. From **B**, if complex **B** has an Si-H bond, that is, $R_3 = R'_{2}H$, the oxidative addition of the Si-H bond of **^B** occurs to give the silene complex **C**. This complex subsequently undergoes reductive elimination of a C-H bond to produce the THFcoordinated methylsilyl complex **D**. This type of rearrangement already has been reported by Pannell¹¹ and Wrighton.¹² Finally, nucleophilic attack of LiAlH₄ at the Si atom of **D** occurs to afford the methylsilane. This mechanism reasonably explains the incorporation of one hydrogen atom into a deuterated methyl group by the reaction of $2b$ with LiAlD₄, giving $pTol_2SiD(CHD_2)$ (3*^d***3**). If complex **^B** does not have an Si-H bond, a carbon of the methylene group in \bf{B} is attacked by LiAlH₄ to yield the methylsilane.

Conclusion

(Silyl)carbonyliron complex Cp′Fe(CO)2SiR3 (**2**) reacts with LiAlH₄ to give not only the hydrosilane $HSiR₃$ but also the methylsilane CH₃SiR₃ *via* the reduction of the CO ligand and subsequent migration. The facility of this reaction and the ratio of products depend on the steric and the electronic properties of the Cp′ ligand and the bulkiness of the substituents on the silicon atom. We propose a possible mechanism for the formation of CH_3SiR_3 involving a 1,2-silyl shift on a (silyl)methyleneiron intermediate to give a (silylmethyl)iron complex, followed by the substitution of the iron fragment by H^- .

^{(10) (}a) Sakaki, S.; Ieki, M. *J. Am. Chem. Soc.* **1993**, *115*, 2373. (b) Okazaki, M.; Tobita, H.; Ogino, H. *Organometallics* **1996**, *15*, 2790.

⁽¹¹⁾ Pannell, K. H. *J. Organomet. Chem.* **1970**, *21*, 17. (12) Randolph, C. L.; Wrighton, M. S. *Organometallics* **1987**, *6*, 365.

Experimental Section

General Remarks. All manipulations were carried out under a dry nitrogen atmosphere using Schlenk-tube techniques. Reagent-grade toluene, hexane, diethyl ether, benzene, DME (dimethoxyethane), and THF were distilled from sodium-benzophenone ketyl immediately before use. Benzene*d*⁶ and THF-*d*⁸ were dried over a potassium mirror and transferred into an NMR tube under vacuum. $\mathrm{Cp}_2\mathrm{Fe}_2(\mathrm{CO})_4,^{13}$ *p*Tol₂SiCl₂ (**1a**),¹⁴ K[CpFe(CO)₂],¹⁵ Na[CpFe(CO)₂],¹⁶ CpFe(CO)₂-SiMe₃,¹⁷ CpFe(CO)₂SiMePh(1-Nap) (2d),¹⁸ and CpFe(CO)₂-SiMes₂H (2e)¹⁹ were prepared according to the literature procedures. LiAlH4 and NaBH4 were purchased from Kanto Chemical Co., Inc.; Li BEt_3H , Na BH_3CN , DIBAL-H (diisobutylaluminum hydride), Na[(CH₃OCH₂CH₂O)₂AlH₂], and ¹³CO were purchased from Aldrich. Other chemicals were purchased from Wako Pure Chemical Industries, Ltd., and used as received. NMR spectra were recorded on a Bruker ARX-300 spectrometer. ${}^{1}\dot{H}$, ${}^{13}C$, and ${}^{29}\text{Si NMR}$ data were referenced to SiMe4. 29Si NMR spectra were obtained using the DEPT pulse sequence. IR spectra were recorded on a Horiba FT-200 spectrometer. Mass spectra were recorded on a Hitachi M-2500S mass spectrometer and a Shimadzu GCMS-QP5050A mass spectrometer.

Preparation of CpFe(CO)₂Si^pTol₂Cl (2a). A THF (50 mL) solution of $\text{Cp}_2\text{Fe}_2(\text{CO})_4$ (1.01 g, 2.85 mmol) was stirred for 2 h over NaK_{2.8} alloy (3.4 mmol) prepared from Na (79.0 mg, 3.44 mmol) and K (372 mg, 9.51 mmol). The solution of K[CpFe(CO)₂] thus obtained was cooled to -43 °C; then $pTol_2$ -SiCl2 (**1a**) (1.85 g, 6.57 mmol, 94% purity) was added to it. The mixture was stirred at room temperature, and the reaction was monitored by silica gel TLC (1/3 benzene/hexane as eluent). After 17 h, the solvent was removed from the reaction mixture under reduced pressure. The residue was extracted with hexane (100 mL); then the extract was filtered through a Celite pad under a nitrogen atmosphere. The filtrate was evaporated under reduced pressure, and the residue was purified by silica gel flash chromatography (36 mm o.d. \times 270 mm) with 1/3 benzene/hexane as eluent to give **2a** (1.15 g, 2.71 mmol) as a yellow powder in 48% yield. ¹H NMR (300 MHz, C_6D_6): *δ* 2.07 (s, 6H, *p*-CH₃C₆H₄), 4.09 (s, 5H, η ⁵-C₅H₅), 7.05-7.08, 7.86–7.89 (AB q, $J = 8.1$ Hz, $4H \times 2$, $p\text{-CH}_3C_6H_4$). ¹³C NMR (75.5 MHz, C6D6): *δ* 21.3 (*p*-*C*H3C6H4), 85.3 (*η*5-*C*5H5), 128.9, 134.2, 135.0, 139.9 (*p*-CH3*C*6H4), 214.3 (CO). 29Si NMR (59.6 MHz, C6D6): *δ* 70.8. IR (cm-1, KBr): *ν*(CO) 2015, 1963. Mass (EI, 70 eV): m/z 422 (M⁺, 1), 394 (M⁺ - CO, 5), 366 (M⁺ $-$ 2CO, 100), 245 (M⁺ $-$ CpFe(CO)₂, 60). Anal. Found: C, 59.92; H, 5.10. Calcd for $C_{21}H_{19}ClFeO_2Si$: C, 59.66; H, 4.93.

Preparation of CpFe(CO)₂Si^pTol₂H (2b). A 2 L fournecked flask was equipped with a condenser, a mechanical stirrer, and a dropping funnel. A THF solution of ^pTolMgCl (3.76 M, 450 mL, 1.69 mol) placed in the funnel was added dropwise to $SiHCl₃$ (117 g, 0.86 mol) in THF (150 mL) over 2 h; then the solution was refluxed for an additional 2 h. After the reaction mixture was cooled to room temperature, it was filtered and the salt was washed with diethyl ether (50 mL \times 3). The filtrate was distilled under reduced pressure to give *^p*Tol2SiHCl (**1b**; 27.6 g, 0.112 mol, 12%) as a colorless oil. Bp: 133 °C/1 mmHg. ¹H NMR (300 MHz, C₆D₆): *δ* 2.01 (s, 6H, *^p*-C*H*3C6H4), 5.89 (s, 1H, Si-*H*), 6.93-6.96, 7.53-7.56 (AB q, *^J* $= 8.1$ Hz, 4H \times 2, p-CH₃C₆H₄). ²⁹Si NMR (59.6 MHz, C₆D₆, DEPT): *^δ* -4.83.

