Stable Intramolecularly Base-Stabilized Germylene- **and Stannylene-Borane Adducts: M[C₆H₃(NMe₂)₂-2,6]₂BH₃** $(M = Ge, Sn)$

Christian Drost, Peter B. Hitchcock, and Michael F. Lappert*

The Chemistry Laboratory, School of Chemistry, Physics and Environmental Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Received May 18, 1998

Summary: The synthesis and characterization of two novel and thermally surprisingly stable main-groupelement Lewis acid (BH3) adducts (3 and 4) of a monomeric germylene (1) and of a diarylstannylene (2) is reported. X-ray crystal structures of the adducts MAr2(BH3) reveal a four-coordinated germanium (3) but five-coordinated tin (4), with regard to the C,N-potentially bidentate chelating ligand -*C6H3(NMe2)2-1,2 and BH3, respectively.*

There is current interest in the base behavior of monomeric bivalent group 14 metal compounds MX_2 with reference to main-group-element Lewis acids M′X′*n*. Established compounds are (i) the X-ray-characterized Arduengo-type carbene-M'X'_n adducts **I** (M'X'_n = BH₃) or BF_3 ($R = Me$; $R' = Me$, Et , or Pr^i), $\frac{1}{4}$ AlH₃ ($R = H$, $R' = C_6H_6Me_2$, $\frac{1}{4}$ A) $\frac{2}{4}$ M' Me_2 ($M' = Al$ or Ga $R = H$ $R' =$ $=C_6H_2Me_3-2,4,6$,² M'Me₃ (M' = Al or Ga, R = H, R' = Bu^t),³ or SiCl₄, SiCl₂Me₂, SiCl₂Ph₂, SnCl₂Ph₂ or SnCl₂ $(R = Me; R' = Me, Et \text{ or } Pr^i)$ ⁴ and (ii) the labile silylene
adduct **H** (the ca. 30 days at 20 °C in PhMe), which adduct **II** ($t_{1/2}$ ca. 30 days at 20 °C in PhMe), which readily isomerized into the insertion product **III**. ⁵ A single labile (but X-ray-authenticated) diorganotin(II)-Lewis acid (SnCl₂) adduct (IV) has been obtained from its acid/base precursors but underwent metathesis in tetrahydrofuran (THF) at 25 °C, yielding the organotin- (II) chloride **V**.⁶ An early report of $\text{Sn}(\eta^5\text{-}C_5\text{H}_5)_2$: BF₃^{7a} proved to have misformulated the compound; it is now established to be the Sn-B-bond-free salt $[Sn($\eta^5-C_5H_5$)₂-$ (*µ*-*η*5-C5H5)Sn(THF)][BF4].7b The cubanes [M(*µ*3-NBut)]4 formed the $1:2$ AlCl₃ adducts **VI**, which slowly decomposed in solution; X-ray data for the tin compound **VIb** were provided.⁸ Not only nucleophilic carbenes^{9a} but also silylenes,^{9b} germylenes,¹⁰ stannylenes,¹⁰ and plumbylenes MX_2^{10} are well-known as ligands in a transitionmetal (M′) context, but generally M′ has the possibility of engaging in synergic d→p_{*π*} back-bonding, as in $[Cr(CO)_{5}$ {Sn[CH(SiMe₃)₂]₂}].¹¹

We now report the first main-group-element Lewis acid $(BH_3;$ the archetype) adducts of a monomeric intramolecularly base-stabilized germylene and of a diarylstannylene. Treatment of the recently described¹² yellow diarylgermylene GeX₂ (1) or -stannylene SnX₂ (2) $(X^- = VII)$ with a solution of BH₃(THF) in diethyl ether and then successive removal of volatiles *in vacuo* and recrystallization from Et₂O afforded colorless (3) or amber (4) crystals of $X_2M: BH_3 (M = Ge, 3; M = Sn, 4)^{13}$ in good yields (Scheme 1). Each of the compounds **3** and **4** gave satisfactory microanalytical as well as NMR (1H, ¹¹B, ¹³C{¹H}, and (for **4**) ¹¹⁹Sn{¹H}), IR, and EI-MS spectra.14 Compound **3** was thermally stable both in the solid state and in solution, but a solution of the tin analogue **4** slowly deposited tin.

⁽¹⁾ Kuhn, N.; Henkel, G.; Kratz, T.; Kreutzberg, J.; Boese, R.; Maulitz, A. H. *Chem. Ber*. **1993**, *126*, 2041.

