Synthesis and Structural Characterization of a Novel Polyheterocyclopentadienyl Thallium(I) Complex

Matthew D. Francis and Cameron Jones*

Department of Chemistry, University of Wales, Swansea, Singleton Park, Swansea, SA2 8PP, United Kingdom

Glen B. Deacon and Ewan E. Delbridge

Department of Chemistry, Monash University, Clayton, Victoria 3168, Australia

Peter C. Junk

Department of Chemistry and Chemical Engineering, James Cook University, Townsville, Queensland 4811, Australia

Received March 30, 1998

Summary: The reaction of [Li(TMEDA)2][1,4,2-P2SbC2- But 2] (1) with TlCl affords the compound [{*Tl(µ-η5:η5- 1,4,2-P2SbC2But 2)*}∞*] (2). Its X-ray crystal structure reveals a double-stranded zigzag polymeric chain structure with intermolecular thallium*-*phosphorus interactions.*

Introduction

In recent years there has been considerable interest in the chemistry of cyclopentadienyl thallium(I) compounds, as they have been shown to have significant value in synthetic chemistry.¹ The structural information that is available on such systems shows they are generally either polymeric, consisting of zigzag chains of alternating thallium and cyclopentadienyl units (e.g. [{Tl(*µ*-*η*5:*η*5-C5Me5)}∞]),2 or oligomeric (e.g. [{Tl[*µ*-*η*5:*η*5- $C_5H_3(SiMe_3)_{2}$ -1,3] $\{6\}$ ³ in the solid state. In contrast, electron diffraction studies on cyclopentadienyl thallium(I) compounds, e.g. $[T(C_5H_5)]$, have demonstrated that in the gas phase these compounds exist as monomeric half-sandwich complexes.4 Despite the attention that has been paid to cyclopentadienyl thallium(I) complexes, *η*5-heterocyclopentadienyl thallium(I) systems are extremely rare. To the best of our knowledge, the only structurally characterized example of such a compound is the monomeric heterobimetallic complex [Tl{*µ*-*η*5:*η*5-B(Me)C(H)B(Me)C(Me)C(Me)}Co(*η*5- C_5H_5].⁵ In response to this lack of information, we decided to investigate the reaction between TlCl and the diphosphastibolyl ring anion $[1,4,2$ -P₂SbC₂Bu^t₂]⁻ (**1**), which has yielded the first main-group complex of **1**, viz. [{Tl(*μ*-*η*⁵:*η*⁵-1,4,2-P₂SbC₂Bu^t₂)}∞] (**2**). We have previously described the synthesis of **1** and its use in the

formation of a variety of transition-metal complexes in which it can act as an η^1 , η^5 , or mixed η^1/η^5 ligand.^{6a-c} Its use as a precursor in the formation of organometallic cage compounds has also been addressed.^{6d} Herein, we report the full synthetic details and the X-ray crystal structure of **2**.

Results and Discussion

Treatment of a DME (1,2-dimethoxyethane) suspension of TlCl with **1** leads to the formation of **2** in good yield (69%) (Scheme 1). Compound **2** is a heat- and airstable red powder that has limited solubility in common solvents but can be recrystallized from DME. The structure of **2** was elucidated from a combination of mass spectrometry, multinuclear NMR spectroscopy, and single-crystal X-ray diffraction. The 31P{1H} NMR spectrum of **2** displays two doublets at 333 and 274 ppm with typical two-bond P-P couplings of 51.2 Hz. The chemical shifts are very similar to those in the parent Li complex 1 (308.5 and 277.9 ppm), $6a$ which perhaps indicates a degree of ionic character in the bonding in

⁽¹⁾ Marko, I. E.; Leung, C. W. In *Comprehensive Organometallic Chemistry II*; McKillop, A., Ed.; Pergamon Press: Oxford, U.K., 1995; Vol. 11, Chapter 10.

⁽²⁾ Werner, H.; Otto, H.; Kraus, H. J. *J. Organomet. Chem.* **1986**, *315*, C57.

⁽³⁾ Harvey, S.; Raston, C. L.; Skelton, B. W.; White, A. H.; Lappert, M. F.; Srivastava, G. *J. Organomet. Chem.* **1987**, *328*, C1.
(4) Tyler, J. K.; Cox, A. P.; Sheridan, J. *Nature (London)* **1959**, *183*,

^{1182.}

⁽⁵⁾ Stumpf, K.; Pritzkow, H.; Siebert, W. *Angew. Chem., Int. Ed. Engl.* **1985**, *24*, 71.