Complex **2b** was prepared from **1b** (1.76 g, 7.14 mmol) and $K[CpFe(CO)₂]$ (0.144 M in THF, 50 mL, 7.18 mmol) in the same manner as that used for **2a**. **2b** (1.35 g, 3.47 mmol) was obtained as a yellow powder in 73% yield. 1H NMR (300 MHz, C_6D_6): *δ* 2.12 (s, 6H, *p*-C*H*₃C₆H₄), 4.05 (s, 5H, η ⁵-C₅H₅), 6.02 (s, 1H, Si-*H*), 7.05-7.08, 7.86-7.89 (AB q, $J = 8.1$ Hz, 4H \times 2, *p*-CH3C6*H*4). 13C NMR (75.5 MHz, THF-*d*8): *δ* 21.3 (*p*-*C*H3C6H4), 85.3 (*η*5-*C*5H5), 129.0, 135.3, 138.5, 148.9 (*p*-CH3*C*6H4), 215.6 (CO). 29Si NMR (59.6 MHz, C6D6, DEPT): *δ* 26.2. IR (cm-1, KBr pellet): *^ν*(Si-H) 2096, *^ν*(CO) 1988, 1934. Mass (EI, 70 eV): *^m*/*^z* 388 (M+, 1), 360 (M⁺ - CO, 32), 332 $(M^+ - 2CO, 100)$, 211 $(M^+ - CpFe(CO)_2, 30)$. Anal. Found: C, 64.83; H, 5.36. Calcd for C₂₁H₂₀FeO₂Si: C, 64.95; H, 5.19.

Preparation of CpFe(*CO)₂Si^{*p***}Tol₂H (2b*; *C = Carbon Atom Enriched with 13C).** A Pyrex tube (18 mm o.d.) was charged with **2b** (60 mg, 155 *µ*mol) and connected to a vacuum line. Pentane (20 mL) degassed on the vacuum line by a freeze-pump-thaw method was added by a trap-to-traptransfer technique to it. Then the tube was filled with 13CO. The tube was sealed with a Teflon stopcock, and the mixture was irradiated with a 450 W medium-pressure Hg lamp at 14 °C. The color of the solution changed from yellow to red during irradiation. After 5 min, the solvent was removed in vacuo and the residue was purified by silica gel flash chromatography (24 mm o.d. \times 120 mm) with 1/1 benzene/hexane as eluent to give CpFe(*CO)2Si*^p*Tol2H (**2b***; 29 mg, 72.5 *µ*mol, 32% enriched with ¹³CO)²⁰ in 48% yield and *cis*- and *trans*-Cp₂Fe₂(*CO)₂(μ -*CO) $(\mu$ -Si^{μ}Tol₂) (14^{*}; 75 mg, 209 μ mol) in 27% yield. 14^{*} in solution underwent thermal *cis*-*trans* isomerization at room temperature, and on the basis of the relative intensity of the methyl signals in *p*-tolyl groups, the ratio of isomers in equilibrium was determined to be $cis-14^*$: $trans-14^* = 4:5$ at room temperature. **14*** was identified by comparing the spectroscopic data with those of the unlabeled authentic sample of 14 synthesized as follows. A mixture of P_{10} SiH₂ (**10**; 640 mg, 3.02 mmol) and CpFe(CO)2SiMe3 (1.51 g, 6.04 mmol) was dissolved in pentane (40 mL), and the solution was irradiated with a 450 W medium-pressure Hg lamp at 4 °C. The yellow solution changed to red with evolution of CO, and a red powder precipitated out during irradiation. The mother liquor was removed via a cannula, and the precipitate was washed with pentane (20 mL) and then dried under vacuum to give **14** (674 mg, 1.26 mmol) as a red powder in 42% yield. ¹H NMR (300 MHz, C_6D_6): δ 2.05, 2.22 (s, 3H \times 2, p -CH₃C₆H₄ of *cis*-**14**), 2.19 (s, 6H, *p*-C*H*3C6H4 of *trans*-**14**), 4.27 (s, 10H, *^η*5-C5*H*⁵ of *cis*-**14**), 4.31 (s, 10H, *^η*5-C5*H*⁵ of *trans*-**14**), 7.03- 7.05, 7.26-7.29, 7.38-7.41, 7.76-7.78 (AB q, $J = 8.1$ Hz, 2H \times 4, *p*-CH₃C₆H₄ of *cis*-14), 7.15-7.18, 7.85-7.88 (AB q, *J* = 8.1 Hz, $4H \times 2$, $p\text{-CH}_3C_6H_4$ of *trans***-14**). ¹³C NMR (75.5 MHz, C_6D_6): δ 20.9, 21.4 (p -*C*H₃C₆H₄ of *cis*-14), 21.3 (p -*C*H₃C₆H₄ of *trans*-**14**), 85.7, 86.6 (Cp), 128.7, 136.2, 138.3, 146.9 (*p*-CH3*C*6H4 of *trans*-**14**), 128.2, 128.9, 136.1, 136.5, 138.8, 138.8, 144.4, 147.9 (*p*-CH3*C*6H4 of *cis*-**14**), 213.1, 214.2 (terminal CO), 276.2, 277.5 (bridging CO). 29Si NMR (59.6 MHz, C6D6): *δ* 220.7, 234.4. IR (cm-1, KBr pellet): *ν*(terminal CO) 1956, 1921, *ν*(bridging CO) 1751. Mass (EI, 70 eV): *m*/*z* 536 (M+, 8), 508 (M⁺ - CO, 7), 480 (M⁺ - 2CO, 73), 452 (M⁺ - 3CO, 100). Exact mass: calcd for $C_{27}H_{24}Fe_2O_3Si$ 536.0194, found 536.0164.

Preparation of CpFe(CO)2Si*^p***Tol2Me (2c).** Chlorosilane *PTol*₂SiMeCl (1c) was prepared from *PTolMgCl* (5.25 M in THF, 200 mL, 1.05 mol) and SiMeCl3 (78.3 g, 0.52 mol) in a manner analogous to that used for **1b**. Distillation under reduced pressure gave the colorless liquid **1c** (77.6 g, 0.297 mol) in 57% yield, bp 121 °C/0.15 mmHg. 1H NMR (300 MHz, C6D6): *δ* 0.92 (s, 3H, Si-C*H*3), 2.39 (s, 6H, *^p*-C*H*3C6H4), 7.23-7.25,

⁽¹³⁾ King, R. B.; Stone, F. G. A. *Inorg. Synth.* **1963**, *7*, 110.

