Syntheses and Chemistry of the Diynyl Complexes $M(C \equiv CC \equiv CH)(CO)_3(\eta - C_5H_5)$ (M = Mo, W): Crystal Structures of W(C \equiv CC \equiv CSiMe₃)(CO)₃(η -C₅H₅), $W\{C \equiv CC[CH = C(CN)_2] = C(CN)_2\}(CO)_3(\eta - C_5H_5)$, and cis-W(C \equiv CPh)(CO)₂(PPh₃)(η -C₅H₅)

Michael I. Bruce,*,† Mingzhe Ke,† Paul J. Low,† Brian W. Skelton,‡ and Allan H. White[‡]

Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia, and Department of Chemistry, The University of Western Australia, Nedlands, WA 6907, Australia

Received January 21, 1998

Reactions of buta-1,3-diyne with appropriate metal halides, carried out in the presence of CuI in NHEt₂, have given high yields of $M(C = CC = CH)(CO)_nCp$ [M = W (1-W), Mo (1-Mo), n = 3; M = Fe, n = 2 (2)]. Complex 1-W was metalated with LiNPr¹₂; subsequent reactions with SiClMe₃ or PClPh₂ gave W(C \equiv CC \equiv CR)(CO)₃Cp [R = SiMe₃ (3) or P(O)Ph₂ (4)] in modest to high yield. Coupling of 1 with iodoarenes, catalyzed by a mixed Cu^I-Pd⁰ catalyst, gave M(C = CC = CAr) (CO)₃Cp [M = W, Ar = Ph (5-W), tol (6), C₆H₄OMe-4 (7), C₆H₄CO₂Me-4 (8); M = Mo, Ar = Ph (5-Mo)]. Oxidative coupling of 1 (CuCl-tmed-O₂) gave $\{M(CO)_3Cp\}_2(\mu-C_8)$ [M = W (9-W), Mo (9-Mo)]. Addition of tetracyanoethene to 1-W occurred at the C \equiv C triple bond further from the metal atom, to give $W\{C \equiv CC[=C(CN)_2]CH = C(CN)_2\}(CO)_3Cp$ (10). Substitution of CO by PPh₃ was difficult, but the Me₃NO-induced reaction with 5-W afforded *cis*-W(C≡CC=CPh)(CO)₂(PPh₃)Cp (11) in low yield. The X-ray crystal structures of 3 and **10**, together with that of cis-W(C \equiv CPh)(CO)₂(PPh₃)Cp (**12**), are reported.

Introduction

The study of metal complexes containing all-carbon ligands is now an area of intense activity. ¹⁻⁴ In addition to their inherent interest these compounds are considered as precursors to potentially useful new materials and nanoscale devices. For example, poly-yndiyl complexes, in which an unsaturated C_n chain links two metal centers, have attracted the attention of several groups as possible models of and potential precursors to one-dimensional molecular wires.⁵⁻⁸ Several groups have revealed the rich electrochemistry of these systems.^{5,9,10} Their unsaturation also makes them potentially attractive monomers in as yet unrealized oligomerization and polymerization reactions.¹¹

Previous reports from this group have described the use of the bis(tertiary phosphine) ligands 1,2-bis(diphe-

The University of Adelaide.

nylphosphino)acetylene (Ph₂PC≡CPPh₂, dppa)¹² and 1,4-bis(diphenylphosphino)buta-1,3-diyne (Ph₂PC≡CC≡ CPPh₂, bdpp)¹³ as precursors to cluster complexes containing the ligands C2 and C4, respectively. The open pentanuclear cluster Ru₅(μ₅-C₂)(μ-SMe)₂(μ-PPh₂)₂-(CO)₁₁, in particular, is a rich source of novel and interesting transformations.¹⁴ The binuclear diyndiyl complex $\{Cp(Ph_3P)_2Ru\}C \equiv CC \equiv C\{Ru(PPh_3)_2Cp\}$ has been obtained from Ru(thf)(PPh₃)₂Cp and LiC≡CC≡ CLi,¹⁵ or from RuCl(PPh₃)₂Cp and SiMe₃CC≡CSiMe₃,⁹ and exhibits an unusually large range of oxidation states. 9 Many other complexes containing C4 or related diynyl ligands have been obtained from reactions of $SiMe_3C \equiv CC \equiv CR (R = H, SiMe_3).^{16}$

In seeking to extend these studies, we required access to a range of diynyl complexes, $\{L_nM\}C \equiv CC \equiv CR$, and diyndiyl complexes, $\{L_nM\}C \equiv CC \equiv C\{ML_n\}$. Several examples of such complexes have been described. Synthetic routes of general application include (i) reactions of diynyl anions with metal complexes containing a readily displaced ligand, such as halide or triflate; 15,17-19

[‡] The University of Western Australia.

⁽¹⁾ Beck, W.; Neimer, B.; Wieser, M. Angew. Chem. 1993, 105, 969; Angew. Chem., Int. Ed. Engl. 1993, 32, 923.

⁽²⁾ Bunz, U. H. F. Angew. Chem. 1996, 108, 1047; Angew. Chem., Int. Ed. Engl. 1996, 35, 969.

⁽³⁾ Lang, H. Angew. Chem. 1994, 106, 569; Angew. Chem., Int. Ed. Engl. **1994**, *33*, 547.

⁽⁴⁾ Akita, M.; Moro-oka, Y. Bull. Chem. Soc. Jpn. 1995, 68, 420. (5) Weng, W.; Bartik, T.; Brady, M.; Bartik, B.; Ramsden, J. A.; Arif,

A. M.; Gladysz, J. A. *J. Am. Chem. Soc.* **1995**, *117*, 11922.

(6) Brady, M.; Weng, W.; Zhou, Y.; Seyler, J. W.; Amoroso, A. J.; Arif, A. M.; Böhme, M.; Frenking, G.; Gladysz, J. A. *J. Am. Chem. Soc.* **1997**, *119*, 775.

⁽⁷⁾ Coat, F.; Lapinte, C. *Organometallics* **1996**, *15*, 477. (8) Bruce, M. I.; Ke, M.; Low, P. J. *Chem. Commun.* **1996**, 2405.

⁽⁹⁾ Bruce, M. I.; Denisovich, L. I.; Low, P. J.; Peregudova, S. M.; Ustynyuk, N. A. *Mendeleev Commun.* **1996**, 200.

⁽¹⁰⁾ Le Narvor, N.; Toupet, L.; Lapinte, C. J. Am. Chem. Soc. 1995, 117, 7129.

⁽¹¹⁾ Lavastre, O.; Dixneuf, P. H.; Pacreau, A.; Vairon, J. P. Organometallics 1994, 13, 2500.

⁽¹²⁾ Adams, C. J.; Bruce, M. I.; Skelton, B. W.; White, A. H. *J. Chem. Soc., Dalton Trans.* **1997**, 2937. (13) Adams, C. J.; Horn, E.; Skelton, B. W.; Tiekink, E. R. T.; White,

A. H. J. Chem. Soc., Dalton Trans. 1993, 3299.
 (14) Bruce, M. I. J. Cluster Chem. 1997, 8, 293.

⁽¹⁵⁾ Bruce, M. I.; Hinterding, P.; Tiekink, E. R. T.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* **1993**, *450*, 209.

⁽¹⁶⁾ Bruce, M. I.; Low, P. J.; Werth, A.; Skelton, B. W.; White, A. H. *J. Chem. Soc., Dalton Trans.* **1996**, 1551.

(17) Kim, P. J.; Hasai, M.; Sonogashira, K.; Hagihara, N. *Inorg. Nucl. Chem. Lett.* **1970**, *E*, 191

Nucl. Chem. Lett. 1970, 6, 181.

(ii) oxidative addition of 1,3-diynes to electron-rich metal centers, such as RhCl(PPr¹3)₂;²⁰ (iii) reactions between metal halide complexes and trimethyltin diynes Me₃-SnC≡CC≡CR,²⁰⁰d.²¹ sometimes in the presence of palladium(0) catalysts;²² (iv) deprotonation of intermediate vinylidene or metallacumulene complexes;²¹.²³ and (v) reactions of 1,3-diynes with metal halides in the presence of Cu(I) catalysts.²⁴ Despite the growing number of complexes of this type which have been made, their reactivity remains relatively unexplored. Given the extensive chemistry associated with the C≡C triple bond in both organic and organometallic chemistry, transition metal complexes containing diynyl ligands would be expected to exhibit a wide range of reactions.

One of the drawbacks to the preparation of diynyl complexes $\{L_nM\}C \equiv CC \equiv CR \ (R = H, alkyl, aryl, etc.)$ by the above methods is the requirement for prior synthesis of the corresponding 1,3-diynes, HC≡CC≡CR. Examples include the synthesis of Ni(C≡CC≡CH)-(PPh₃)Cp from BrMgC≡CC≡CH, which was prepared from HC=CC=CH, 17 RhHCl(C=CC=CPh)(PPri3)2 from $\{RhCl(P^iPr_3)_2\}_n$ and $HC \equiv CC \equiv CPh^{20b}$ and $Re(C \equiv CC \equiv C$ $SiMe_3(PPh_3)(NO)Cp^*$ from $[Re(ClC_6H_5)(PPh_3)(NO)Cp^*]$ -BF₄ and HC≡CC≡CSiMe₃ in the presence of KOBu^{t.5} An attractive alternative would be to functionalize buta-1,3-diynyl complexes $\{ML_n\}C \equiv CC \equiv CH$ by reactions of the diyne proton. We have found that buta-1,3-diyne, HC≡CC≡CH, is a suitable reagent for the preparation of these complexes and have further demonstrated that the 1,3-divnyl ligand is indeed readily amenable to substitution, making these complexes convenient materials for the preparation of substituted diynyl complexes. In addition, the metal center and the $C \equiv C$ triple bond are also reaction centers. The present paper describes the development of a simple and reliable synthetic approach to these complexes, as exemplified by the tungsten, molybdenum, and iron derivatives, $M(C \equiv CC \equiv CH)(CO)_n Cp$ (M = Mo, W, n = 3; M = Fe, n= 2). Some of this work has been described in preliminary fashion.8

Results and Discussion

Synthesis of 1,3-Diynyl Complexes. The bright yellow, air stable, and mildly light sensitive diynyl complex $W(C \equiv CC \equiv CH)(CO)_3Cp$ (1-W, Scheme 1) was obtained in excellent (90%) yield from the CuI-catalyzed reaction between $WCl(CO)_3Cp$ and buta-1,3-diyne (Scheme 1). The reactions were carried out in tetrahydrofuran solution containing diethylamine, which serves both to generate the active diynylcopper intermediate

Scheme 1

$$[L_mM]CI + HC = C - C = CH$$
 \xrightarrow{Cul} $[L_mM] - C = C - C = CH$

 $L_mM = W(CO)_3Cp (1-W), Mo(CO)_3Cp (1-Mo); Fe(CO)_2Cp (2)$

and to remove the HCl as diethylammonium chloride. The complex is readily characterized from its spectral properties and elemental analysis. The IR spectrum of **1-W** contained strong $\nu(\text{CO})$ absorptions at 2044 and 1958 cm⁻¹, characteristic of the W(CO)₃Cp fragment. The terminal C=CH group gave rise to weak $\nu(\text{=CH})$ and $\nu(\text{C=C})$ bands at 3260 and 2145 cm⁻¹, respectively. Sharp singlet resonances in the ¹H NMR spectrum at δ 2.03 and 5.66 are assigned to the terminal =CH and the Cp protons, respectively.