⁽²⁾ Arduengo, A. J.; Dias, H. V. R.; Calabrese, J. C.; Davidson, F. *J. Am. Chem. Soc.* **1992**, *114*, 9724.

⁽³⁾ Li, X.-W.; Su, J.; Robinson, G. H. *Chem. Commun*. **1996**, 2683. (4) Kuhn, N.; Kratz, T.; Bla¨ser, D.; Boese, R. *Chem. Ber.* **1995**, *128*, 245.

⁽⁵⁾ Metzler, N.; Denk, M. *Chem. Commun*. **1996**, 2657.

⁽⁶⁾ Leung, W.-P.; Kwok, W.-H.; Xue, F.; Mak, T. C. W. *J. Am. Chem. Soc*. **1997**, *119*, 1145.

^{(7) (}a) Harrison, P. G.; Zuckerman, J. J. *J. Am. Chem. Soc*. **1970**, *92*, 2577. (b) Dory, T. S.; Zuckerman, J. J.; Barnes, C. L. *J. Organomet. Chem.* **1985**, *281*, C1.

⁽⁸⁾ Veith, M.; Frank, W. *Angew. Chem., Int. Ed. Engl*. **1985**, *24*, 223. (9) (a)Lappert, M. F. *J. Organomet. Chem*. **1988**, *358*, 185. (b)

Herrmann, W. A.; Köcher, C. *Angew. Chem., Int. Ed. Engl.* **1997**, 36, 2162.

⁽¹⁰⁾ Lappert, M. F.; Rowe, R. S. *Coord. Chem. Rev*. **1990**, *100*, 267. (11) Cotton, J. D.; Davidson, P. J.; Lappert, M. F. *J. Chem. Soc., Dalton Trans*. **1976**, 2275.

⁽¹²⁾ Drost, C.; Hitchcock, P. B.; Lappert, M. F.; Pierssens, L. J.-M. *Chem. Commun.* **1997**, 1141.

Figure 1. Crystal structure and labeling scheme of **4**. Selected bond lengths and angles are in Table 1; additionally, $C(1)$ –Sn–N(1) = 61.18(10)°, B–Sn–N(1) = 112.86-(6)°, C(2)-C(1)-Sn = 100.4(2)°, and C(6)-C(1)-Sn = 141.0(2) $^{\circ}$.

Figure 2. Crystal structure and labeling scheme of **3**. Selected bond lengths and angles are in Table 1.

Scheme 1. Synthesis of the Diarylmetallene-**BH3** Adducts 3 and 4 $(X^- = VII)$

The crystal structures of the borane adducts are illustrated in Figures 1 (**4**) and 2 (**3**).15 Whereas the crystalline parent base-stabilized germylene (**1**) and

stannylene (**2**) are isostructural, both having the metal in a four-coordinate environment (one M-C and one M-N bond from each ligand VII),^{12,16} the adducts differ in that 3 has four-coordinate germanium (two $Ge-C$, one Ge-N, and one Ge-B bond), while **⁴** has fivecoordinate Sn (two Sn-C, two Sn-N, and one Sn-^B bond). Thus, each aryl ligand **VII** is bound in a *C*,*N*bidentate chelating fashion in 1^{12} , 2^{16} and the centrosymmetric **4**; however, in **3** only one of the ligands **VII** adopts this mode, the other being merely C-bonded. Selected comparative geometric parameters for **¹**-**⁴** are given in Table 1; further details for **1**¹⁶ will appear in the full paper. Compounds **3** and **4** have no close analogue in Ge-B or Sn-B chemistry; the M-B bond lengths for the two former species (Table 1) may be compared with the Ge-B length (2.165(10) Å) in **VIII**¹⁷ and the Sn-B lengths in *cis*-**IXa** (2.305-2.323(7) Å) and *trans*-**IXb** $(2.286 - 2.277(17)$ Å),¹⁸ respectively. The germanium complex **3** may also be compared with salt \mathbf{X} ,¹⁹ noting that BH₃ and CH₃⁺ are isoelectronic.

The nonbonding nitrogen atom of each $-C_6H_3(NMe_2)_2$ -2,6 ligand **VII** is remote from the metal center, *e.g*., 3.815(2) Å in **4**; *cf*. 3.394(5) and 3.783(5) Å in the free stannylene **2**. ¹² The M-C and M-C′ bonds are slightly shorter in the borane adducts **3** and **4** than in the free bases **1** and **2**, consistent with the former being dipolar, X_2M^{+-} -BH₃. Such shortening is even more pronounced

(19) Schmidt, H.; Keitemeyer, S.; Neumann, B.; Stammler, H.-G.; Schoeller, W. W.; Jutzi, P. *Organometallics* **1998**, *17*, 2149.