⁽¹⁴⁾ Steel, A. R.; Kipping, F. S. *J. Chem. Soc.* **1929**, 357. (15) Ellis, J. E.; Folm, E. A. *J. Organomet. Chem.* **1975**, *99*, 263. (16) Piper, T. S.; Wilkinson, G. *J. Inorg. Nucl. Chem.* **1956**, *3*, 104.

⁽¹⁷⁾ King, R. B.; Pannell, K. H. *Inorg. Chem.* **1968**, *7*, 1510. (18) Cerveau, G.; Colomer, E.; Corriu, R. J. P.; Douglas, W. E. *J.*

Chem. Soc., Chem. Commun. **1975**, 410.

⁽¹⁹⁾ Tobita, H.; Izumi, H.; Ohnuki, S.; Ellerby, M. C.; Kikuchi, M.; Inomata, S.; Ogino, H. *J. Am. Chem. Soc.* **1995**, *117*, 7013.

⁽²⁰⁾ The 13C contents in the carbonyl ligands in **2b*** and **2c*** were determined after conversion of them to Li[CpFe(*CO)(*CH3)Si*^p*Tol2R] $(11^*; R = H, 12^*; R = CH_3)$ by treatment with LiAlH₄. The ¹³C contents in the Fe $-$ ^{*}CH₃ groups in 11 ^{*} and 12 ^{*} determined from the ¹H NMR spectra correspond to those in the carbonyl ligands in **2b*** and **2c***.

7.54-7.56 (AB q, $J = 8.1$ Hz, $4H \times 2$, $p\text{-CH}_3C_6H_4$). ²⁹Si NMR (59.6 MHz, C6D6, DEPT): *δ* 10.8.

A THF solution of $K[CPFe(CO)_2]$ (0.244 M, 50 mL, 12.2 mmol) was cooled to -43 °C; then 1c (3.35 g, 12.8 mmol) was added to it. The mixture was stirred at room temperature and the reaction was monitored by silica gel TLC (1/3 benzene/ hexane as eluent). After 17 h, the solvent was removed from the reaction mixture under reduced pressure. The residue was extracted with hexane (100 mL), the extract filtered through a Celite pad under a nitrogen atmosphere, and the filtrate evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (60 mm o.d. \times 300 mm) with 1/3 benzene/hexane as eluent to give **2c** (1.74 g, 4.34 mmol) as a yellow powder in 60% yield. ¹H NMR (300 MHz, C6D6): *^δ* 1.01 (s, 3H, Si-C*H*3), 2.15 (s, 6H, *^p*-C*H*3C6H4), 4.02 (s, 5H, $η$ ⁵-C₅H₅), 7.10-7.12, 7.67-7.69 (AB q, *J* = 8.1 Hz, 4H \times 2, *p*-CH₃C₆H₄). ¹³C NMR (75.5 MHz, C₆D₆): δ 5.70 (Si-CH3), 21.3 (*p*-*C*H3C6H4), 84.4 (*η*5-*C*5H5), 128.9, 134.7, 137.9, 141.2 (*p*-CH3*C*6H4), 216.0 (CO). 29Si NMR (59.6 MHz, C6D6, DEPT): *δ* 34.8. IR (cm-1, KBr pellet): *ν*(CO) 1992, 1940. Mass (EI, 70 eV): m/z 402 (M⁺, 1), 374 (M⁺ - CO, 6), 346 (M⁺ $-$ 2CO, 21), 225 (M⁺ $-$ CpFe(CO)₂, 100). Anal. Found: C, 65.87; H, 5.68. Calcd for $C_{22}H_{22}FeO_2Si$: C, 65.67; H, 5.51.

Preparation of CpFe(*CO)₂Si^pTol₂Me (2c*). In a manner analogous to the preparation of **2b***, a pentane (40 mL) solution of **2c** (106 mg, 264 *µ*mol) in a Pyrex tube (18 mm o.d.) was irradiated with a 450 W medium-pressure Hg lamp under $13CO$ atmosphere at 14 °C. After 15 min, the solvent was removed in vacuo. The residue was purified by recrystallization from toluene/hexane to give CpFe(*CO)₂Si^pTol₂Me (2c^{*}; 80 mg, 198 μ mol, 46% enriched with ¹³CO)²⁰ in 75% yield.

Preparation of CpFe(CO)2Si(*n***-C5H11)2H (2f).** Chlorosilane $(n-C_5H_{11})_2$ SiHCl (1f) was prepared from $(n-C_5H_{11})MgCl$ $(4.81 \text{ M} \text{ in THF}, 200 \text{ mL}, 961 \text{ mmol})$ and $SiHCl₃ (78.3 g, 0.52$ mol) in a manner analogous to that used for **1b**. Distillation under reduced pressure gave the colorless liquid **1f** (13.3 g, 64.6 mmol) in 11% yield, bp 80 °C/14 mmHg. 1H NMR (300 MHz, C₆D₆): *δ* 0.68-1.49 (m, 22H, *n*-C₅*H*₁₁), 4.83 (quintet, ${}^{3}J_{\text{H-H}} = 3.3$ Hz, 1H, Si-*H*). ²⁹Si NMR (59.6 MHz, C₆D₆, DEPT): *δ* 15.7.

A THF (15 mL) solution of $\text{Cp}_2\text{Fe}_2(\text{CO})_4$ (495 mg, 1.40 mmol) was stirred for 2 h over a sodium amalgam prepared from Na (95.9 mg, 4.13 mmol) and Hg (1 mL). The resultant THF solution of $Na[CpFe(CO)_2]$ was slowly cannulated away from the Na/Hg into a cooled (-93 °C) THF (30 mL) solution of 1f (548 mg, 2.66 mmol) over 5 min. The mixture was warmed to room temperature and stirred for 21 h. The solvent was removed in vacuo, the residue was extracted with hexane (30 mL), and the extract was filtered through a Celite pad under nitrogen. After removal of the solvent *in vacuo*, the residue was purified by silica gel flash chromatography (20 mm o.d. × 200 mm) with 1/1 toluene/hexane as eluent to give **2f** (670 mg, 1.82 mmol) as a yellow oil in 68% yield. 1H NMR (300 MHz, C6D6): *^δ* 0.93-1.66 (m, 22H, *ⁿ*-C5*H*11), 4.08 (s, 5H, *^η*5- C_5H_5 , 4.80 (quintet, ${}^3J_{H-H} = 3.3$ Hz, 1H, Si-*H*). ¹³C NMR (75.5 MHz, C6D6): *δ* 14.3, 19.8, 22.8, 27.0, 36.0 (*n*-*C*5H11), 83.3 (*η*5-*C*5H5), 215.5 (CO). 29Si NMR (59.6 MHz, C6D6, DEPT): *δ* 31.4. IR (cm-1, KBr pellet): *^ν*(Si-H) 2056, *^ν*(CO) 1992, 1942. Mass (EI, 70 eV): *^m*/*^z* 348 (M+, 2), 320 (M⁺ - CO, 100), 291 (M⁺ - H-2CO, 12), 287 (M⁺ - (*n*-C5H11), 24), 286 (M⁺ - (*n*- C_5H_{11}) – H, 32). Anal. Found: C, 58.50; H, 8.17. Calcd for $C_{17}H_{28}FeO_2Si$: C, 58.62; H, 8.11.