^{(6) (}a) Francis, M. D.; Hibbs, D. E.; Hursthouse, M. B.; Jones, C.; Malik, K. M. A. *J. Organomet. Chem.* **1997**, *527*, 291. (b) Black, S. J.; Francis, M. D.; Jones, C. *J. Chem. Soc., Dalton. Trans.* **1997**, 2183. (c) Black, S. J.; Hibbs, D. E.; Hursthouse, M. B.; Jones, C.; Malik, K. M. A.; Thomas, R. C. *J. Chem. Soc., Dalton Trans.* **1997**, 4321. (d) Black, S. J.; Francis, M. D.; Jones, C. *J. Chem. Soc., Chem. Commun.* **1997**, 305.

Figure 1. Unit cell diagram of $[\{T1(\mu-\eta^5:\eta^{5}-1,4,2-P_{2}SbC_{2}-1,4,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2}-1,2-P_{2}ScC_{2$ Bu*^t* 2)}∞] (**2**).

2 in solution. The EI/CI mass spectrum of **2** shows a cluster at *m*/*z* 527 and nothing higher, suggesting that in the gas phase **2** exists predominantly as a monomeric species.

In the solid state **2** exists as a double-stranded zigzag polymer in which there are two crystallographically independent monomers per asymmetric unit (Figure 1). An examination of the thallium-ring bond lengths (Table 1) points to a situation in which the ring is approximately *η*5-ligated to the thallium. Between any thallium and a given ring, the thallium-carbon distances and the thallium-phosphorus distances are not significantly different within 3 standard deviations. For example: $Tl(2)-C(5) = 3.28(3)$ Å, $Tl(2)-C(3) = 3.15(3)$ Å; Tl(2)-P(2) = 3.246(9) Å, Tl(2)-P(4) = 3.301(8) Å. The bond lengths within the diphosphastibolyl rings suggest full delocalization, as the antimony-carbon distances 2.03(3) Å $(Sb(21) - C(25))$ and 2.05(2) Å $(Sb(1) - C(5))$ compare well with those in other delocalized systems, e.g. 2.050(5) Å in stibabenzene.⁷ Similarly, the phosphorus-carbon bond lengths of 1.75(3) Å ($C(25)-P(24)$), 1.68(2) Å (C(23)-P(24)), 1.79(3) Å (C(23)-P(22)), 1.77-(3) Å $(C(3)-P(4))$, 1.71(3) Å $(C(3)-P(2))$, and 1.74(2) Å $(C(5)-P(4))$ are all similar to that of 1.75 Å reported by Becker et al. for the related delocalized triphospholyl anion $[1,2,4-P_3C_2\text{But}_2]^{-.8}$ The centroid—thallium—centroid connections are displaced from linearity being troid connections are displaced from linearity, being characterized by angles of $158.8(2)^\circ$ (Cent(a)-Tl(2)-

Cent(b), where Cent(a) represents the centroid of the $Sb(21)-C(25)$ ring and Cent(b) represents the centroid of the Sb(1)–C(5) ring) and $154.7(4)^\circ$ (Cent(b)–Tl(1)– Cent(a)). These angles are not dissimilar from those seen in existing systems, e.g. 148.2(1) and 142.8(1)° in $[\{\text{Tl}(\mu-\eta^{5}:\eta^{5}\text{-C}_{5}\text{Me}_{5})\}_{\infty}]^{2}$ and 149° in $[\{\text{Tl}(\mu-\eta^{5}:\eta^{5}\text{-C}_{5}\text{H}_{4}\text{-C}_{5}\text{Me}_{5}]\}_{\infty}$ SiMe_3] L^3 The thallium-centroid-thallium connections are approximately linear, $176.4(4)^\circ$ for Tl(2)-Cent(a)-Tl(1) and $175.0(6)^\circ$ for Tl(1)-Cent(b)-Tl(2), comparing well with 178° in $[\{T](\mu - \eta^5 : \eta^5 - C_5H_4SiMe_3)\}\approx]$.³ There are four distinct thallium-ring centroid distances of 2.835(8) Å $(Tl(2) - Cent(b))$, 2.890(9) Å $(Tl(2) - Cent-$ (a)), 2.908(8) Å (Tl(1)-Cent(b)), and 2.935(9) Å (Tl(1)-Cent(a)) (cf. 2.71 and 2.84 Å in $[\{T\}(\mu - \eta^5 : \eta^5 - C_5H_4 -$ SiMe3)}∞] ³ and 2.91 and 2.99 Å in [{Tl(*µ*-*η*5:*η*5-C5Me5)}∞]).2 In addition to these features, an interaction between the thallium center Tl(1) and the least hindered phosphorus center of the neighboring strand, P(22), is seen. This distance of 3.386(9) Å is well within the sum of the van der Waals radii of the two elements $(\Sigma r(T), r(P) = 3.9)$ Å).9 A similar interstrand interaction of 3.583 Å between the ring phosphine substituent and the opposing thallium center has been seen in the related complex [{Tl(*µ*-*η*5:*η*5-C5H4PPh2)}∞].10