⁽¹³⁾ Preparation of **3** and **4**: a BH3(THF) solution (2.2 mL of a 1.0 mol L-¹ solution in THF; 2.25 mmol for **1**, 2.5 mL for **2**) was added to a stirred yellow solution of the germylene **1** (1 g, 2.51 mmol) or stannylene **2** (1 g, 2.25 mmol)⁹ in Et_2O (100 mL) at *ca*. 25 °C. The solution slowly became decolorized (for **3**) or slightly darkened (for **4**) and was stirred overnight. Volatiles were removed *in vacuo* to yield solid residues, which were extracted with Et_2O . Filtration to remove a slight cloudiness, concentration of the filtrate *in vacuo*, and cooling to -30 °C afforded colorless crystals of **³** (0.9 g, 95%) or amber-colored crystals of **4** (0.85 g, 82%).

⁽¹⁴⁾ Selected data for **3** and **4** are as follows. NMR spectra at 298 K in C₆D₆ (¹H, ¹³C) or PhMe + C₆D₆: ¹H NMR, 250.0 MHz; ¹³C{¹H} NMR, 62.86 MHz:¹¹B NMR, 80.21 MHz;¹¹⁹Sn{¹H} NMR, 186.36 MHz. **3** colorless; mp 145-147 °C; ¹H NMR δ 2.61 (s, 24 H, NMe₂), 6.50 (d, 4
H, H-3/5, ³J(¹H-¹H) = 7.9 Hz), 7.16 (t, 2 H, H-4, ³J(¹H-¹H) = 7.9 Hz); ¹³C{¹H} NMR δ 44.5 (NC₂), 110.8, 129.4, 134.8, 156.8 (aromatic C);
¹¹B NMR δ -35.0 (q) (¹J/¹¹B-¹H) = 73 Hz). EI-MS (70 eV) parent ion at *m*/*z* 414 (7% intensity of the most abundant ion); IR (Nujol) 2235, 2315, 2351, 2389 cm⁻¹. 4: amber; mp *ca.* 90 °C dec; ¹H NMR δ 2.62 (s, 24 H, NMe₂), 6.49 (d, 4 H, H-3/5, ³J(¹H-¹H) = 7.9 Hz), 7.16 (t, 2 H, H-4, ³J(¹H-¹H) = 7.9 Hz), 7.16 (t, 2 H, 1-1, 3)
H-4, ³J(¹ *δ* 328. EI-MS (70 eV) parent ion at *m*/*z* 460 (1% intensity of the most abundant ion); IR (Nujol) 2333 cm⁻¹ (br).

⁽¹⁵⁾ Crystal data are as follows: **3**: $C_{20}H_{33}BGeN_{4}$, $M_r = 412.9$, orthorhombic, space group *Pbca* (No. 61), *a* = 10.256(2) Å, *b* = 16.289-
(5) Å, *c* = 26.016(10) Å, *V* = 4346(2) Å³, *F*(000) = 1744; *Z* = 8, _{*Pcalcd* = 1.26 *s*/cm⁻³, *u*(Mo Kα) = 14.2 cm⁻¹, specimen 0.3 × 0.1} 1.26 g/cm⁻³, μ (Mo Kα) = 14.2 cm⁻¹, specimen 0.3 × 0.1 × 0.1 mm,
3810 reflections collected for $2 < \theta < 25^{\circ}$, 3810 independent reflections,
R1 = 0.075 for 1930 reflections with $I > 2\sigma(I)$, wR2 = 0.183 (for all R1 = 0.075 for 1930 reflections with $I > 2\sigma(I)$, wR2 = 0.183 (for all
data), $S = 1.007$. 4: C₂₀H₃₃BN₄Sn, $M_r = 459.0$, monoclinic, space group
 $C2/c$ (no. 15), $a = 13.154(5)$ Å, $b = 11.373(7)$ Å, $c = 14.832(5)$ Å, β (3)°, $V = 2196(2)$ Å³, $F(000) = 944$; $Z = 4$, $\rho_{\text{caled}} = 1.39$ g/cm⁻³, $\mu(\text{Mo}) = 11.7$ cm⁻¹, specimen $0.3 \times 0.3 \times 0.25$ mm, 2022 reflections collected for $2 \le \theta \le 25^{\circ}$. 1941 independent reflections $R1 = 0.0257$ collected for $2 < \theta < 25^{\circ}$, 1941 independent reflections, R1 = 0.0257
for 1849 reflections with $I > 2\sigma(I)$, wR2 = 0.0682 (for all data), $S = 1.141$. For both 3 and 4: data at $T = 173(2)$ K, Enraf-Nonius CAD-4
diffractom diffractometer, absorption correction, structural solution by direct methods, full-matrix least-squares refinement on $F²$ using SHELXL-

⁹³ with non-H atoms anisotropic. (16) Drost, C.; Hitchcock, P. B.; Lappert, M. F.; Pierssens, L. J.-M. unpublished work. Pierssens, L. J.-M. D.Phil. Thesis, University of Sussex, 1997.