Besides resonances which could be assigned to the Cp carbons at δ 91.51 and the three CO groups between δ 210 and 227, four signals in the ¹³C NMR spectrum between δ 63.3 and 110.5 arise from the carbons of the C₄ chain (Table 1). In assigning these carbon resonances, we note that those for C_{α} , C_{β} , and C_{γ} (C_{α} is bonded to W) show satellite signals arising from coupling to ¹⁸³W. Previous assignments of the ¹³C resonances in buta-1,3-diynyl complexes have been based on trends found in values for J_{CP} in phosphinesubstituted complexes, so that ${}^2J_{\rm CP} > {}^4J_{\rm CP} > {}^3J_{\rm CP}, {}^5$ or from the H-coupled ¹³C NMR spectra obtained for $\{ML_n\}C = CC = CH.^7$ Arguments that the chemical shift moves downfield as the metal center is approached have also been employed.⁷ In the case of 1-W, the diynyl resonance at lowest field (δ 110.52) exhibits only unresolved coupling to 183 W, while the resonances at δ 71.60 and 70.13 show measurable coupling constants of 88 and 94 Hz, respectively. We have tentatively assigned the lowest field resonance to C_{α} in keeping with the established patterns for these systems (Table 1) and have assumed the magnitude of J_{CW} for the C_{β} and C_{γ} carbons follows the trend previously observed for J_{CP} in Fe(C=CC=CR)(dppe)Cp* (R = H, SiMe₃), 7 so that ${}^4J_{\text{CW}}$ [to C_{γ} ; 94 Hz] $> {}^3J_{\text{CW}}$ [to C_{β} ; 88 Hz].

The electrospray mass spectrum (ES MS) of a solution of **1-W** in aqueous NCMe at low cone voltages showed the ions $[M + MeCN - nCO]^+$ (n = 0-2); similar solvated $[M + solvent]^+$ ions are frequently encountered with this technique. At higher cone voltages only $[M + GCO]^+$ was observed.

The dark yellow molybdenum analogue $Mo(C \equiv CC \equiv CH)(CO)_3Cp$ (1-Mo) was prepared from $MoI(CO)_3Cp$ and buta-1,3-diyne (60%) in an analogous manner. The spectral properties of 1-Mo were not significantly different from those of 1-W. The absence of a spin-active metal nucleus resulted in the observation of four sharp singlets in the ^{13}C NMR spectrum for the four-carbon chain, which are assigned by analogy with those found for 1-W. The $\equiv CH$ proton was found at δ 2.04 in the ^{14}H NMR spectrum. The molybdenum complex is considerably more light sensitive than 1-W, becoming discolored after only a few minutes exposure to laboratory fluorescent lighting.

The diynyl-iron complex $Fe(C \equiv CC \equiv CH)(CO)_2Cp$ (2) was obtained from the diyne and $FeCl(CO)_2Cp$. The spectral data obtained for 2 were in good agreement with those previously reported for the same complex

⁽¹⁸⁾ Wong, A.; Kang, P. C. W.; Tagge, C. D.; Leon, D. R. *Organometallics* **1990**, *9*, 1992.

⁽¹⁹⁾ Lang, H.; Weber, C. Organometallics 1995, 14, 4415.

^{(20) (}a) Fyfe, H. B.; Mlekuz, M.; Zararian, D.; Taylor, N. J.; Marder, T. B.; J. Chem. Soc., Chem. Commun. 1991, 188. (b) Rappert, T.; Nurnberg, O.; Werner, H. Organometallics 1993, 12, 1359. (c) Werner, H.; Gervert, O.; Steinert, P.; Wolf, J. Organometallics 1995, 14, 1786. (d) Gervert, O.; Wolf, J.; Werner, H. Organometallics 1996, 15, 2806. (21) Touchard, D.; Pirio, N.; Toupet, L.; Fettouhi, M.; Ouahab, L.; Dixneuf, P. H. Organometallics 1995, 14, 5263.

⁽²²⁾ Crescenzi, R.; Lo Sterzo, C. Organometallics 1992, 11, 4301. (23) (a) Romero, A.; Peron, D.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1990, 1410. (b) Le Bozec, H.; Dixneuf, P. H. Russ. Chim. Bull. 1995, 44, 801.

^{(24) (}a) Sonogashira, K.; Yatake, T.; Tohda, Y.; Takahashi, S.; Hagihara, N. *J. Chem. Soc., Chem. Commun.* **1977**, 291. (b) Sonogashira, K.; Kataoka, S.; Takahashi, S.; Hagihara, N. *J. Organomet. Chem.* **1978**, *160*, 319.

Table 1. ¹³C NMR Data for Diynyl Complexes, $\{ML_n\}C_\alpha \equiv C_\beta C_\nu \equiv C_\delta - R$

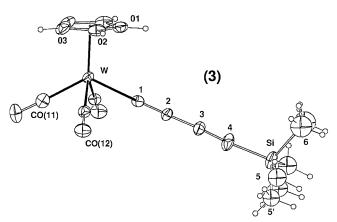
			chemical shift (<i>J</i> , Hz)					
complex ML_n	R	number	C_{α}	C_{eta}	\mathbf{C}_{γ}	C_{δ}	notes	ref
W(CO) ₃ Cp	Н	1-W	110.52 (br)	71.60	70.13	63.60		this work
				$(J_{\rm CW} \ 88)$	$(J_{\rm CW} \ 94)$			
Mo(CO) ₃ Cp	Н	1-Mo	110.46	87.25	70.27	62.10		this work
Re(NO)(PPh ₃)Cp*	Н		102.1	110.8	72.4	65.2		5
Fe(CO) ₂ Cp	Н	2	96.80	89.85	70.88	54.35		18, 22; this work
Fe(CO)(PPh ₃)Cp	H		109.4 (J _{CP} 39.4)	99.1	72.1	54.3	a	18
Fe(CO) ₂ Cp*	Н		106.4	92.8	71.9	53.5		33
Fe(dppe)Cp*	H		136.6	100.7	75.1	50.5	b	7
т о(арро) ор			$(J_{\rm CP}38)$	(<i>J</i> _{CH} 5)	$(J_{\rm CP}\ 3; \ J_{\rm CH}\ 50)$	$(J_{\rm CH}\ 248)$	2	•
$Ru(PPh_3)_2Cp$	Н		116.4 (<i>J</i> _{CP} 24.6)	94.4	73.9	128.4		15
$Ru(CO)_2(PEt_3)_2$	Н		101.3	91.7	72.1	54.5		28
Re(NO)(PPh ₃)Cp*	Me		96.8	111.6	69.1	71.9		5
$W(CO)_3Cp$	SiMe ₃	3	111.74 (br)	110.86	90.04	73.59		this work
Re(NO)(PPh ₃)Cp*	SiMe ₃	J	105.8	112.3	93.5	80.6	b	5
те(тчо)(г г нз)ср	Blivies		$(J_{\rm CP}\ 15.9)$	112.5	$(J_{\rm CP}\ 2.7)$	00.0	D	3
Fe(CO) ₂ Cp*	$SiMe_3$		106.3	96.5	94.7	69.5	b	7
ГС(СО)2СР	Shvie3		98.14	91.9	91.1	71.0	a	19
Fe(dppe)Cp*	SiMe ₃		142.2	102.3	96.2	64.7	b	7
r c(uppc)op	Shvie ₃		$(J_{\rm CP} \ 38)$	$(J_{\rm CP} 2)$	$(J_{\rm CP} 3)$	01.7	Ь	•
trans-RuCl(dppm) ₂	$SiMe_3$		95.95 (br)	96.11	67.11		а	e
$Rh(CO)(PPr_3^i)_2$	SiMe ₃		121.3	103.0	93.2	77.2	c	20d
1011(00)(1113)2	211/103		(J _{CRh} 43.3; J _{CP} 22.1)		00.2		·	204
IrHCl(PPr ⁱ ₃) ₂	SiMe ₃		80.0	94.4	92.5	75.5	c	f
(5) %			$(J_{\rm CP}\ 11.2)$					
$\operatorname{IrHCl}(\operatorname{py})(\operatorname{PPr}^{i_3})$	$SiMe_3$		85.1	95.6	85.0	71.4	С	f
H((((())) ((D(O)DI		$(J_{\rm CP}\ 11.4)$	01.00	1	1		.1. 1
W(CO) ₃ Cp	P(O)Ph ₂	4	110.57	91.32	d	d		this work
W(CO) C-	Ph	5-W	$(J_{\rm CW}16)$	d	76.19	73.78		this work
W(CO) ₃ Cp	PII	3-W	111.03	a	76.19	73.78		this work
Mo(CO) ₃ Cp	Ph	5-Mo	(J _{CW} 22) 110.92	d	76.42	72.59		this work
W(CO) ₂ (PPh ₃)Cp	Ph	3-M0 11	110.92	100.14	70.42	72.39 72.2		this work
W(CO)2(FFII3)Cp	rii	11	$(J_{\rm CW} 8)$	100.14	12.13	12.2		tills work
$Rh(CO)(PPr^{i_3})_2$	Ph		126.33	102.22	79.15 (br)	71.95	c	20c
W(CO) ₃ Cp	C≡CC≡C	9-W	(J _{CRh} 43.4; J _{CP} 21.6) 112.39	$(J_{\rm CRh} \ 12.7; J_{\rm CP} \ 3.2)$ 91.60	63.70	$(J_{PC} 2.1)$ 60.91		this work
w(co)3cp	$\{W(CO)_3Cp\}$	J- W	112.55	31.00	03.70	00.51		tilis work
$Mo(CO)_3Cp$	C = CC = C {Mo(CO) ₃ Cp}	9-Mo	112.24	92.22	63.47	59.95		this work
$Re(NO(PPh_3)Cp^*$	C≡CC≡C		109.7	113.3	66.6	64.5		32
Fe(CO) ₂ Cp*	$\{Re(NO)(PPh_3)Cp^*\}\$ $C\equiv CC\equiv C$		(<i>J</i> _{CP} 16.9) 110.8	94.8	$(J_{\rm CP}\ 2.72)$ 61.61	51.4		33
(30)20P	{Fe(CO) ₂ Cp*}			= =:=	- 1.01			
Fe(dppe)Cp*	$C = CC = C$ $\{Fe(dppe)Cp^*\}$		139.45 (<i>J</i> _{CP} 42)	101.8	62.7 (<i>J</i> _{CP} 3)	50.6	С	7