Conclusion

In summary, we have discussed the synthesis and structural characterization of a novel polyheterocyclopentadienyl thallium(I) complex. The X-ray crystal structure of the compound shows it to exist as a zigzag polymer with interstrand interactions. Work continues in our laboratory on examining the utility of **2** as a transfer reagent in organometallic synthesis.

Experimental Section

General Procedures. All procedures were conducted using conventional Schlenk techniques under an atmosphere of argon in flame-dried glassware. The solvents DME and toluene were refluxed over Na/K alloy for at least 10 h before being distilled under a nitrogen atmosphere and freeze-thawdegassed before use. NMR spectra were recorded in C_6D_6 on a Bruker WM-250 or AC-400 instrument. Mass spectra were recorded on a VG 12-253 quad/70 eV (EI/CI). Melting points were recorded in sealed capillaries under argon. Thallium(I) chloride was used as received (Avocado Chemicals). [Li- $(TMEDA)_2$ [1,4,2-P₂SbC₂Bu^t₂] was prepared by the literature procedure.6a A reproducible microanalysis of **2** could not be obtained due to persistent contamination with small amounts of the related triphospholyl complex $[\{Tl(\mu-\eta^5:\eta^{5}-1,2,4-P_3-\sigma^2)]$ $Bu^t_2C_2$ ₂. **(3**; ca. 2%), which arises from the unavoidable contamination of 1 with $[Li(TMEDA)_2][1,2,4-P_3Bu^t{}_2C_2]$. Compounds **2** and **3** could not be completely separated despite repeated fractional crystallizations.

Synthesis of 2. TlCl (0.529 g, 2.20 mmol) and **1** (916 mg, 1.63 mmol) were stirred together in DME (20 mL) for 3 days in the absence of light. After this time volatiles were removed in vacuo and the residue was extracted with toluene and filtered. Evaporation of the toluene afforded **2** as a red powder; yield 1.13 mmol, 69%. Crystals suitable for X-ray analysis were grown from a concentrated DME solution held at -30 °C. Mp: 160 °C dec. ³¹P{¹H} NMR (101.4 MHz, C_6D_6 , 85% H₃PO₄ ext.): 274 (d, ² $J_{PP} = 51.2$ Hz), 333 (d, ² $J_{PP} = 51.2$ Hz).

⁽⁷⁾ Fong, G. D.; Kuczkowski, R. L.; Ashe, A. J., III. *J. Mol. Spectrosc.* **1978**, *70*, 197.

⁽⁸⁾ Becker, G.; Becker, W.; Knebl, R.; Schmidt, H.; Weeber, U.; Westerhausen, M. *Nova Acta Leopold.* **1985**, *59*, 55.

^{(9) (}a) Emsley, J. *The Elements*, 2nd ed.; Oxford University Press: Oxford, U.K., 1991. (b) Downs, A. J., Ed. *The Chemistry of Aluminium, Gallium, Indium and Thallium*; Blackie, Glasgow, U.K., 1997.

⁽¹⁰⁾ Lin, G.; Wong, W. T. *J. Organomet. Chem.* **1995**, *495*, 203.