⁽¹⁷⁾ Mayer, E. P.; Nöth, H.; Rattay, W.; Wietelmann, U. *Chem. Ber.* **1992**, *125*, 401.

⁽¹⁸⁾ Frankhauser, P.; Pritzkow, H.; Siebert, W. *Z. Naturforsch*. **1994**, *49B*, 250.

^a Centrosymmetric. *^b* Sum of the angles C-M-C′, C-M-B, and C′-M-B.

for the M-N and M-N′ bonds. The atom M is the centroid of a near-equilateral (more closely for **4** than

³) CBC′ triangle; *cf.* [∑]M in Table 1; the C-M-C′ angles are wider than in the parent base **1** or **2**. The dihedral angles in **4** between the SnCBC′ plane and each plane containing Sn and the C_6N_2 skeleton of a ligand VII is 78.04(8)°. The five-coordinate Sn atom may be described as being in a trigonal-bipyramidal environment with the N and N′ atoms occupying *trans*-apical sites. To enable optimal M-N bonding to be achieved, both ^C-M bonds in **⁴** are tilted toward the coordinating N atoms $(C(6)-C(1)-Sn = 141.0(2)°, C(2)-C(1)-Sn =$ 100.4(2)°), but only one in **3** (114.6(6), 96.1(5)°) and hence are strongly (**4**) or less strongly (**3**) divergent from sp2 values; this is illustrated in Figure 2 for **3**.

At 298 K the ¹H and ¹³C{¹H} NMR solution spectra of 3 and 4 each showed singlet NMe₂ signals,¹⁴ indicating that (as in **1** and **2**12) there is a rapid exchange involving 2-Me₂N-M \leftrightarrow 6-Me₂N-M groups. The ¹¹⁹Sn- 1H signal at δ 328 in **4** was at lower frequency than in the free base $2 \ (\delta 442).$ ¹² The ¹¹B signals showed well-resolved proton coupling for **3** but not for **4**, perhaps because of ¹⁴N coupling. The ¹¹B chemical shifts of *^δ* -35 (**3**) or *^δ* -34 (**4**) are similar to those in **^I** (M′X′*ⁿ* $= BH_3$; δ (-35)¹ or in the ylides Me₃PCH₂BH₃ and **I** $(M'X_n = CH_2BH_3)^1$ as are the ¹J(¹¹B-¹H) values of 73 Hz in **3** and 86 Hz in **I** (M'X'_n = BH₃).¹ They may also be compared with the *δ*[11B] values of a variety of other Lewis-base-borane adducts, e.g. Me₂O-BH₃ (δ 2.5), Me₃N-BH₃ (δ -8.3), Me₂S-BH₃ (δ -20.1), or Me3P-BH3 (*^δ* -36.8).20

The germylene **1** and stannylene **2** have been shown to form quite strong bonds to $BH₃$, as is also evident from the fact that their preparation involved displacement of THF from BH3(THF). The choice of the ligand **VII** in MX₂ ($X^- = -C_6H_3(NMe_2)_2$ -2,6, **VII**) was crucial, since we found that under conditions similar to those used for the synthesis of **3** and **4** (Scheme 1), Sn[CH- $(SiMe₃)₂$]₂ was unreactive toward BH₃(THF), while Sn-[N(SiMe3)2]2 was slowly reduced to elemental tin. The results here presented demonstrate that the germylene **1**, stannylene **2**, and ligand **VII** have a significant potential use as new versatile ligands.

Acknowledgment. This work was supported by the European Commission (category 30 fellowship for C.D.) and the EPSRC.

Supporting Information Available: Tables of crystal data, data collection, and solution and refinement parameters, atomic coordinates, bond distances and angles, anisotropic displacement coefficients, and hydrogen atom coordinates for **3** and **4** (13 pages). Ordering information is given on any current masthead page.

OM980388V

(20) Wrackmeyer, B. *Ann. Reports NMR Spectroscopy*, **1988**, *20*, 61.