Preparation of Cp*Fe(CO)₂Si^pTol₂H (2g). A THF (20 mL) solution of $\mathsf{Cp^*}_2\mathsf{Fe}_2(\mathsf{CO})_4$ (500 mg, 1.01 mmol) was stirred for 2 h over $\rm NaK_{2.8}$ alloy prepared from $\rm Na$ (116 mg, 5.04 mmol) and K (406 mg, 10.4 mmol). A solution of $K[CP*Fe(CO)_2]$ was cooled to -43 °C; then **1b** (587 mg, 2.63 mmol) was added to it. The solution was stirred at room temperature overnight, and the solvent was removed *in vacuo*. The residue was extracted with hexane (30 mL), and the extract was filtered through a Celite pad under nitrogen. The filtrate was evapo-

rated under reduced pressure, and the residue was purified by silica gel flash chromatography (20 mm o.d. \times 150 mm) with 1/3 toluene/hexane as eluent to give **2g** (272 mg, 612 *µ*mol) as a yellow powder in 34% yield together with recovered Cp*2Fe2(CO)4 (102 mg, 206 *µ*mol). 1H NMR (300 MHz, THF*d*8): *δ* 1.72 (s, 15H, *η*5-C5(C*H*3)5), 2.25 (s, 6H, *p*-C*H*3C6H4), 5.25 (s, 1H, Si-*H*), 7.01-7.03, 7.49-7.52 (AB q, $J = 8.1$ Hz, 4H \times 2, *p*-CH3C6*H*4). 13C NMR (75.5 MHz, C6D6): *δ* 9.32 (*η*5-C5- (*C*H3)5), 21.4 (*p*-*C*H3C6H4), 94.9 (*η*5-*C*5(CH3)5), 129.1, 134.9, 137.8, 140.2 (*p*-CH3*C*6H4), 217.5 (CO). 29Si NMR (59.6 MHz, THF-*d*8, DEPT): *^δ* 37.9. IR (cm-1, KBr pellet): *^ν*(Si-H) 2031, *ν*(CO) 1978, 1917. Mass (EI, 70 eV): *m*/*z* 458 (M+, 6), 430 (M⁺ $-$ CO, 89), 402 (M⁺ $-$ 2CO, 100), 211 (M⁺ $-$ Cp^{*}Fe(CO)₂, 18). Anal. Found: C, 68.67; H, 6.51. Calcd for $C_{26}H_{30}FeO_2Si$: C, 68.12; H, 6.60.

Reaction of CpFe(CO)2Si*^p***Tol2Cl (2a) with LiAlH4 in THF.** To a suspension of LiAlH4 (309 mg, 8.13 mmol) in THF (50 mL) was added a THF solution (80 mL) of CpFe(CO)_{2} -Si^pTol₂Cl (2a; 533 mg, 1.26 mmol). The reaction mixture was refluxed, and the reaction was monitored by silica gel TLC (1/3 benzene/hexane as eluent). After 18 h, the solvent was removed *in vacuo*, the residue was extracted with hexane (30 mL), and the extract was filtered through a Celite pad under nitrogen. The filtrate was evaporated *in vacuo*, and the residue was purified by silica gel preparative TLC (1/3 benzene/hexane as eluent) to give $PTol_2SiH(CH_3)$ (3; 119 mg, 527 *µ*mol) in 42% yield. 1H NMR (300 MHz, C6D6): *δ* 0.51 (d, ${}^{3}J_{H-H} = 3.8$ Hz, 3H, Si-C*H*₃), 2.09 (s, 6H, *p*-C*H*₃C₆H₄), 5.21 $(q, {}^{3}J_{H-H} = 3.8 \text{ Hz}, 1H, Si-H$, 7.01-7.04, 7.49-7.51 (AB q, *J* $= 8.1$ Hz, 4H \times 2, p-CH₃C₆H₄). ¹³C NMR (75.5 MHz, THF*d*₈): *δ* −4.83 (Si−*C*H₃), 21.4 (*p*-*C*H₃C₆H₄), 128.9, 135.2, 146.6, 147.8 (*p*-CH3*C*6H4). 29Si NMR (59.6 MHz, THF-*d*8, DEPT): *δ* -18.1. IR (cm-1, hexane solution): *^ν*(Si-H) 2118. Mass (EI, 70 eV): *^m*/*^z* 226 (M+, 37), 225 (M⁺ - H, 13), 211 (M⁺ - CH3, 51), 134 (M⁺ - *^p*Tol - H, 100). Anal. Found: C, 79.32; H, 7.90. Calcd for C₁₅H₁₈Si: C, 79.58; H, 8.01.

Reaction of CpFe(CO)2Si*^p***Tol2Cl (2a) with LiAlD4 in THF.** To a suspension of $LiAlD₄$ (33 mg, 786 μ mol) in THF (15 mL) was added a THF solution (5 mL) of $\text{CpFe}(\text{CO})_2\text{Si}/\text{Tol}_2$ -Cl (2a; 131 mg, 310 μ mol). The reaction mixture was refluxed and worked up in a manner similar to that for the reaction with LiAlH4. The crude product was purified by preparative silica gel TLC (1/3 benzene/hexane as eluent) to give ^pTol₂-SiD(CD3) (**3-***d***4**; 21 mg, 91.3 *µ*mol) in 29% yield. 1H NMR (300 MHz, C6D6): *^δ* 2.09 (s, 6H, *^p*-C*H*3C6H4), 7.01-7.04, 7.49-7.51 (AB q, $J = 8.1$ Hz, $4H \times 2$, $p \text{CH}_3C_6H_4$). Mass (EI, 70 eV):
 m/z 230 (M⁺ 40) 228 (M⁺ - D, 10) 212 (M⁺ - CD₂ 35) 137 *m*/*z* 230 (M⁺, 40), 228 (M⁺ - D, 10), 212 (M⁺ - CD₃, 35), 137
(M⁺ - *e*Tol - D, 100) (M⁺ - *^p*Tol - D, 100).