^a Not individually assigned. ^b Assignment based on $^2J_{\rm CP} > ^4J_{\rm CP} > ^3J_{\rm CP}$. ^c Assignment based on δ being further downfield as C is closer to Fe, also on values of J_{CP} . ^d Not observed. ^e Dahlenburg, L.; Weiss, A.; Bock, M.; Zahl, A. *J. Organomet. Chem.* **1997**, *541*, 465. ^f Werner, H.; Lass, R. W.; Gevert, G.; Wolf, J. *Organometallics* **1997**, *16*, 4077.

obtained from the Pd(0)-catalyzed reaction between Me₃-SnC = CC = CH and $FeI(CO)_2Cp^{22}$ or by treating Fe(C = $CC \equiv CSiMe_3)(CO)_2Cp$ with fluoride ion.¹⁸

Functionalization and Reactivity Studies. Established methods for the preparation of asymmetrically substituted organic diynes generally involve crosscoupling of smaller acetylenic fragments.²⁵ In contrast, most diynyl complexes {MLn}C≡CC≡CR have been prepared using reactions in which a preformed diyne is the source of the diynyl ligand. We have found that the readily available stable 1,3-diynyl complexes described above can be used to synthesize a range of substituted diynyl complexes, $\{ML_n\}C\equiv CC\equiv CR$ (Scheme 2). The reaction conditions used to effect the various transformations are described below.

(a) Metalation with Lithium Diisopropylamide (LDA). Metalation of 1-alkynes with organolithium reagents provides a convenient route to organolithium compounds which can then be used as reactive intermediates in further syntheses. Reactions of 1-W with LiBuⁿ resulted in extensive decomposition of the diynyl complex. Complex 2 has been reported to react sluggishly with LiBuⁿ and cleaner results were obtained using the bulkier reagent LiBu^s. 18 It seems likely that the reactions of 1-W and 2 with LiBun are complicated by nucleophilic attack at the carbonyl ligands. In contrast, the carbonyl-free diynyl complex Re(C≡ CC≡CH)(NO)(PPh₃)Cp* ⁵ is readily metalated by LiBuⁿ.


Complex 1-W was cleanly metalated by treatment with 1 equiv of LiNPrⁱ₂ (LDA) at −78 °C (Scheme 2), when the initially yellow solution rapidly darkened to orange. Quenching of this solution, which is assumed

Scheme 2

M = Mo; R = H (5-Mo)M = W; R = H (5-W), Me (6), OMe (7), CO₂Me (8)

to contain W(C≡CC≡CLi)(CO)₃Cp, with SiClMe₃ afforded W(C≡CC≡CSiMe₃)(CO)₃Cp (3, Scheme 2) in high yield (80%). We have also obtained complex 3, albeit in only 36% yield, from the reaction between WCl-(CO)₃Cp and LiC≡CC≡CSiMe₃ in a manner similar to that described by Wong and co-workers for complex 2.18 Characterization of 3 followed from elemental analysis and from its spectral properties. The IR spectrum contained two weak $\nu(C \equiv C)$ bands at 2174 and 2127 cm⁻¹, together with three ν (CO) absorptions at 2045, 2026, and 1957 $cm^{-1}.\;\; The\; ^1H\; NMR\; spectrum\; contained$ the expected Cp and SiMe₃ resonances at δ 5.66 and 0.20, respectively. In the ¹³C NMR spectrum, four resonances between δ 73.6 and 111.7 were assigned to the four carbons of the C₄ chain; the Me and Cp signals are at δ 0.00 and 91.53, respectively. The FAB mass spectrum contained M^+ at m/z 454.

Molecular Structure of W(C≡CC≡CSiMe₃)(CO)₃-Cp (3). The molecular structure of 3 has been confirmed by a single-crystal X-ray structural determination. Yellow needles of 3 were obtained from the minimum volume of CH_2Cl_2 and n-hexane at -20 °C. A plot of the molecular structure is of 3 is shown in Figure 1, selected bond lengths and angles are given in Table 2, and crystal and refinement data are given in Table 3. The methyl groups attached to Si are disordered over two sites. There is a plane of symmetry passing through C(1)-W-C(11). The molecule is a conventional piano stool structure, the structural features of the W(CO)₃Cp group being unexceptional and closely similar to those found in WPh(CO)₃Cp²⁶ and $\{W(CO)_3Cp\}_2(\mu-C_2)$, for example. The important feature is the coordination of the diynyl ligand. The W-C(1) bond is 2.124(8) Å [cf. 2.172(22) Å in $\{W(CO)_3Cp\}_2(\mu-C_2)$, ²⁷ and successive C-C separations along the C(1)-C(2)-C(3)-C(4) chain are 1.22, 1.36, and 1.22(1) Å, indicating that the $C \equiv C$ triple bonds are largely localized between C(1) and C(2) and between C(3) and C(4). However, the $C \equiv C$ triple bonds

Figure 1. Plot of a molecule of W(C \equiv CC \equiv CSiMe₃)(CO)₃- $(\eta$ -C₅H₅) (**3**), showing atom numbering scheme. In this and the following figures, non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of 0.1 Å.

are longer than that in $W(C \equiv CPh)(CO)_2(PPh_3)Cp$ (see below), suggesting some electron delocalization, which is facilitated by the SiMe₃ group.²⁸ The C(4)—Si separation [1.82(1) Å] is normal. The six-atom W-C(1)-C(2)-C(3)-C(4)—Si chain is essentially linear, with angles at C(1-4) of 179.0(8), 179(1), 177(1), and 177(1)°, again consistent with the diynyl formulation. These dimensions are comparable to those found in *trans*-Ru- $(C \equiv CC \equiv CSiMe_3)_2(CO)_2(PEt_3)_2$.²⁸

Sequential treatment of **1-W** with LDA and PClPh₂ resulted in the formation of a large amount of black material, presumably polymeric, possibly carbon, which could not be characterized. However, extensive chromatographic purification of the reaction mixture afforded a yellow solid in low yield (16%). This compound, initially reported as the tertiary alkynylphosphine,⁸ proved to be the corresponding phosphine oxide, W{C \equiv CC \equiv CP(O)Ph₂}(CO)₃Cp (**4**). In addition to the usual ν -(C \equiv C) and ν (CO) bands from the tungsten-diynyl fragment, found at 2138 and at 2051, 2031, and 1962

⁽²⁶⁾ Semion, V. A.; Struchkov, Yu. T. Zh. Strukt. Khim. 1968, 9, 1046.

⁽²⁷⁾ Chen, M.-C.; Tsai, Y.-J.; Chen, C.-T.; Lin, Y.-C.; Tseng, T.-W.; Lee, G.-H.; Wang, Y. *Organometallics* **1991**, *10*, 0. 378.

⁽²⁸⁾ Sun, Y.; Taylor, N. J.; Carty, A. J. Organometallics 1992, 11, 4293.

2.491(2)

1.19(1)

1.43(1)

129.9(3)

76.9(3)

 $75.1(2)^a$

75.7(3)

 $80.2(2)^a$

115.8(2)

10 12 3 Bond Distances (Å) 2.124(8) 2.102(6) 2.141(8) 2.295(6) - 2.347(7)2.297(8) - 2.34(1)2.32 2.32 2.33 W - C(11)2.01(1) 2.007(8) 1.975(8) W-C(12) 2.013(7)1.965(8)1.937(9)W-C(13) 1.99(1)

W-C(1)W-C(cp) 2.278(8) - 2.403(9)(av)

Table 2. Selected Bond Parameters for Complexes 3, 10, and 12

^{1.207(9)} C(1)-C(2)1.22(1)C(2)-C(3)1.395(9) 1.36(1)C(3)-C(4)1.22(1)1.381(9) C(3)-C(5)1.44(1)C(5)-C(6)1.35(1)C(4)-Si 1.82(1)Bond Angles (deg)

Duli		
179.0(8)	177.5(6)	178.1(7)
179(1)	173.8(7)	177.3(8)
177(1)	120.5(6)	
177(1)		
	121.5(6)	
	127.0(6)	
	179.0(8) 179(1) 177(1)	179(1) 173.8(7) 177(1) 120.5(6) 177(1) 121.5(6)

C(1)-W-C(11)127.1(4) 129.8(3) C(1)-W-C(12)75.3(2) 75.3(3) C(1)-W-C(13)75.4(6) C(11)-W-C(12)76.7(2)77.6(3) C(11)-W-C(13)77.2(3) C(12)-W-C(13)114.1(3) 112.6(4)

W-P

Table 3. Crystal Data and Refinement Details for Complexes 3, 10, and 12

	3	10	12
formula	C ₁₅ H ₁₄ O ₃ SiW	C ₁₈ H ₆ N ₄ O ₃ W	C ₃₃ H ₂₅ O ₂ PW
mol wt	454.2	510.1	668.4
cryst syst	monoclinic	orthorhombic	orthorhombic
space group	$P2_{1}/m$	Pbca	Pbca
a, Å	6.532(5)	20.542(7)	20.285(8)
b, Å	9.561(9)	13.653(3)	19.458(8)
c, Å	13.701(10)	12.372(3)	13.709(6)
β , deg	101.55(7)		
V, Å ³	838	3470	5411
Z	2	8	8
$D_{\rm c}$, g cm $^{-3}$	1.80	1.95	1.64
F(000)	432	1920	2624
cryst size, mm	$0.56 \times 0.50 \times$	$0.28\times0.32\times$	0.25 imes 0.25 imes
	0.02	0.60	0.60
A^* (min, max)	1.17, 10.7	3.3, 5.1	2.00, 3.0
μ , cm ⁻¹	70	67	44
$2\theta_{\rm max}$, deg	60	60	56
N	3643	4954	5124
N_{0}	2518	2889	3333
R	0.045	0.036	0.040
$R_{ m w}$	0.047	0.037	0.041

cm⁻¹, respectively, the IR spectrum of 4 contained a strong $\nu(PO)$ band near 1200 cm⁻¹, while the ³¹P spectrum contained a single resonance at δ 5.6. The latter is in the region associated with P(V) compounds and may be compared with the value for $P(O)(C \equiv CBu^t)$ -Ph₂ at δ 1.1.²⁹ It is likely that oxidation of the desired phosphine occurred during the extensive pruification process, during which air was not rigorously excluded.