Table 1. Selected Bond Distances (Å) and Angles (deg) in Compound 2

		Distances			
$Tl(1)-Sb(1)$	3.503(3)	$Tl(1)-P(2)$	3.366(9)	$Tl(1)-C(3)$	3.16(2)
$Tl(1)-P(4)$	3.327(7)	$Tl(1)-C(5)$	3.33(3)	$Tl(1) - Sb(21)$	3.531(3)
$Tl(1) - C(25)$	3.33(2)	$Tl(1) - P(24)$	3.325(8)	$Tl(1) - C(23)$	3.216(3)
$Tl(1)-P(22)$	3.389(8)	$Tl(2)-Sb(1)$	3.412(2)	$T1(2)-P(2)$	3.246(9)
$Tl(2)-C(3)$	3.15(3)	$Tl(2)-P(4)$	3.301(8)	$T1(2)-C(5)$	3.28(3)
$Tl(2) - Sb(21)$	3.471(3)	$T1(2)-C(25)$	3.282(3)	$T1(2)-P(24)$	3.320(8)
$T1(2)-C(23)$	3.209(3)	$T1(2)-P(22)$	3.320(9)	$P(4)-C(5)$	1.74(2)
$C(5) - Sb(1)$	2.05(2)	$Sb(1)-P(2)$	2.428(8)	$P(2) - C(3)$	1.71(3)
$C(3)-P(4)$	1.77(3)	$P(24)-C(23)$	1.68(2)	$C(23) - P(22)$	1.79(3)
$P(22) - Sb(21)$	2.393(8)	$Sb(21) - C(25)$	2.03(3)	$C(25)-P(24)$	1.75(3)
$Tl(2)-Cent(a)^a$	2.890(9)	$Tl(2)-Cent(b)^a$	2.835(8)	$Tl(1)-Cent(a)$	2.935(9)
$Tl(1)-Cent(b)$	2.908(8)				
		Angles			
$C(3)-P(4)-C(5)$		102(1)	$Sb(21) - C(25) - P(24)$		121(1)
$P(4)-C(5)-Sb(1)$		121(1)	$C(25)-P(24)-C(23)$		104(1)
$C(5)-Sb(1)-P(2)$		90.8(7)	$P(24)-C(23)-P(22)$		125(1)
$Sb(1)-P(2)-C(3)$		99(1)	$C(23) - P(22) - Sb(21)$		99.7(7)
$P(2)-C(3)-P(2)$		127(2)	$P(22) - Sb(21) - C(25)$		90.1(7)
$Cent(a)-T1(2)-Cent(b)$		158.8(2)	$Cent(b)-T1(1)-Cent(a)$		154.7(4)
$Tl(1) - Cent(b) - Tl(2)$		175.0(3)	$Tl(2)-Cent(a)-Tl(1)$		176.4(3)

^a Cent(a) and Cent(b) are defined in the text.

¹H NMR (250 MHz, C₆D₆, SiMe₄): *δ* 1.54 (s, 9, Bu^t), 1.68 (s, 9, Bu^t). ¹³C NMR (100.6 MHz, C₆D₆): δ 37.3 (multiplicity not resolved, $C(CH_3)_3$, 38.8 (dd, ${}^3J_{PC} = 4.1$ and 12.2 Hz, $C(CH_3)_3$), 44.8 (d, ² J_{PC} = 20.3 Hz, *C*(CH₃)₃), 45.5 (dd, ² J_{PC} = 20.5 Hz and 16.3 Hz, *C*(CH₃)₃), 224 (dd, ¹J_{PC} = 75.3 Hz and 97.7 Hz, P*C*P), 242 (d, $^{1}J_{PC} = 71.2$ Hz, PCSb). MS (EI/CI): m/z (relative intensity) 527 (58) $[M + H]^+$, 203 (100) [Tl]⁺, 58 (5) [Bu^t + H ⁺.

OM980239C (11) Hall, S. R.; King, G. S. D.; Stewart, J. M. *Xtal 3.4 User's Manual;* UWA: Lamb, Australia, 1995.

X-ray Structure Determination of 2. X-ray-quality crystals were obtained from a concentrated DME solution held at -30 °C. A unique room-temperature diffractometer data set ($T \approx 295$ K; monochromatic Mo K α radiation, $\lambda = 0.710$ 73 Å) was acquired on a capillary-mounted specimen using an Enraf-Nonius CAD4 diffractometer, yielding 5255 independent reflections, with $I > 3\sigma(I)$ being considered "observed" and used in the large-block least-squares refinements after Gaussian absorption correction. Anisotropic thermal parameters were refined for all non-hydrogen atoms. Hydrogen atoms were placed in calculated positions and were not refined. Conventional residuals R and R_w on $|F|$ are quoted, statistical weights derivative of $\sigma^2(I) = \sigma^2(I_{\text{diff}}) + 0.0004 \sigma^4(I_{\text{diff}})$ being used. Neutral atom complex scattering factors were employed, and computation was by the Xtal3.4 program system, implemented by Hall.¹¹ Crystal data and details of the data collection and refinement are given in Table 2.

Acknowledgment. The University of Wales is thanked for a postgraduate scholarship (M.D.F.) and also the Australian Research Council and Department of Industry, Science and Technology for financial support (E.E.D.).

Supporting Information Available: Tables of crystal data, positional and thermal parameters, and bond angles and distances and additional views of the structure of **2** (16 pages). Ordering information is given on any current masthead page.