Reaction of CpFe(CO)2Si*^p***Tol2H (2b) with LiAlH4 in Diethyl Ether.** To a suspension of LiAlH₄ (69 mg, 1.82 mmol) in diethyl ether (15 mL) was added a diethyl ether solution (5 mL) of CpFe(CO)2Si*^p*Tol2H (**2b**; 135 mg, 348 *µ*mol). The reaction mixture was stirred at room temperature, and the reaction was monitored by silica gel TLC (1/3 benzene/hexane as eluent). After 2 h, the solvent was removed in vacuo and the residue was extracted with hexane (30 mL) and filtered through a Celite pad under nitrogen. The filtrate was evaporated in vacuo to give $pTol_2SH(CH_3)$ (3; 59 mg, 261 μ mol) in 75% yield.

Reaction of CpFe(CO)2Si*^p***Tol2H (2b) with LiAlH4 in THF.** To a suspension of LiAlH4 (67 mg, 1.76 mmol) in THF (15 mL) was added a THF solution (5 mL) of $CpFe(CO)₂$. Si^{p Tol}₂H (2b; 106 mg, 273 μ mol). The reaction mixture was refluxed and worked up in a manner similar to that for the reaction in diethyl ether to give $pTol_2SiH(CH_3)$ (3; 30 mg, 132 *µ*mol) in 48% yield.

Reaction of CpFe(CO)2Si*^p***Tol2H (2b) with LiAlH4 in DME.** To a suspension of LiAlH₄ (110 mg, 2.89 mmol) in DME (10 mL) was added a DME solution (5 mL) of $\mathrm{CpFe(CO)}_{2}$ -Si^{p Tol₂H (2b; 109 mg, 281 μ mol). The reaction mixture was} refluxed and worked up in a manner similar to that for the

reaction in diethyl ether to give $PTol_2SiH(CH_3)$ (3; 13 mg, 57.5) μ mol) in 21% yield.

Reaction of CpFe(CO)2Si*^p***Tol2H (2b) with LiAlD4 in THF.** To a suspension of LiAlD₄ (35 mg, 833 μ mol) in THF (10 mL) was added a THF solution (5 mL) of $CpFe(CO)_2$ -Si^{p Tol}₂H (2b; 53.9 mg, 139 μ mol). The reaction mixture was refluxed for 18 h and worked up in a manner similar to that for the reaction with LiAlH₄ to give ${}^p\text{Tol}_2\text{SiD}(\text{CHD}_2)$ (3- d_3 ; 8 mg, 34.9 *µ*mol) in 25% yield. **3-***d***3**: 1H NMR (300 MHz, C6D6): *^δ* 0.48 (quintet, 1H, Si-C*H*D2), 2.09 (s, 6H, *^p*-C*H*3C6H4), 7.01-7.04, 7.49-7.51 (AB q, $J = 8.1$ Hz, $4H \times 2$, $p\text{-CH}_3C_6H_4$). Mass (EI, 70 eV): $m/z 229$ (M⁺, 41), 227 (M⁺ - D, 7), 212 (M⁺ - CHD2, 54), 136 (M⁺ - *^p*Tol - D, 100).

Reaction of CpFe(CO)2Si*^p***Tol2H (2b) with LiAlH4 in a Sealed Tube.** To 2b (10.4 mg, 26.9 μ mol) and LiAlH₄ (5.33) mg, 140 *µ*mol) in a Pyrex NMR tube (5 mm o.d.) connected to a vacuum line was added THF-*d*⁸ (0.4 mL) by the trap-to-traptransfer technique. The tube was flame-sealed under vacuum. The reaction was monitored by ¹H NMR spectroscopy. The signals assigned to $pTol_2SH(CH_3)$ (3) and Li[CpFe(CO)(CH₃)-Si^pTol₂H] (11) were observed. The sealed tube was then heated to 40 °C, resulting in an increase in the intensity of the signal of **11**, compared to that of **3**. After the tube was opened in a glovebag, MeOH (60 *µ*L) was added to the reaction mixture. The signal of 11 disappeared, and the signal of $P\text{Tol}_2\text{SiH}_2$ (10) newly appeared. Data for 11 are as follows. ¹H NMR (300 MHz, THF-*d*8): δ –0.71 (s, 3H, Fe–C*H*3), 2.13, 2.15 (s, 3H × 2, *^p*-C*H*3C6H4), 3.84 (s, 5H, *^η*5-C5*H*5), 4.72 (s, 1H, Si-*H*), 6.77- 6.80, 6.80-6.83, 7.32-7.34, 7.34-7.37 (AB q, $J = 8.1$ Hz, 2H \times 4, *p*-CH₃C₆H₄). ¹³C NMR (75.5 MHz, THF- d_8): δ -23.5 (Fe-*C*H3), 21.1, 21.1 (*p*-*C*H3C6H4), 81.8 (*η*5-*C*5H5), 126.9, 126.9, 134.1, 134.2, 135.3, 135.6, 135.7, 136.1 (*p*-CH3*C*6H4), 224.0 (CO). 29Si NMR (59.6 MHz, THF-*d*8, DEPT): *δ* 44.6.

Reaction of Li[CpFe(CO)(CH3)Si*^p***Tol2H] (11) with CH3I.** To **2b** (3.02 mg, 7.78 *µ*mol) and LiAlH4 (1.31 mg, 34.5 *µ*mol) in a Pyrex NMR tube (5 mm o.d.) connected to a vacuum line was added THF-*d*⁸ (0.4 mL) by the trap-to-trap-transfer technique. The tube was flame-sealed under vacuum. After the tube was opened in a glovebag, MeI (4 *µ*L) was added to the reaction mixture. The signal of **11** disappeared, and the signal of $pTol_2$ SiHMe (3) increased.

Reaction of CpFe(*CO)2Si*^p***Tol2H (2b*) with LiAlH4 in a Sealed Tube.** To **2b*** (32% enriched with 13CO; 14.5 mg, 37.2 *µ*mol) and LiAlH4 (5.50 mg, 145 *µ*mol) in a Pyrex NMR tube (5 mm o.d.) connected to a vacuum line was added THF*d*⁸ (0.4 mL) by the trap-to-trap-transfer technique. The tube was flame-sealed under vacuum. The reaction was monitored by 1H NMR spectroscopy. After 2 h, the signals of **2b*** disappeared and signals assigned to ${}^p\text{Tol}_2\text{SiH}(*CH_3)$ (3^{*}) and Li[CpFe(*CO)(*CH3)Si*^p*Tol2H] (**11***) were observed. Data for **3** are as follows. 1H NMR (300 MHz, THF-*d*8): *δ* 0.53 (dd, $^{1}J_{\text{C-H}} = 120.4 \text{ Hz}, \,^{3}J_{\text{H-H}} = 3.7 \text{ Hz}, \,^{3}H, \,^{3}J_{\text{H-H}} = 3.7 \text{ Hz}, \,^{3}H, \,^{3}J_{\text{H}} = 120.4 \text{ Hz}$ p -C*H*₃C₆H₄), 4.84 (q, ³J_{H-H} = 3.8 Hz, 1H, Si-*H*), 7.12-7.15, 7.38–7.40 (AB q, $J = 8.1$ Hz, $2H \times 4$, $p\text{-CH}_3C_6H_4$). Data for 11 are as follows. ¹H NMR (300 MHz, THF- d_8): δ -0.64 (d, $1J_{\text{C-H}} = 119.6 \text{ Hz}, 3H, \text{Fe}^{-13}CH_3$), 2.19, 2.21 (s, 3H × 2, *^p*-C*H*3C6H4), 3.82 (s, 5H, *^η*5-C5*H*5), 4.77 (s, 1H, Si-*H*), 6.77- 6.80, 6.80-6.83, 7.32-7.34, 7.34-7.37 (AB q, $J = 8.1$ Hz, 2H \times 4, *p*-CH₃C₆H₄).