(b) Palladium(0)/Copper(I)-Catalyzed Coupling Reactions with Iodoarenes and -alkynes. 1-Alkynes undergo facile cross-coupling reactions with aryl and vinyl halides in the presence of basic amines and a mixed Cu(I)-Pd(0) catalyst (Sonogashira reaction).³⁰ Complexes 1 readily enter into this reaction. The compounds $M(C \equiv CC \equiv CPh)(CO)_3Cp [M = W (5-W); Mo$ (5-Mo)] were prepared by treating diisopropylamine solutions of 1 with an excess of iodobenzene in the presence of catalytic amounts of Pd(PPh₃)₄ and CuI (Scheme 2). Both complexes exhibit very similar spectral properties. Most significantly, the ¹³C NMR spectra contained distinct resonances for each of the four carbon nuclei of the C_4 chain between δ 72.6 and 111.0. The FAB mass spectrum of **8** contained M^+ at m/z 458 together with $[M - CO]^+$. The electrospray mass spectrum of 9 was obtained in the presence of NaOMe31 and contained $[M + OMe]^-$ as highest mass ion at m/z

Similar reactions of 1-W with 4-iodotoluene, 4-iodoanisole, and methyl 4-iodobenzoate in the presence of the mixed catalyst gave the substituted derivatives $W(C \equiv CC \equiv CC_6H_4R)(CO)_3Cp$ [R = Me 6 (35%), OMe 7 (51%), CO₂Me **8** (89%) (Scheme 2)]. All complexes were characterized from their spectral properties which resembled those of 5-W. In addition, appropriate resonances for the OMe, Me, and CO₂Me groups were also present in their ¹H NMR spectra. Thus a variety of aryl-substituted derivatives M(C≡CC≡CC₆H₄R)(CO)₃-Cp can be obtained, of which the diynyl ligands are all derived from buta-1,3-diyne as the diynyl precursor, thus avoiding the need to use separate 1-substituted diynes as precursors for each complex.

(c) Oxidative Coupling Reactions. Symmetrically substituted conjugated poly-ynes are readily obtained by oxidative coupling of alkynylcoppers (Glaser, Eglinton, and Hay reactions). A variety of oxidizing agents has been employed, and the Cu(I) derivative often needs to be present in only trace amounts.²⁵ Recently the

^a For C(13), read P(1).

^{(30) (}a) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press Inc.: Orlando, FL, 1985. (b) Tsuji, J. *Palladium Reagents and Catalysis*; John Wiley and Sons: New York, 1995.

⁽³¹⁾ Henderson, W.; McIndoe, J. S.; Nicholson, B. K.; Dyson, P. J. Chem. Commun. 1996, 1183.

⁽²⁹⁾ Fogg, D. E.; Taylor, N. J.; Meyer, A.; Carty, A. J. Organometallics 1987, 6, 2252.

Scheme 3

dimetalated tetraynes $\{ML_n\}C\equiv CC\equiv CC\equiv C\{ML_n\}$ $[ML_n=Re(NO)(PPh_3)Cp^*,^{32}Fe(dppe)Cp^*,^{7}]$ were prepared by Eglinton coupling of the appropriate diynyl precursors. This method utilizes a stoichiometric amount of $Cu(OAc)_2$, and the reactions are typically performed in pyridine at elevated temperatures. However, similar attempts to couple the diynyl ligands in 1 resulted only in extensive decomposition of the diynyl reagent.

Homocoupling of the diynyl ligand in 1 was achieved through use of the milder Hay conditions [CuCl/N,N,N,N-tetramethylethylenediamine (tmed)/O₂] and the corresponding tetrayne—diyl complexes {Cp-(CO)₃M}C=CC=CC=CC=C{M(CO)₃Cp} [M = W (9-W); Mo (9-Mo)] were obtained in good yield (Scheme 3). The very recent report by Akita and co-workers described the use of similar conditions in the preparation of another carbonyl-containing tetrayne—diyl complex [Cp*(OC)₂Fe}C=CC=CC=CC=C{Fe(CO)₂Cp*}.33

Both of these complexes are rather more light sensitive than their diynyl precursors. The spectral properties of both complexes are similar, with each complex having a single, weak $\nu(C \equiv C)$ band (2190 cm⁻¹, **9-W**; 2140 cm⁻¹, **9-Mo**) together with strong ν (CO) bands (2043 and 1959 cm⁻¹, **9-W**; 2049, 1973 cm⁻¹, **9-Mo**). In addition to the expected resonances from the Cp (δ 91.66) and CO ligands (δ 210.3 and 227.3), the four magnetically inequivalent carbon nuclei of the tetrayne-diyl bridge were found as well-resolved peaks of low intensity near δ 112 (C_{α}), 92 (C_{β}), 64 (C_{γ}), and 61 (C_{δ}) (Table 1). In the case of **9-W**, the resonance at lowest field is broadened by coupling to ¹⁸³W; the remainder of the resonances were assigned by analogy with those in **1**. The relatively low chemical shift found for C(4) follows the trend previously found for other complexes of this type and previously, for organic longchain poly-ynes which approach a limiting value of δ 60 ppm.³³

The ES MS spectra were obtained in the presence of a small amount of $Ag^+,$ which has previously been shown to increase the viability of this technique with organometallics. 34 The spectra of 9-W contained peaks at high mass numbers corresponding to silver-containing aggregate ions, including $[Ag_2\{W_2(C_8)(CO)_6Cp_2\}]^+$ and $[Ag(NCMe)\{W_2(C_8)(CO)_6Cp_2\}]^+.$ At higher cone voltages, fragment ions formed by successive loss of CO groups were formed. For 9-Mo, the ion $[Ag(NCMe)-\{Mo_2(C_8)(CO)_6Cp_2\}]^+$ was the only high mass ion observed. In light of the formation of complexes containing group 11 cations attached to molecular tweezer

complexes such as $Ti(C = CPh)_2(\eta - C_5H_4SiMe_3)_2$, ^{19,35} it is interesting to speculate about the possibility of related complexes being formed between **1** and group 11 cations: experiments to test this hypothesis are under way.

(d) Reactions with Tetracyanoethene. The reactions of tetracyanoethene (tcne) and related electron-deficient fluoro-olefins with alkynyl complexes of several metals have been studied in detail.^{36–40} In general, the reactions proceed via intensely colored short-lived paramagnetic intermediates to give cyclobutenyl complexes. Subsequent ring-opening and chelate-forming reactions have given a series of buta-1,3-dien-2-yl and allylic complexes (Scheme 4).

The reaction between **1-W** and tone in CH_2Cl_2 proceeded similarly via a short-lived, deep green intermediate to give a deep purple solution from which crystals of $W\{C\equiv CC[=C(CN)_2]CH=C(CN)_2\}(CO)_3Cp$ (**10**) were obtained. The IR spectrum of **10** contained the expected

$$\begin{array}{c|c}
 & C(CN)_2 \\
 & C & C \\
 & C(CN)_2
\end{array}$$

$$\begin{array}{c|c}
 & C(CN)_2 \\
 & C(CN)_2
\end{array}$$

 ν (CN) (2221 cm⁻¹), ν (C \equiv C) (2078 cm⁻¹) and ν (CO) bands (2030 and 1970 cm⁻¹). The ¹³C NMR spectrum contained singlet resonances at δ 221.0, 148.7, 94.4, and 91.9 which were assigned to the carbon atoms of the butadienyl part of the ligand by comparison with the spectrum of $W{C[=C(CN)_2C(Ph)=C(CN)_2}(CO)_3Cp.^{38}$ A low-field resonance (δ 7.63) in the ¹H NMR spectrum was assigned to the butadienyl proton and suggested that reaction had occurred at the outer C = C triple bond. The organic ligand is probably formed by cycloaddition of the tene molecule to the outer C≡C triple bond, followed by opening of the resulting cyclobutenyl ring to give a trans-butadienyl group. This conclusion was confirmed by a single-crystal X-ray diffraction study, the details of which are reported below. The reaction of tone with the triple bond removed from the metal center indicates that this external C≡C bond is still rather electron rich.

Molecular Structure of W{ $C \equiv CC[=C(CN)_2]CH = C-(CN)_2$ }($CO)_3Cp$ (10). A molecule of 10 is shown in Figure 2, and selected bond lengths and angles are given in Table 2. The structural features of the W(CO)₃Cp group are similar to those found for 3. The W-C(1) and C(1)-C(2) bond lengths are 2.102(6) and 1.207(9) Å, with W-C(1)-C(2) and C(1)-C(2)-C(3) angles of 177.5-(6) and 173.8(7)°, respectively. Within the organic ligand, distances and angles are consistent with sp²

^{(32) (}a) Brady, M.; Weng, W.; Gladysz, J. A. *J. Chem. Soc., Chem. Commun.* **1994**, 2655. (b) Bartik, T.; Bartik, B.; Brady, M.; Dembinski, R.; Gladysz, J. A. *Angew. Chem.* **1996**, *108*, 467; *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 414.

⁽³³⁾ Huntsman, W. D. In *The Chemistry of the Carbon–Carbon Triple Bond*, Patai, S. Ed.; Wiley: New York, 1978; p 553.

⁽³⁴⁾ Henderson, W.; Nicholson, B. K. *J. Chem. Soc.*, *Chem. Commun.* **1995**, 2531.

