Annulation Reactions of Fischer Carbene Complexes Tethered on a Chalcogen-Stabilized Iron Carbonyl Cluster: Dependence of Reaction Pathway on Chalcogen Atom

Pradeep Mathur* and Sundargopal Ghosh

Chemistry Department, Indian Institute of Technology, Powai, Bombay 400076, India

Amitabha Sarkar

Division of Organic Chemistry (Synthesis), National Chemical Laboratory, Pune 411008, India

Carsten Thöne

Institut für Analytische und Anorganische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany

Received May 1, 1998

When a benzene solution containing the Fischer carbene complex $[(CO)_6Fe_2Se_2\{\mu-C(Ph)=C-C(OEt)=Cr(CO)_5\}]$ (6) and phenylacetylene, diphenylacetylene, 1-hexyne, or 3-hexyne is subjected to reflux, the substituted cyclopentadienylchromium complexes $[Fe_2(CO)_6Se_2\{\mu-(CO)_3Cr(\eta^5-C_5(R)(R')(Ph)(OEt)\}]$ (8a R = H, R' = Ph; 8b R, R' = Ph; 8c R = H, R' = (CH_2)_3-CH_3; and 8d R, R' = C_2H_5) are formed in 72–79% yield. The corresponding SSe analogue $[(CO)_6Fe_2SSe_{\{\mu-C(Ph)=C-C(OEt)=Cr(CO)_5\}]$ (7) reacts with phenylacetylene or diphenyl-

acetylene to form $[Fe_2(CO)_6SSe{\mu-C(H)C(O)C(H)=C(\eta^6-C_6H_5Cr(CO)_3)C(Ph)]]$ (9a) or $[Fe_2(CO)_6-C_6H_5Cr(CO)_3)C(Ph)]$

 $SSe{\mu-C(H)C(O)C(Ph)=C(\eta^6-C_6H_5Cr(CO)_3)C(Ph)}]$ (**9b**) in high yields (82% and 85%). All new compounds have been characterized by IR and ¹H, ¹³C, and ⁷⁷Se NMR spectroscopy, and structural types were unequivocally established by crystallographic analysis of compounds **8b** and **9b**.

Introduction

On the strength of diverse, synthetically useful reactivity, the Fischer-type carbene complexes¹ have been used extensively in organic synthesis either by thermal² or photochemical activation.³ It has been widely reported that variations in the substituents of the carbene unit often lead to novel and unprecedented reactivity trends. In the course of our ongoing investigations on the reactivity modification of Fischer carbene complexes

tethered on chalcogen-stabilized diiron clusters of the type [(CO)₆Fe₂EE'{ μ -C(Ph)=C-C- (OEt)=Cr(CO)₅}] (where EE' = SeSe, SSe, STe),⁴ we have observed the formation of several unusual products: $[Fe_2(CO)_6Se_2[\mu (CO)_{3}Cr(\eta^{5}-C_{5}H(CH_{2}Ph)(Ph)(OEt))]$ (1), $[(CO)_{6}Fe_{2}-Se_{2}\{\mu^{-1}-Se_{2}\}]$ (indanone) (**2**), $[(CO)_6Fe_2\{\mu$ -EE'(2-ethoxy-1-naphthol)\}] $(3a, EE' = SeSe; 3b EE' = STe), [(CO)_6Fe_2\{\mu-SC(H)Ph-$ C(Te)=C(H)(OEt)] (4), and $[(CO)_6Fe_2\{\mu-EC(Ph)=C-$ (E')C(H)(OEt)]₂ (**5a**, EE' = SeSe; **5b** EE' = STe) (Chart 1).⁵ These were primarily unimolecular thermal rearrangements, and it was clear that the reaction pathways were dependent, to a considerable extent, on the type and combination of chalcogen atoms. We find that the type of chalcogen atom present in the cluster also dictates reaction pathways in bimolecular annulation reactions with alkynes, an account of which is presented in this paper.

⁽¹⁾ For reviews on the synthetic applications of Fischer carbene complexes, see: (a) Dötz, K. H.; Fischer, H.; Hofmann, P.; Kreissel, F. R.; Schubert, U.; Weiss, K. *Transition Metal Carbene Complexes*, Verlag-Chemie: Deerfield Beach, FL, 1984. (b) *Advances in Metal Carbene Chemistry*, Schubert, U., Ed.; Kluwer Academic Publishers: Boston, MA, 1989.

^{(2) (}a) Wulff, W. D. In *Comprehensive Organic Synthesis*, Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 5. (b) Wulff, W. D. In *Advances in Metal-Organic Chemistry*, Liebeskind, L. S., Ed.; JAI Press Inc.: Greenwich, CT, 1989; Vol.1. (c) Dötz, K. H. *Angew Chem., Int. Ed. Engl.* **1984**, *23*, 587. (c) Dötz, K. H. In *Organic Synthesis: Aspects of a Modern Interdisciplinary Field*, tom Dieck, H., de Meijere, A., Eds.; Springer: Berlin, 1988.