Reaction of CpFe(CO)2Si*^p***Tol2H (2b) with NaBH4 in THF.** To a suspension of NaBH4 (60 mg, 1.58 mmol) in THF (15 mL) was added a THF solution (5 mL) of CpFe(CO)_{2} -Si^pTol₂H (2b; 97 mg, 250 μ mol). The reaction mixture was refluxed, and the reaction was monitored by silica gel TLC (1/3 benzene/hexane as eluent). After 4 days, the solvent was removed *in vacuo* and the residue was extracted with hexane (30 mL) and filtered through a Celite pad under nitrogen. The filtrate was evaporated *in vacuo*. The crude product was purified by preparative silica gel TLC (1/3 benzene/hexane as eluent) to give $Cp_2Fe_2(CO)_4$ (26 mg, 73.4 μ mol) as a reddish purple powder in 59% yield and **2b** (32 mg, 82.5 *µ*mol) with 33% recovery.

Reaction of CpFe(CO)2Si*^p***Tol2H (2b) with LiBEt3H in** THF. To a suspension of LiBEt₃H (1 mL of its 1 M THF solution, 1.00 mmol) was added a THF solution (20 mL) of $\text{CpFe(CO)}_2\text{SiPTol}_2\text{H}$ (2b; 56 mg, 144 μ mol). The reaction mixture was refluxed for 3 days and worked up in a manner similar to that for the reaction with NaBH₄ to give Cp_2Fe_2 -(CO)4 (14 mg, 39.5 *µ*mol) in 55% yield and **2b** (15 mg, 38.7 *µ*mol) with 27% recovery.

A similar reaction of KH (125 mg, 93.8 *µ*mol) with a THF solution (20 mL) of $\text{CpFe(CO)}_2\text{Si}^p\text{Tol}_2\text{H}$ (2b; 56 mg, 144 μ mol) (reflux for 1 day) gave $Cp_2Fe_2(CO)_4$ in 41% yield.

Reaction of CpFe(CO)2Si*^p***Tol2Me (2c) with LiAlH4 in THF.** To a suspension of LiAlH₄ (42 mg, 1.11 mmol) in THF (15 mL) was added a THF solution (5 mL) of CpFe(CO)2Si*^p*Tol2- Me (**2c**; 80 mg, 199 *µ*mol). The reaction mixture was stirred at room temperature, and the reaction was monitored by silica gel TLC (1/3 benzene/hexane as eluent). After 2 h, the solvent was removed in vacuo and the residue was extracted with hexane (30 mL) and filtered through a Celite pad under nitrogen. The filtrate was evaporated *in vacuo* to give a mixture of *^p*Tol2SiH(CH3) (**3**; 14.4 mg, 63.7 *µ*mol) in 32% yield and *P*Tol₂Si(CH₃)₂ (4; 30.6 mg, 128 *µmol*) in 64% yield. The yields were determined from the intensity ratio of the Si-CH₃ signals in a 1H NMR spectrum of the product mixture. **4** was identified by comparing the spectroscopic data with those of the authentic sample synthesized as follows. *PTol₂SiMeCl* (1c; 4.35 g, 16.7 mmol) in diethyl ether was cooled to -43 °C, and a diethyl ether solution of MeLi (1.37 M, 13 mL, 17.8 mmol) was added dropwise to it via a syringe over 5 min. The mixture was stirred at room temperature for 20 h and then cooled in an ice bath. Water (15 mL) was added dropwise to quench an excess of MeLi. The white precipitate was filtered by frit and washed with diethyl ether (20 mL \times 3). The filtrate and washings were combined and placed in a separatory funnel. The organic layer was washed with saturated NaHCO₃ solution (10 mL \times 2), water (10 mL), and saturated NaCl solution (10 mL) and then dried over MgSO₄. After removal of solvent, the residue was distilled under reduced pressure to give **4** (3.89 g, 16.2 mmol, 97%) as a colorless oil, bp 108 °C/0.2 mmHg. 1H NMR (300 MHz, THF-*d*8): *δ* 0.48 (s, 6H, Si-CH₃), 2.30 (s, 6H, p -CH₃C₆H₄), 7.11-7.13, 7.36-7.39 (AB q, $J = 8.1$ Hz, $4H \times 2$, $p-CH_3C_6H_4$). ¹³C NMR (75.5 MHz, THF*d*₈): *δ* −2.08 (Si-*C*H₃), 21.5 (*p*-*C*H₃C₆H₄), 128.9, 135.2, 146.6, 147.8 (*p*-CH3*C*6H4). 29Si NMR (59.6 MHz, C6D6, DEPT): *δ* -8.22 . Mass (EI, 70 eV): m/z 240 (M⁺, 20), 225 (M⁺ - CH₃, 100), 149 (M⁺ - *^p*Tol, 3). Anal. Found: C, 79.76; H, 8.25. Calcd for C16H20Si: C, 79.93; H, 8.38.

Reaction of CpFe(CO)2Si*^p***Tol2Me (2c) with LiAlD4 in THF.** To a suspension of LiAlD4 (45 mg, 1.07 mmol) in THF (15 mL) was added a THF solution (5 mL) of $CpFe(CO)_2Si^pTol₂$ -Me (**2c**; 83.0 mg, 204 *µ*mol). The reaction mixture was stirred at room temperature for 2 h and worked up in a manner similar to that for the reaction with $LiAlH₄$ to give a mixture of *^p*Tol2SiD(CH3) (**3-***d*; 17.2 mg, 75.8 *µ*mol) in 37% yield and $pTol_2Si(CH_3)(CD_3)$ (4- d_3 ; 39.8 mg, 164 μ mol) in 63% yield. The yields were determined from the intensity ratio of the Si-CH₃ signals in a ¹H NMR spectrum of the product mixture. Data for **3**-*d* are as follows. 1H NMR (300 MHz, C6D6): *δ* 0.51 (s, 3H, Si-C*H*3), 2.09 (s, 6H, *^p*-C*H*3C6H4), 7.01-7.04, 7.49-7.51 (AB q, $J = 8.1$ Hz, $4H \times 2$, $p\text{-CH}_3C_6H_4$). Data for $4-d_3$ are as follows. 1H NMR (300 MHz, C6D6): *^δ* 0.49 (s, 3H, Si-C*H*3), 2.12 (s, 6H, p -CH₃C₆H₄), 7.04-7.07, 7.45-7.48 (AB q, $J = 8.1$) Hz , $4H \times 2$, $p\text{-}CH_3C_6H_4$).