^{(35) (}a) Lang, H.; Herres, M.; Zsolnai, L. *Organometallics* **1993**, *12*, 5008. (b) Hahashi, Y.; Osawa, M.; Kobogashi, K.; Wakatsuki, Y. *Chem. Commun.* **1996**, 1617. (c) Varga, V.; Mach, K.; Miller, J.; Thewalt, U. *J. Organomet. Chem.* **1996**, *506*, 109. (36) Davison, A.; Solar, J. P. *J. Organomet. Chem.* **1979**, *166*, C13.

⁽³⁶⁾ Davison, A.; Solar, J. P. J. Organomet. Chem. 1979, 166, C13.
(37) Bruce, M. I.; Hambley, T. W.; Snow, M. R.; Swincer, A. G. Organometallics 1985, 4, 494.

⁽³⁸⁾ Bruce, M. I.; Hambley, T. W.; Snow, M. R.; Swincer, A. G. Organometallics 1985, 4, 501.

⁽³⁹⁾ Bruce, M. I.; Liddell, M. J.; Snow, M. R.; Tiekink, E. R. T. Organometallics 1988, 7, 343.

⁽⁴⁰⁾ Bruce, M. I.; Hambley, T. W.; Liddell, M. J.; Snow, M. R.; Swincer, A. G.; Tiekink, E. R. T. *Organometallics* **1990**, *9*, 96.

$$[L_m M] - C = C - R + NC - CN$$

$$[L_m M] - C = C - R + NC - CN$$

$$[L_m M] - C = C - R$$

Scheme 4

Figure 2. Plot of a molecule of $W\{C = CC[CH = C(CN)_2] = C-CC[CH = C(CN)_2] = C-CC[CCC] = C-CC[CH = C(CN)_2] = C-CC[CCC] = C-CC[CN]$ $(CN)_2$ { $(CO)_3(\eta-C_5H_5)$ (**10**), showing atom numbering scheme.

hybridization for C(3-6). This part of the ligand closely resembles that found in $Ru\{C[=C(CN)_2]CPh=C(CN)_2\}$ -(dppe)Cp, formed by a similar addition of tone to Ru-(C≡CPh)(dppe)Cp. 38 The cyanocarbon ligand is essentially planar, and, given the intense color of this complex, it seems reasonable to suggest that extensive electron delocalization occurs throughout this part of the

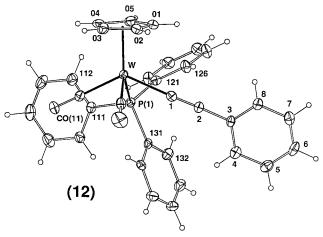
Attempts to add a second equivalent of tone to 10 were unsuccessful. As tone adds readily to the triple bonds in more sterically congested acetylide complexes such as $Ru(C \equiv CPh)(PPh_3)_2Cp$ and $W(C \equiv CPh)(CO)_3Cp$, it is unlikely that steric factors are involved. Instead it seems more probable that the electron-withdrawing cyano groups, which are conjugated with the C≡C triple bond in 10, deactivate this site thereby precluding further [2+2] cycloaddition. We note that tone also adds to electron-rich C=C double bonds, such as those found in vinyl ethers, vinyl sulfides, enamines, and N-vinylsulfonamides, for example.⁴¹

(e) Trimethylamine N-Oxide Assisted Carbonyl-Phosphine Exchange Reactions of $W\{(C \equiv C)_n Ph\}$ (CO)₃Cp. Substitution reactions of the carbonyl ligands in $WX(CO)_3Cp'$ complexes (X = H, halide, alkyl; Cp' = Cp, Cp*) have been examined using a variety of

thermal, photochemical, and chemical methods. Oxidative decarbonylation by trimethylamine N-oxide (tmno) in the presence of the ligand has become established as a convenient route for the preparation of a wide range of substituted metal carbonyls. 42 We therefore chose to examine the use of this reagent in the synthesis of tertiary phosphine-substituted derivatives of 1-W.

A mixture of W(C \equiv CC \equiv CPh)(CO)₃Cp (**5-W**) and PPh₃ in CH_2Cl_2 was treated with tmno to give *cis*-W(C= $CC = CPh)(CO)_2(PPh_3)Cp$ (11) in low yield (20%). The

simple acetylide analogue cis-W(C≡CPh)(CO)₂(PPh₃)-Cp (12), which has been reported briefly by others, 43 was obtained in a similar manner from W(C≡CPh)(CO)₃Cp and fully characterized by a single-crystal X-ray study, the details of which are reported below. The compositions of 11 and 12 were established from microanalytical data and the usual spectral techniques, including electrospray mass spectra which were obtained from methanolic NaOMe solutions, and contained $[M + Na]^+$ as highest ions. We have observed many similar [M + Na]+ ions in the ES mass spectra of diyndiyl complexes.8,44 These curious species are the subject of further investigations.


Both cis and trans isomers of WX(CO)₂(L)Cp' are known, and in some instances the reactions produce a mixture of isomers, the proportions of which depend on the nature of X, the incoming ligand L, and the preparative method employed. Although the factors controlling the relative stabilities of the isomers are not always clear, it has been suggested that the position of the equilibrium may be a delicate balance between the trans influence of the ligands and the steric interactions

⁽⁴¹⁾ Williams, J. K.; Wiley: D. W.; McKusick, B. C. J. Am. Chem. Soc. 1962, 84, 2210.

⁽⁴²⁾ For example, see: (a) Koelle, U. *J. Organomet. Chem.* **1978**, *155*, 53. (b) Johnson, B. F. G.; Lewis, J.; Pippard, D. A. *J. Chem. Soc., Dalton Trans.* **1981**, 407. (c) Foulds, G. A.; Johnson, B. F. G.; Lewis, J. J. Organomet. Chem. 1985, 296, 147. (d) Drake, S. R.; Khattar, R. Organomet. Synth. **1988**, 4, 234. (e) Adams, C. J.; Bruce, M. I.; Horn, E.; Tiekink, E. R. T. *J. Chem. Soc., Dalton Trans.* **1992**, 1157. (f) Bruce, M. I.; Low, P. J. J. Organomet. Chem. 1996, 519, 221

⁽⁴³⁾ Ustynyuk, N. A.; Vinogradova, V. N.; Korneva, V. N.; Kravtsov, D. N.; Andrianov, V. G.; Struchkov, Yu. T. *J. Organomet. Chem.* **1984**, 277, 285

⁽⁴⁴⁾ Bruce, M. I.; Low, P. J.; Nicholson, B. K. Unpublished results.

Figure 3. Plot of a molecule of W(C \equiv CPh)(CO)₂(PPh₃)(η - C_5H_5) (12), showing atom numbering scheme.

between the ligands L and X.45 Both isomers of WX- $(CO)_2(L)$ Cp give similar two-band $\nu(CO)$ patterns in the IR region, although the spectra of the trans isomers typically show less intense symmetric and more intense antisymmetric $\nu(CO)$ bands than the *cis* isomers.^{46,47} The IR ν (CO) spectra of both complexes prepared here have similar two-band patterns. The stronger, symmetric stretch was found at 1953 (11) or 1949 (12) cm^{-1} , while the antisymmetric vibration gave rise to a weaker absorption at 1875 or 1863 cm⁻¹, respectively.

However, it is the ¹³C carbonyl resonances which provide the simplest method of distinguishing between the isomers, as the trans form contains only a single ¹³CO resonance, while the inequivalent carbonyl ligands in the *cis* isomer give rise to two resonances.⁴⁸ The ¹³C NMR spectra of 11 and 12 each contained two distinct resonances arising from the inequivalent carbonyl ligands in a cis geometry.

Molecular Structure of cis-W(C≡CPh)(CO)2-(PPh₃)Cp (12). A molecule of 12 is shown in Figure 3 and selected bond lengths and angles are given in Table 2. The structure determination confirms the *cis* arrangement of CO groups [angles C(11)-W-C(12), 75.7-(3); P-W-C(1), 75.1(2)°]. The presence of the bulky phosphine ligand results in some distortion of the normal coordination about the metal atom, with P-W-C(11, 12) angles of 80.2 and 115.8(2)°, respectively compressed and enlarged compared with the usual values of ca. 127 and 75° found in 5-W and 10 above. The W-P distance is 2.491(2) Å [cf. 2.457(1) Å in *trans*- $W{C(0)Me}(CO)_2(PPh_3)Cp^{49}$, and the W-C(1) separation is 2.141(8) Å, somewhat longer than those found in 5-W and 10. Conversely, the W-CO distances [1.975, 1.937(8) Å] are shorter, due to increased electron backbonding as a result of the presence of the PPh₃ ligand. The phenylethynyl ligand has C(1)-C(2) of 1.19(1) Å and C(2)-C(3) of 1.43(1) Å, which are within the normal ranges; angles at C(1) and C(2) are 178.1(7) and 177.3- $(8)^{\circ}$.

(49) Chen, J.-D.; Wu, C.-K.; Wu, I.-Y.; Huang, B.-C.; Lin, Y.-C.; Wang, Y. *J. Organomet. Chem.* **1993**, *454*, 173.

Conclusion

We have demonstrated that the Cu(I)-catalyzed coupling of buta-1,3-diyne with several metal halides affords the corresponding buta-1,3-diyn-1-yl complexes in high yield. Application of conventional organic reactions to the tungsten complex has allowed the preparation of related diynyl, diyndiyl, and octayndiyl complexes in high yield. In addition, substitution of CO with a tertiary phosphine ligand at the metal center proceeds with retention of the diynyl ligand. In all these cases, the poly-yne ligands are obtained from easily accessible buta-1,3-diyne as the precursor.

Experimental Section

General Reaction Conditions. All reactions were carried out under dry, high purity nitrogen using standard Schlenk techniques. Solvents were dried, distilled, and degassed before use. Light petroleum refers to a fraction of bp 60-80 °C. Elemental analyses were by the Canadian Microanalytical Service (Delta, BC, Canada). Preparative TLC was carried out on glass plates (20 \times 20 cm) coated with silica gel (Merck 60 GF_{254} , 0.5 mm thick).

Instrumental Conditions. Infrared: Perkin-Elmer 1700X FT-IR. NMR: Bruker ACP300 (1H at 300.13 MHz, 13C at 75.47 MHz) and Varian Gemini 200 (1H at 199.98 MHz, 13C at 50.29 MHz) spectrometers. For the ¹³C data, all signals are singlets unless otherwise indicated. Listed values of J_{CW} refer to the doublet signals arising from the presence of $^{183}\mbox{W}$ (ca. 15%natural abundance), which appear about the singlet. Chemical shifts are referenced to SiMe₄ (1H and 13C) and external H₃-PO₄ (³¹P). FAB mass spectra: VG ZAB 2HF spectrometer (3nitrobenzyl alcohol as matrix; exciting gas, Ar; FAB gun voltage, 7.5 kV; current, 1 mA; accelerating potential, 7 kV). ES mass spectra: The samples were dissolved in acetonitrile/ water (1/1), unless otherwise indicated, and injected into a 10 μL injection loop attached to a VG Platform II mass spectrometer. Nitrogen was used as the drying and nebulizing gas. Samples were examined over a range of cone voltages (20-90 V) to find the best conditions. Chemical aids to ionization were used when required.31,34

Reagents. The compounds HC≡CC≡CH,50 SiMe₃C≡ $CC \equiv CSiMe_3$, ⁵¹ $WCl(CO)_3Cp$, ⁵² $MoI(CO)_3Cp$, ⁵³ $FeCl(CO)_2Cp$, ⁵⁴ LiNPr $^{i}_{2}$ (LDA), 55 Pd(PPh $_{3}$), $^{\hat{5}6}$ and 4-MeOC $_{6}$ H $_{4}$ I 57 were prepared by literature methods. N,N,N,N-Tetramethylethylenediamine (Merck), C₆H₅I and 4-MeC₆H₄I (Aldrich), trimethylamine N-oxide (Aldrich), and PClPh2 (Aldrich) were purchased and purified by standard methods prior to use. CuCl (Ajax), CuI (Ajax), PPh₃ (Strem), and SiClMe₃ (Aldrich) were purchased and used as received.

PRECAUTIONARY WARNING! While no problems have been experienced in the preparation, manipulation and reactions of buta-1,3-diyne in this laboratory, this compound must be handled with the necessary degree of respect at all times, especially in the presence of Cu(I). Neat HC = CC = CH should never be isolated. As a matter of routine precaution, solutions of this reagent (2-3 M) were kept cold (ca. -78 °C) under dry nitrogen and used within 5 days of preparation. All manipula-

⁽⁴⁵⁾ Faller, J. W.; Anderson, A. S. J. Am. Chem. Soc. 1970, 92, 5852. (46) Bainbridge, A.; Craig, P. J.; Green, M. J. Chem. Soc. A 1968,

⁽⁴⁷⁾ Beach, D. L.; Barnett, K. W. J. Organomet. Chem. 1975, 97,

⁽⁴⁸⁾ Sakaba, H.; Ishida, K.; Horino, H. Chem. Lett. 1995, 1145.

⁽⁵⁰⁾ Brandsma, L. Preparative Organic Chemistry, 2nd ed.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, p 179.

⁽⁵¹⁾ Jones, G. E.; Kendrick, D. A.; Holmes, A. B. Organic Syntheses; Wiley: New York, 1993; Collect Vol. 8, p 63.

⁽⁵²⁾ Hoffman, N. W. *Inorg. Chim. Acta* **1984**, *88*, 59.(53) Abel, E. W.; Singh, A.; Wilkinson, G. *J. Chem. Soc.* **1960**, 1321.

⁽⁵⁴⁾ Fischer, E. O.; Moser, E. *Inorg. Synth.* 1970, 12, 35.(55) Spitzner, D.; Engler, A. *Organic Syntheses*, Wiley: New York,

⁽⁵⁶⁾ Coulson, D. R. *Inorg. Synth.* **1990**, *28*, 107. (57) Barluenga, J.; Campos, P. J.; Gonzalez, J. M.; Asensio, G. *J. Chem. Soc., Perkin Trans. 1* **1984**, 2623.

tions of this compound were performed behind an explosionproof shield.

Preparation of Buta-1,3-diyn-1-yl Complexes. W-(C≡CC≡CH)(CO)₃Cp (1-W). WCl(CO)₃Cp (2.5 g, 6.79 mmol) was dissolved in mixture of thf (20 mL) and NHEt2 (50 mL). To this solution was added CuI (150 mg, 0.79 mmol), followed immediately by buta-1,3-diyne (7 mL of a 3M solution in thf). The reaction mixture rapidly changed color from red to yelloworange, and a white precipitate of [NH₂Et₂]Cl formed. After 5 min, the solution was filtered and the solvent was removed. The residue was extracted (CH2Cl2) and loaded onto a column of alumina. Elution with light petroleum/acetone (7/3) gave a bright yellow band. Concentration of the eluant (ca. 10 mL) resulted in the precipitation of $W(C = CC = CH)(CO)_3Cp$ (1-W) (2.3 g, 89%) as a bright yellow powder, which was collected, washed with cold hexane, and air-dried. The compound was best stored in the dark at -18 °C. Anal. Found for C₁₂H₆O₃W: C, 37.38; H, 1.54. Calcd: C, 37.72; H, 1.57. IR (CH_2Cl_2) : $\nu(\equiv CH)$ 3260 m, $\nu(C\equiv C)$ 2145 m, $\nu(CO)$ 2044 s, 1958 s (br) cm⁻¹. ¹H NMR (CDCl₃): δ 5.66 (s, 5H, Cp); 2.03 (s, 1H, \equiv CH); (C₆D₆) 4.42 (s, 5H, Cp), 1.80 (s, 1H, \equiv CH). ¹³C NMR (CDCl₃): δ 227.41 (d, $J_{CW} = 70$ Hz, CO), 210.87 (d, $J_{CW} = 70$ Hz, CO), 110.52 (br, C_{α}), 91.51 (s, Cp), 71.60 (d, $J_{CW} = 88$ Hz, C_{β}), 70.13 (d, $J_{CW} = 94$ Hz, C_{γ}), 63.30 (s, C_{δ}). ES MS (low cone voltage) (m/z): 396, [M - CO + NCMe + H]⁺; 368, [M - 2CO $+ NCMe + H]^{+}$; 355, $[M - CO + H]^{+}$; (high cone voltage) 299, $[M - 3CO + H]^{+}$.

 $Mo(C \equiv CC \equiv CH)(CO)_3Cp$ (1-Mo). In a reaction similar to that described for the tungsten analogue, dark yellow Mo-(C≡CC≡CH)(CO)₃Cp (1-Mo) was isolated in 60% yield (0.95 g) from MoI(CO)₃Cp (2 g, 5.4 mmol) and buta-1,3-diyne. The compound was eluted with light petroleum/acetone (9/1). Anal. Found for $C_{12}H_6O_3Mo$: C, 49.02; H, 2.63. Calcd: C, 48.69; H, 2.03. IR (CH₂Cl₂): ν (C \equiv C) 2145 m, ν (CO) 2050 s, 1970 br cm⁻¹. 1 H NMR (CDCl₃): δ 5.58 (s, 5H, Cp), 2.04 (s, 1H, C=CH). 13 C NMR (CDCl₃): δ 237.39 (s, CO), 221.86 (s, CO), 110.46 (s, C_{α}), 92.94 (s, C_{p}), 87.25 (s, C_{β}), 70.27 (s, C_{γ}), 62.10 (s, C_{δ}). FAB MS (m/z): 293, M⁺; 266–210, [M – nCO]⁺ (n =

 $Fe(C = CC = CH)(CO)_2Cp$ (2). A solution of $FeCl(CO)_2Cp$ (200 mg, 0.83 mmol) in NHEt₂ (20 mL) was treated with a catalytic amount of CuI, followed by buta-1,3-diyne (4 mmol as a 3 M thf solution). The deep red solution darkened, was stirred for 5 min, and filtered though Celite. The volatiles were removed, and the residue was purified by preparative TLC (light petroleum/acetone, 7/3). The first band (maroon, $R_f = 0.8$) contained a trace amount of $\{Fe(CO)_2Cp\}_2$. The major band (yellow, $R_f = 0.6$) contained Fe(C=CC=CH)(CO)₂-Cp (2) (67 mg, 32%). IR (CH₂Cl₂) ν (C=C): 2149 m, ν (CO) 2050 s, 2003 s cm $^{-1}$. 1 H NMR (CDCl $_{3}$): δ 5.07 (s, 5H, Cp), 1.47 (s, 1H, C=CH) [lit.²² 2149.5, 2049.9, 2002.5 cm⁻¹; δ 5.02, 1.41].

Reactions of M(C≡CC≡CH)(CO)₃Cp (1-M). Preparation of W(C≡CC≡CSiMe₃)(CO)₃Cp (3). A solution of 1-W (200 mg, 0.52 mmol) in thf (15 mL) was cooled to -78 °C, and lithium diisopropylamide (0.5 M solution in thf/hexane, 1.04 mL, 0.52 mmol) was added dropwise to the stirred solution. The solution became orange and was allowed to stir for 5 min before SiClMe₃ (66 μ L, 57 mg, 0.52 mmol) was added. The solution was allowed to warm to room temperature over 20 min, and solvent was removed. The filtered (Celite) extracts (CH₂Cl₂) were concentrated to ca. 10 mL and diluted with a similar volume of *n*-hexane. Further concentration resulted in the precipitation of $W(C = CC = CSiMe_3)(CO)_3Cp$ (3) as a pale yellow powder, which was washed with several portions of cold hexane and air-dried (190 mg, 80%). Anal. Found for C₁₅H₁₄O₃-SiW: C, 39.18; H, 3.11. Calcd: C, 39.68; H, 3.08. IR (CH₂-Cl₂): ν (C=C) 2174 w, 2127 w, ν (CO) 2045 vs, 2026 m, 1957 br cm⁻¹. 1 H NMR (CDCl₃): δ 5.66 (s, 5H, Cp), 0.20 (s, 9H, SiMe₃). ¹³C NMR (CDCl₃): δ 227.53 (s, CO), 210.56 (d, $J_{CW} = 77$ Hz, CO), 111.74 (br, C_{α}), 110.86 (s, C_{β}), 91.53 (s, Cp), 90.04 (s, C_{γ}),

73.59 (s, C_{δ}); 0.00 (s, SiMe₃). FAB MS (m/z): 454, M⁺; 426, $[M - CO]^+$; 370, $[M - 3CO]^+$.