Reaction of CpFe(CO)2Si*^p***Tol2Me (2c) with LiAlH4 in a Sealed Tube.** To $2c$ (6.75 mg, 16.8 μ mol) and LiAlH₄ (4.35) mg, 110 *µ*mol) in a Pyrex NMR tube (5 mm o.d.) connected to a vacuum line was added THF-*d*⁸ (0.4 mL) by the trap-to-traptransfer technique. The tube was flame-sealed under vacuum. The reaction was monitored by ¹H NMR spectroscopy. After

3 h, the signal of **2c** disappeared and the signals assigned to *^p*Tol2Si(CH3)2 (**4**) and Li[CpFe(CO)(CH3)Si*^p*Tol2Me] (**12**) appeared. After the tube was opened in a glovebag, MeI $(7 \mu L)$ was added to the reaction mixture. The signal of **12** disappeared, and the signal of ${}^p\text{Tol}_2\text{SiMe}_2$ (4) increased. Data for **12** are as follows. ¹H NMR (300 MHz, THF- d_8): δ -0.65 (s, 3H, Fe-C*H*3), 0.32 (s, 3H, Si-C*H*3), 2.21 (s, 6H, *^p*-C*H*3C6H4), 3.88 (s, 5H, η^5 -C₅H₅), 6.86-6.89, 7.35-7.37 (AB q, J = 8.1 Hz, $4H \times 2$, $p\text{-CH}_3C_6H_4$). ¹³C NMR (75.5 MHz, THF- d_8): δ -24.6 (Fe-*C*H3), 8.35 (Si-*C*H3), 21.1 (*p*-*C*H3C6H4), 83.0 (*η*5-*C*5H5), 126.9, 134.1, 135.3, 135.6 (*p*-CH3*C*6H4), 224.0 (CO). 29Si NMR (59.6 MHz, THF-*d*8, DEPT): *δ* 41.4.

Reaction of Li[CpFe(CO)(CH3)Si*^p***Tol2Me] (12) with MeOH.** To 2c (10.3 mg, 25.6 μ mol) and LiAlH₄ (4.00 mg, 105 *µ*mol) in a Pyrex NMR tube (5 mm o.d.) connected to a vacuum line was added THF-*d*⁸ (0.4 mL) by the trap-to-trap-transfer technique. The tube was flame-sealed under vacuum. After the tube was opened in a glovebag, MeOH (10 *µ*L) was added to the reaction mixture. The signal of **12** disappeared, and the signal of $pTol_2SiHMe$ (3) newly appeared.

Reaction of CpFe(*CO)2Si*^p***Tol2Me (2c*) with LiAlH4 in a Sealed Tube.** To **2c*** (46% enriched with 13CO; 14.0 mg, 34.7 *µ*mol) and LiAlH4 (5.20 mg, 137 *µ*mol) in a Pyrex NMR tube (5 mm o.d.) connected to a vacuum line was added THF*d*⁸ (0.4 mL) by the trap-to-trap-transfer technique. The tube was flame-sealed under vacuum. The reaction was monitored by 1H NMR spectroscopy. After 2 h, the signals of **2c*** disappeared and the signals assigned to ${}^p\text{Tol}_2\text{SiMe}(*\text{CH}_3)$ (4^{*}) and Li[CpFe(*CO)(*CH₃)Si^pTol₂Me] (12^{*}) were observed. Data for **4*** are as follows. 1H NMR (300 MHz, THF-*d*8): *δ* 0.46 (s, 3H, Si-CH₃), 0.46 (d, ¹J_{C-H} = 119.4 Hz, 3H, Si-¹³CH₃), 2.30 $(s, 6H, p\text{-}CH_3C_6H_4)$, $7.11-7.13$, $7.36-7.39$ (AB q, $J = 8.1$ Hz, $4H \times 2$, *p*-CH₃C₆*H*₄). Data for **12**^{*} are as follows. ¹H NMR (300 MHz, THF-*d*₈): δ -0.66 (d, ¹J_{C-H} = 125.4 Hz, 3H, Fe-¹³CH₃), 0.36 (s, 3H, Si-*C*H₃), 2.20 (s, 6H, *p*-CH₃C₆H₄), 3.88 (s, 5H, *^η*5-C5*H*5), 6.77-6.80, 6.80-6.83, 7.32-7.34, 7.34-7.37 (AB q, $J = 8.1$ Hz, $2H \times 4$, $p\text{-CH}_3C_6H_4$).

Reaction of CpFe(CO)₂SiMePh(1-Nap) (2d) with Li-**AlH4 in Diethyl Ether.** To a suspension of LiAlH4 (74.5 mg, 1.96 mmol) in diethyl ether (15 mL) was added a diethyl ether solution (5 mL) of CpFe(CO)2SiMePh(1-Nap) (**2d**; 204 mg, 480 *µ*mol) at 0 °C. The mixture was warmed to room temperature and was stirred for 48 h. Then the reaction mixture was cooled to 0 °C and was hydrolyzed with water (5 mL). The solvent was removed *in vacuo*, and the residue was recrystallized from pentane to give a mixture of Ph(1-Nap)SiH(CH3) (**6**; 17.2 mg, 69.4 *µ*mol) in 14% yield and Ph(1-Nap)Si(CH3)2 (**5**; 90.9 mg, 347 *µ*mol) in 72% yield. The yields were determined from the intensity ratio of the $Si-CH_3$ signals in a ¹H NMR spectrum of the product mixture. **5**²¹ and **6**²² are known compounds. **5** and **6** were identified by comparison of the 1H, 13C, and 29Si NMR and mass spectra with those of the authentic samples.

Reaction of CpFe(CO)2SiMePh(1-Nap) (2d) with Li-AlH4 in THF. To a suspension of LiAlH4 (48.0 mg, 1.26 mmol) in THF (10 mL) was added a THF solution (10 mL) of $CpFe(CO)_2SiMePh(1-Nap)$ (2d; 96.9 mg, 229 μ mol) at -93 °C. The mixture was warmed to room temperature and was stirred for 20 h. The reaction mixture was worked up in a manner similar to that for the reaction of **2c** to give a mixture of Ph- (1-Nap)SiH(CH3) (**6**; 14.9 mg, 60.2 *µ*mol) in 26% yield and Ph- (1-Nap)Si(CH3)2 (**5**; 15.8 mg, 60.2 *µ*mol) in 26% yield. The yields were determined from the intensity ratio of the $Si-CH_3$ signals in a 1H NMR spectrum of the product mixture.