Complex 3 was also prepared as follows: a solution of WCl- $(CO)_3$ Cp (200 mg, 0.54 mmol) in thf (10 mL) was cooled to -78°C and treated dropwise with LiC≡CC≡CSiMe₃ [0.12 M, 5 mL, 0.6 mmol; solution prepared from 1,4-bis(trimethylsilyl)buta-1,3-diyne (250 mg, 1.23 mmol) in thf (10 mL) at -78 °C treated dropwise with MeLi·LiBr (1.5 M solution in Et₂O, 0.860 mL, 1.23 mmol)]. 18,58 After warming to room temperature over 1 h preparative TLC (light petroleum/acetone, 7/3) afforded $W(C = CC = CSiMe_3)(CO)_3Cp$ (3) (88 mg, 36%) from the yellow band ($R_f = 0.7$) after crystallization (CH₂Cl₂/hexane at -20°C) and unchanged WCl(CO)₃Cp (orange band, $R_f = 0.6$, 50

Preparation of $W\{C \equiv CC \equiv CP(O)Ph_2\}(CO)_3Cp$ (4). A cold (-78 °C) solution of **1-W** (1.0 g, 2.60 mmol) in thf (100 mL) was treated dropwise with lithium diisopropylamide (0.5 M solution in thf/hexane, 5.5 mL, 2.8 mmol) and stirred for 10 min. Freshly distilled PClPh₂ (0.5 mL, 2.8 mmol) was added slowly, and the solution was allowed to warm to room temperature over 2 h. Solvent was removed, and the residue taken up in CH₂Cl₂ and loaded onto a squat Al₂O₃ column. The column was washed initially with CH2Cl2 to remove any unchanged W(C≡CC≡CH)(CO)₃Cp and then with acetone to give crude $W{C \equiv CC \equiv CP(O)Ph_2}(CO)_3Cp$ (4) (250 mg, 16%), which was purified further by preparative TLC (light petroleum/ acetone, 6/4) and crystallization (CH₂Cl₂/hexane). Anal. Found for C₂₄H₁₅O₄PW: C, 49.11; H, 2.63. Calcd: C, 49.40; H, 2.57. IR (CH₂Cl₂): ν (C \equiv C) 2138 m, ν (CO) 2051 s, 2031 m, 1962 (br); (Nujol) ν (PO) 1199 cm⁻¹. ¹H NMR (CDCl₃): δ 7.89–7.47 (m, 10H, PPh₂), 5.69 (s, 5H, Cp). ¹³C NMR (CDCl₃): δ 225.43 (s, CO); 210.23 (d, $J_{\text{CW}} = 71 \text{ Hz}$, CO), 134.33–128.45 (Ph), 110.57 (d, $J_{CW} = 16$ Hz, C_{α}), 91.64 (s, Cp), 91.32 (s, C_{β}). FAB MS (m/z): 583, M⁺; 555, [M – CO]⁺; 498, [M – 3CO]⁺.

Preparation of W(C \equiv CC \equiv CPh)(CO)₃Cp (5-W). Dry NHPri₂ (50 mL) was introduced into a flame-dried Schlenk flask and rigorously deoxygenated by three freeze-pumpthaw sequences. Solid 1-W (1.0 g, 2.62 mmol) was added followed by freshly distilled iodobenzene (801 mg, 3.93 mmol), Pd(PPh₃)₄ (151 mg, 0.13 mmol) and CuI (50 mg, 0.26 mmol) in that order. The solution was stirred in the dark for 16 h. The yellow precipitate obtained was filtered, washed with several portions of cold hexane, dissolved in the minimum volume of CH2Cl2, and purified on a squat column of Al2O3 $(30 \times 50 \text{ mm})$. Elution with light petroleum/acetone (7/3) gave a bright yellow fraction, which was concentrated to give $W(C = CC = CPh)(CO)_3Cp$ (5-W) as a bright yellow microcrystalline powder (650 mg). Similar treatment of the filtrate from the reaction mixture on a longer Al₂O₃ column gave a further 140 mg of 5-W. The total yield was 790 mg (66%). The microanalytical sample was recrystallized from acetone/hexane. Anal. Found for C₁₈H₁₀O₃W: C, 46.80; H, 2.29. Calcd: C, 47.20; H, 2.18. IR (CH₂Cl₂): v(C≡C) 2183 m, 2059 m, v-(CO) 2038 vs, 1956 br cm⁻¹. 1 H NMR (CDCl₃): δ 7.27–7.46 (m, 5H, Ph), 5.68 (s, 5H, Cp). 13 C NMR (CDCl₃): δ 227.60 (d, $J_{\text{CW}} = 60 \text{ Hz}$, CO), 210.64 (d, $J_{\text{CW}} = 71 \text{ Hz}$, CO), 132.38 (s, o-C), 128.16 (s, m-C), 127.97 (s, p-C), 123.05 (s, i-C), 111.03 (d, $J_{CW} = 22$ Hz, C_{α}), 91.62 (s, Cp), 76.19, 73.78 (2 × s, C_{γ} and C_{δ}). FAB MS (m/z): 458, M⁺; 430, [M – CO]⁺.

Preparation of Mo(C≡CC≡CPh)(CO)₃Cp (5-Mo). Using conditions similar to those described above for 5-W, a solution of Mo(C≡CC≡CH)(CO)₃Cp (100 mg, 0.34 mmol) in dry, degassed NHPr₂ was treated with PhI (100 mg, 0.50 mmol), Pd-(PPh₃)₄ (20 mg, 0.017 mmol), and CuI (7 mg, 0.03 mmol) and stirred for 16 h in the dark. Preparative TLC (light petroleum/ acetone, 7/3) separated many bands. A bright yellow band (R_f = 0.57) yielded very light-sensitive Mo(C≡CC≡CPh)(CO)₃Cp

⁽⁵⁸⁾ Holmes, A. B.; Jennings-White, C. L. D.; Schulthess, A. H.; Akinde, B.; Walton, D. R. M. J. Chem. Soc., Chem. Commun. 1979, 840.

(5-Mo) (50 mg, 40%) after crystallization (CH₂Cl₂/hexane). Other bands were not investigated further. Anal. Found for C₁₈H₁₀O₃Mo: C, 57.70; H, 2.73. Calcd: C, 58.38; H, 2.70. IR (CH₂Cl₂): ν (C≡C) 2183 m, ν (CO) 2059 m, 2042 vs, 1970 br cm⁻¹. ¹H NMR (CDCl₃): δ 7.46−7.27 (m, 5H, Ph), 5.58 (s, 5H, Cp). ¹³C NMR (CDCl₃): δ 237.50 (s, CO), 221.77 (s, CO), 132.31 (s, δ -C), 128.15 (s, δ -C), 127.92 (s, δ -C), 123.15 (s, δ -C), 110.92 (s, C₀), 93.02 (s, Cp), 76.42 (s, C δ), 72.59 (s, C δ). ES MS (with added NaOMe; low cone voltage) (δ / δ /2): 402, [M + OMe]⁻.

Preparation of $W(C \equiv CC \equiv CC_6H_4Me-4)(CO)_3Cp$ (6). NHiPr₂ (5 mL) was added to a solid mixture of 1-W (100 mg. 0.26 mmol), 4-MeC₆H₄I (60 mg, 0.28 mmol), Pd(PPh₃)₄ (15 mg), and CuI (5 mg). The mixture was degassed and was stirred at 50 °C for 24 h. After removal of solvent, the solid residue was chromatographed on Al₂O₃ with benzene as eluant. An orange solution was obtained. The product was precipitated from benzene/hexane, washed with hexane, and dried in vacuo at room temperature to give $W(C = CC = CC_6H_4Me-4)(CO)_3Cp$ (6) (55 mg, 51%), mp 168-170 °C (dec). Anal. Found for $C_{19}H_{12}O_3W$: C, 48.21; H, 2.55. Calcd: C, 48.33; H, 2.56. IR (Nujol): ν (C=C) 2180 m; ν (CO) 2056 m, 2030 s, 1956 (sh), 1936 s cm⁻¹. ¹H NMR (CDCl₃): δ 2.32 (s, 3H, Me), 5.64 (s, 5H, Cp), 7.04 (d, 2H, $J_{HH} = 8$ Hz, H_m or H_0 of C_6H_4), 7.31 (d, 2H, $J_{HH} =$ 8 Hz, H_0 or H_m of C_6H_4). FAB MS (m/z): 472, M^+ ; 444, [M-T] $CO]^+$; 388, $[M - 3CO]^+$

Preparation of W(C≡CC≡CC₆H₄OMe-4)(CO)₃Cp (7). A similar reaction with **1-W** (100 mg, 0.26 mmol), 4-MeOC₆H₄I (90 mg, 0.38 mmol), Pd(PPh₃)₄ (10 mg, 0.009 mmol), and CuI (7 mg) in NHPrⁱ₂ (5 mL) at 40 °C overnight afforded orange W(C≡CC≡CC₆H₄OMe-4)(CO)₃Cp (7) (47 mg, 35%), mp 148−151 °C (dec). Anal. Found for (C₁₉H₁₂O₄W·0.2CH₂Cl₂): C, 45.54; H, 2.38. Calcd: C, 45.65; H, 2.47. IR (Nujol): ν (C≡C) 2174 w, ν (CO) 2052 m, 2031 s, 1951 s, 1934 s cm⁻¹. ¹H NMR (CDCl₃): δ 3.78 (s, 3H, Me), 5.64 (s, 5H, Cp), 6.79 (d, 2H, J_{HH} = 9 Hz, H_m or H_o of C₆H₄), 7.36 (d, 2H, J_{HH} = 9 Hz, H_o or H_m of C₆H₄). FAB MS (m/z): 488, M⁺; 460, [M − CO]⁺.

Preparation of W(C≡CC≡CC₆H₄CO₂Me-4)(CO)₃Cp (8). A similar reaction with 1-W (100 mg, 0.26 mmol), 4-IC₆H₄-CO₂CH₃ (105 mg, 0.40 mmol), Pd(PPh₃)₄ (10 mg, 0.009 mmol), and CuI (5 mg) in NHPrⁱ₂ (5 mL) at 65 °C for 5 h gave yellow W(C≡CC≡CC₆H₄CO₂Me-4)(CO)₃Cp (8) (120 mg, 89%), mp 161−164 °C (dec). Anal. Found for C₂₀H₁₂O₅W.0.1CH₂Cl₂: C, 45.89; H, 2.49. Calcd: C, 46.02; H, 2.34. IR (Nujol): ν (C≡C) 2179 m, ν (CO) 2058 m, 2030 s, 1966 s, 1931 s; ν (CO₂) 1713 m, 1601 m cm⁻¹. ¹H NMR (CDCl₃): δ 3.89 (s, 3H, Me), 5.66 (s, 5H, Cp), 7.45 (d, 2H, J_{HH} = 8.5 Hz, H_m or H₀ of C₆H₄), 7.93 (d, 2H, J_{HH} = 8.5 Hz, H₀ or H_m of C₆H₄). ES MS (MeCN/H₂O with Ag⁺) (m/z): 516, M⁺; 488, [M − CO]⁺; 450, [M − 2CO]⁺; 432, [M − 3CO]⁺; 373, [M − 3CO − CO₂Me]⁺; 136, [HC₆H₄CO₂Me]⁺.

Preparation of W[C \equiv CC{CH=C(CN)₂}C{=C(CN)₂}H]- $(CO)_3Cp$ (10). A solution of 1-W (200 mg, 0.52 mmol) in CH₂-Cl₂ (15 mL) was treated with tetracyanoethene (67 mg, 0.52 mmol) and stirred for 5 min. The initially yellow solution acquired an intense purple color during this time. Solvent was removed, and the residue was extracted with the minimum volume of fresh CH₂Cl₂ and then filtered dropwise into rapidly stirred hexane. The resulting purple precipitate was collected and crystallized (CH₂Cl₂/hexane) to give W{C≡CC[=C(CN)₂]C-[=C(CN)₂]H}(CO)₃Cp (**10**) as dark purple blocks (225 mg, 84%). Crystals suitable for the X-ray study were obtained from 1,2dichloroethane/hexane. Anal. Found for C₁₈H₆O₃N₄W: C, 42.21; H, 1.32. Calcd: C, 42.35; H, 1.18. IR (CH₂Cl₂): ν (CN) 2221 w, ν (C \equiv C) 2078 m, ν (CO) 2030 s, 1970 br cm $^{-1}$. 1 H NMR (CDCl₃): δ 7.62 (s, 1H, CH=), 5.80 (s, 5H, Cp). ¹³C NMR (CDCl₃): δ 221.05 [s, C(3)], 209.15 (s, CO), 148.70 [s, C(2)], 94.41 [s, C(4)], 92.19 (s, Cp), 91.90 [s, C(1)]. FAB MS (m/z): 510, M⁺.

Oxidative Coupling of M(C≡CCH)(CO)₃Cp. Preparation of the Hay Catalyst (CuCl/tmed). Cuprous chloride (100 mg, 1.01 mmol) was suspended in dry acetone (5 mL),

treated with tmed (150 μ L, 117 mg, 1.01 mmol), and stirred for 15 min. The finely divided suspension of unreacted CuCl was allowed to settle prior to use in the coupling reactions.

Preparation of $\{Cp(CO)_3W\}(C\equiv C)_4\{W(CO)_3Cp\}\ (9-W)$. The Hay catalyst was added in small portions to a solution of 1-W (500 mg, 1.3 mmol) in acetone (40 mL) while a stream of O₂ or air was bubbled through the reaction mixture until the reaction was judged complete (TLC). Solvent was removed, and the residue was purified by column chromatography on Al₂O₃. A light petroleum/acetone gradient (6/4 to 4/6) was used to elute a yellow-orange band, which yielded {Cp(CO)₃W}- $(C \equiv C)_4 \{W(CO)_3 Cp\}$ (9-W) (420 mg, 85%) as an orange, microcrystalline solid. The analytical sample was crystallized as the 0.2CH₂Cl₂ solvate (NMR) from CH₂Cl₂/hexane. Anal. Found for C₂₄H₁₀O₆W₂·0·2CH₂Cl₂: C, 37.22; H, 1.57. Calcd: C, 37.31; H, 1.35. IR (CH₂Cl₂): ν (C \equiv C) 2190 w, ν (CO) 2043 s, 1959 vs cm $^{-1}$. 1 H NMR (CDCl₃): δ 5.67 (s, Cp). 13 C NMR (CDCl₃): δ 227.32 (s, CO), 210.26 (s, CO), 112.39 (br, C₀), 91.66 (s, Cp), 91.60 (s, C_{β}), 63.70 (s, C_{γ}), 60.91 (s, C_{δ}). ES MS (with Ag^+) (m/z): 1631, $[2M + Ag]^+$; 1575, $[2M + Ag - 2CO]^+$; 911– 854, $[M + Ag + NCMe - nCO]^+$ (n = 0-2); 813, $[M + Ag - nCO]^+$ $2CO]^{+}$.

Preparation of {**Cp(CO)**₃**Mo**}(**C≡C)**₄{**Mo(CO)**₃**Cp**} (**9-Mo)**. Similarly, **1-Mo** (200 mg, 0.68 mmol) in acetone (25 mL) gave {Cp(CO)₃Mo}(C≡C)₄{Mo(CO)₃Cp} (**9-Mo**) as a highly light-sensitive, burnt orange powder (80−120 mg, 40−60%). IR (CH₂Cl₂): ν (C≡C) 2140w, ν (CO) 2049s, 1973vs cm⁻¹. ¹H NMR (CDCl₃): δ 5.78 (s, 5H, Cp); ¹³C NMR (CDCl₃): δ _C 237.22, 221.41 (2 x s, CO), 112.24 (s, C_α), 93.12 (s, Cp), 92.22 (s, C_β), 63.47 (s, C_γ), 59.95 (s, C_δ). ES MS (with Ag⁺) (m/z): 734, [M + Ag + NCMe]⁺.

Preparation of cis-W(C≡CC≡CPh)(CO)₂(PPh₃)Cp (11). A solution of W(C \equiv CC \equiv CPh)(CO)₃Cp (5-W) (240 mg, 0.52 mmol) and PPh₃ (145 mg, 0.55 mmol) in CH₂Cl₂ (50 mL) was purged with nitrogen and treated with tmno in portions until the reaction was complete (IR). The solution was filtered through a pad of silica gel and then further purified by preparative TLC to give yellow W(C≡CC≡CPh)(CO)₂(PPh₃)Cp (11) (67 mg, 20%) after crystallization (CH₂Cl₂/MeOH). Anal. Found for C₃₅H₂₅O₂PW: C, 61.01; H, 3.89. Calcd: C, 60.71; H, 3.61. IR (CH₂Cl₂): ν (C \equiv C) 2172 m, ν (CO) 2039 w, 1953 vs, 1875 s cm⁻¹. ¹H NMR (CDCl₃): δ 7.52-7.20 (m, 20H, PPh₃ and Ph), 5.44 (s, 5H, Cp). ¹³C NMR (CDCl₃): δ 243.15 (d, J_{CP} = 22 Hz,CO), 222.63 (d, J_{CP} = 20 Hz, CO), 135.05–124.00 (m, Ph), 113.27 (d, $J_{CW} = 8$ Hz, C_{α}), 100.14 (s, C_{β}), 91.23 (s, C_{P}), 72.75, 72.2 (2 \times s, C $_{\gamma}$ and C $_{\delta}$). ³¹P NMR (CDCl $_{3}$): δ_{P} 21.00 (t, $J_{PW} = 121.5$ Hz, PPh₃). ES MS (low cone voltage with NaOMe) (m/z): 715, [M + Na]⁺

Preparation of cis-W(C≡CPh)(CO)₂(PPh₃)Cp (12): A solution of W(C≡CPh)(CO)₃Cp (100 mg, 0.23 mmol) and PPh₃ (70 mg, 0.27 mmol) in CH₂Cl₂ (20 mL) was purged with nitrogen and treated with freshly sublimed tmno in several portions until the reaction was judged complete (IR; the ν -(CO) 2038 cm⁻¹ band of the starting material was monitored). Preparative TLC (light petroleum/acetone, 7/3) gave bright yellow needles of W(C≡CPh)(CO)₂(PPh₃)Cp (12) (67 mg, 44%) from the major band. Anal. Found for $C_{33}H_{25}O_2PW$: C, 59.51; H, 3.20. Calcd: C, 59.29; H, 3.74. IR (CH₂Cl₂): ν (C \equiv C) 2089 w, ν (CO) 1949 vs, 1863 s cm⁻¹. ¹H NMR (CDCl₃): δ 7.53– 6.53 (m, 20H, Ph), 5.46 (s, 5H, Cp). ^{13}C NMR (CDCl3): δ 244.54 (br, CO), 228.79 (d, $J_{CP} = 5$ Hz, CO), 133.82–124.75 (m, Ph), 91.22 (s, Cp). ES MS (m/z): (low cone voltage) 668, M^+ ; (low cone voltage with NaOMe) 691, $[M + Na]^+$; (high cone voltage) 668-612, $[M - nCO]^+$ (n = 0-2).

Crystallography. Unique room-temperature four-circle diffractometer data sets were recorded (monochromatic Mo $K\alpha$ radiation, $\lambda=0.7107_3$ Å; $T\sim295$ K) and used in the full-matrix least-squares refinements after analytical absorption correction. Anisotropic thermal parameter forms were refined for the non-hydrogen atoms; $(x, y, z, U_{\rm iso})_{\rm H}$ were included constrained at estimated values. Conventional residuals R,

 $R_{\rm w}$ on |F| at convergence are given, statistical weights derivative of $\sigma^2(I) = \sigma^2(I_{\rm diff}) + 0.0004 \sigma^4(I_{\rm diff})$ being employed. Neutral atom complex scattering factors were employed, and computations were made using the XTAL 3.4 program system⁵⁹ implemented by S. R. Hall. Pertinent results are given in the figures and tables; material deposited comprises all coordinates and thermal parameters and full molecular non-hydrogen geometries.

Abnormal Features/Variations in Procedure. For Compound 3. Methyl groups were modeled over two sets of sites, disordered about the mirror plane and necessarily of equal occupancy in the present space group. Deterioration of the crystal by ca. 12% over the course of data collection was compensated for by scaling.

(59) Hall, S. R., King, G. S. D., Stewart, J. M., Eds. *The XTAL 3.4 Users Manual*; University of Western Australia: Lamb, Perth, 1994.

For Compound 12. Merging of a redundant data set measured over a quadrant of reciprocal space after absorption correction yielded $R_{\text{int}} = 0.045$.

Acknowledgment. Support of this work by the Australian Research Council is gratefully acknowledged. P.J.L. was the holder of an Australian Post-Graduate Award. We thank Professor Brian Nicholson (University of Waikato, Hamilton, New Zealand) for the electrospray mass spectra.

Supporting Information Available: X-ray crystallographic files, in CIF format, for **3**, **10**, and **12** are available through the Internet only. Access information is given on any current masthead page. Crystallographic data have also been deposited with Cambridge and can be obtained by referencing 102116 for **3**, 102117 for **10**, and 102118 for **12**.

OM980031R