Reaction of CpFe(CO)2SiMes2H (2e) with LiAlH4 in THF. To a suspension of LiAlH4 (171 mg, 4.50 mmol) in THF

(15 mL) was added a THF solution (5 mL) of $CpFe(CO)₂$ -SiMes₂H (2e; 480 mg, 1.07 μ mol). The reaction mixture was stirred at room temperature, and the reaction was monitored by silica gel TLC (1/3 toluene/hexane as eluent). After 16 h, the solvent was removed in vacuo and the residue was extracted with hexane (30 mL) and filtered through a Celite pad under nitrogen. The filtrate was evaporated *in vacuo* to give Mes2SiH2 (**7**; ²³ 186 mg, 696 *µ*mol) in 65% yield.

Reaction of CpFe(CO)2Si(*n***-C5H11)2H (2f) with LiAlH4 in THF.** To a suspension of LiAlH₄ (27.3 mg, 718 μ mol) in THF (10 mL) was added a THF solution (10 mL) of $CpFe(CO)₂$ - $Si(n-C_5H_{11})_2H$ (2f; 59.6 mg, 162 μ mol) at -93 °C. The reaction mixture was stirred at room temperature for 46 h and worked up in a manner similar to that for the reaction of **2c** to give a mixture of (*n*-C5H11)2SiH2 (**9**; 1.47 mg, 8.55 *µ*mol) in 5.3% yield and $(n-C_5H_{11})_2$ SiH(CH₃) (8; 12.7 mg, 68.3 μ mol) in 42% yield. The yields were determined from the intensity ratio of the $Si-H$ signals in a ¹H NMR spectrum of the product mixture. **8**²⁴ and **9**²⁵ are known compounds. **8** and **9** were identified by comparison of the ${}^{1}H$, ${}^{13}C$, and ${}^{29}Si$ NMR and mass spectra with those of the authentic samples.

Reaction of Cp*Fe(CO)2Si*^p***Tol2H (2g) with LiAlH4 in THF.** To a suspension of LiAlH₄ (36.0 mg, 947 μ mol) in THF (15 mL) was added a THF solution (5 mL) of $Cp*Fe(CO)₂$ -Si^pTol₂H (2g; 103 mg, 225 μ mol) at -93 °C. The reaction mixture was warmed to 50 °C. After 1 week, the mixture was worked up in a manner similar to that for the reaction of **2c** to give a mixture of $P_{\text{Tol}_2\text{SiH(CH}_3)}$ (3; 12.7 mg, 56.2 μ mol) in 25% yield and *^p*Tol2SiH2 (**10**; 11.9 mg, 56.2 *µ*mol) in 25% yield. The yields were determined from the intensity ratio of the Si-H signals in a 1H NMR spectrum of the product mixture. **10**²⁶ is a known compound. **10** was identified by comparison of the 1H, 13C, and 29Si NMR and mass spectra with those of the authentic sample.

Reaction of Cp*Fe(CO)2Si*^p***Tol2H (2g) with LiAlH4 in a Sealed Tube.** To **2g** (5.80 mg, 13.1 *µ*mol) and LiAlH4 (2.61 mg, 68.4 *µ*mol) in a Pyrex NMR tube (5 mm o.d.) connected to a vacuum line was added THF-*d*⁸ (0.4 mL) by the trap-to-traptransfer technique. The tube was flame-sealed under vacuum. The reaction was monitored by ¹H NMR spectroscopy. After the sealed tube was heated at 50 °C for 3 days, signals assigned to ^pTol₂SiH(CH₃) (3), ^pTol₂SiH₂ (10), and Li[Cp*Fe(CO)(CH₃)- SiP Tol₂H] (13) were observed. Data for 13 are as follows. ¹H NMR (300 MHz, THF-*d*₈): δ −0.75 (s, 3H, Fe-C*H*₃), 1.87 (s, 15H, η^5 -C₅(CH₃)₅), 2.22, 2.25 (s, 3H × 2, p -CH₃C₆H₄), 4.84 (s, 1H, Si-*H*), 6.73-6.75, 6.85-6.87, 7.42-7.45, 7.57-7.59 (AB q, $J = 8.1$ Hz, $2H \times 4$, $p\text{-CH}_3C_6H_4$). ¹³C NMR (75.5 MHz, THF*^d*8): *^δ* -21.5 (Fe-*C*H3), 15.5 (*η*5-C5(*C*H3)5), 24.4, 24.5 (*p*-*C*H3C6H4), 91.5 (*η*5-*C*5(CH3)5), 129.9, 130.2, 136.9, 137.2, 138.9, 139.5, 151.2, 151.7 (*p*-CH3*C*6H4), 236.5 (CO). 29Si NMR (59.6 MHz, THF-*d*8, DEPT): *δ* 45.6.

Acknowledgment. This work was supported by Grants-in-Aid for Scientific Research (Nos. 09440223 and 09440245) and a Grant-in-Aid for Scientific Research on Priority Area "The Chemistry of Inter-element Linkage" (No. 09239105) from the Ministry of Education, Science, Sports and Culture of Japan and a Kurata Research Grant from the Kurata Foundation. We thank Shin-Etsu Chemical Co., Ltd., for a gift of silicon compounds.

OM9802111

^{(21) (}a) Corriu, R. J. P.; Moreau, J. J. B. *Bull. Soc. Chim. Fr.* **1975**, *3*, 901. (b) Sommer, L. H.; Michael, K. W.; Korte, K. W. *J. Am. Chem. Soc.* **1967**, *89*, 868.

⁽²²⁾ Fearon, F. W. G.; Gilman, H. *J. Organomet. Chem.* **1967**, *9*, 403.

⁽²³⁾ Michalczyk, M. J.; Fink, M. J.; Haller, K. J.; West, R.; Michl, J. *Organometallics* **1986**, *5*, 531.

⁽²⁴⁾ Kovalev, I. F.; Arbuzova, U. A.; Voronkov, M. G.; Khudobin, Yu. I.; Kharitonov, N. R. *Dokl. Akad. Nauk SSSR* **1968**, *179*, 126. (25) Opitz, H. E.; Peake, J. S.; Nebergall, W. H. *J. Am. Chem. Soc.*

¹⁹⁵⁶, *78*, 292.

⁽²⁶⁾ Tour, J. M.; John, J. A.; Stephans, E. B. *J. Organomet. Chem.* **1992**, *429*, 301.