⁽³⁾ For photochemical reactions, see: (a) Hegedus, L. S. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Hegedus, L. S., Eds.; Pergamon Press: New York, 1995; Vol. 12, pp 549. (b) Merlic, C. A.; Xu, D.; Khan, S. I. *Organometallics* 1992, *11*, 412. (c) Hegedus, L. S. *Acc. Chem. Res.* 1995, *28*, 299.

^{(4) (}a) Mathur, P.; Ghosh, S.; Sarkar, A.; Satyanarayana, C. V. V.; Rheingold, A. L.; Liable-Sands, L. M. *Organometallics* **1997**, *16*, 3536. (b) Mathur, P.; Ghosh, S.; Sarkar, A.; Satyanarayana, C. V. V.; Puranik, V. G. *Organometallics* **1997**, *16*, 4392.

⁽b) G. Organometallics 1997, 16, 4392.
(5) (a) Mathur, P.; Ghosh, S.; Sarkar, A.; Rheingold, A. L.; Guzei, I. A. Organometallics 1998, 17, 770. (b) Mathur, P.; Ghosh, S.; Sarkar, A.; Rheingold, A. L.; Guzei, I. A. J. Organomet. Chem., in press.

Results and Discussions

The benzannulation reaction described by Dötz⁶ inspired the reaction of our cluster-supported carbene complexes [(CO)₆Fe₂Se₂{ μ -C(Ph)=C-C(OEt)=Cr(CO)₅}] (6) and $[(CO)_6Fe_2SSe{\mu-C(Ph)=C-C(OEt)=Cr(CO)_5}]$ (7) with representative alkynes. Cyclopentadiene formation from alkenyl carbene complexes and alkynes has been previously documented by the group of de Meijere⁷ as well by the group of Aumann.⁸ Alkoxy carbene complexes of chromium with unsaturated substituents normally afford benzannulated products in good yields, while tungsten analogues and amino carbene complexes of chromium with similar substituents provide indane derivatives.² In the latter instance, insertion of a CO group from the metal carbonyl moiety does not take place during annulation. This fundamental observation has been at the starting point of several investigations. As described in the following passages, thermal reaction of unsaturated chromium carbene complexes (6 and 7) underwent annulation reactions with terminal and internal alkynes without CO insertion.

Synthesis of $[Fe_2(CO)_6Se_2\{\mu - (CO)_3Cr(\eta^5 - C_5(R') - C_5(R'$ (**R**)(**Ph**)(**OEt**)] (8a–d). On refluxing a benzene solution of trimetallic adduct $[(CO)_6Fe_2Se_2\{\mu-C(Ph)=C C(OEt) = Cr(CO)_{5}$ (6) with internal and terminal alkynes RC=CR' (where R = H, R' = Ph; R, R' = Ph; R= H, $R' = (CH_2)_3CH_3$; R, R' = Et), cyclopentaannulated products [Fe₂(CO)₆Se₂{ μ -(CO)₃Cr(η ⁵-C₅(R)(R')(Ph)(OEt)}] $(8a \ R = H, R' = Ph; 8b \ R, R' = Ph; 8c \ R = H, R' =$

Figure 1. [Fe₂(CO)₆Se₂{ μ -(CO)₃Cr(η ⁵-C₅(Ph)₃(OEt)}] (**8b**).

 $(CH_2)_3CH_3$; and **8d** R, R' = C₂H₅) were obtained in 72-79% yield (Scheme 1).

Compounds **8a**-**d** were characterized by infrared and ¹H, ¹³C, and ⁷⁷Se NMR spectroscopy. The infrared spectra of these compounds exhibit almost identical carbonyl stretching patterns, similar to those observed for $[Fe_2(CO)_6Se_2\{\mu-(CO)_3Cr(\eta^5-C_5H(CH_2Ph)(Ph)(OEt)\}]$.^{5a} The diastereotopic methylene protons of the ethoxy group in **8a-d** showed two well-separated sets of doublets of quartets ($J_{H-H} = 9.8-10.2$ and 7-7.2 Hz). The chemical shifts of the geminally nonequivalent methylene protons in these complexes are well separated ($\Delta v = 0.2-0.7$ ppm). The ¹³C NMR spectra of compounds **8a**-**d** showed two very closely placed peaks between δ 67 and 68 ppm. From the coupling constant values ($J_{C-H} = 180$ Hz) and spectral patterns, the downfield signal has been assigned to the CH carbon in the cyclopentadiene ring and the upfield one to the OCH₂ carbon in the ethoxy group. ⁷⁷Se NMR spectra of compounds **8a**-**d** showed two signals each for the two nonequivalent Se atoms.

The structure of these complexes was further confirmed by the crystal structure solution of a representative complex 8b. Its molecular structure, shown in Figure 1, can be described best as consisting of an open $(CO)_6Fe_2Se_2$ unit attached with a $(CO)_3Cr\{(\eta^5-C_5(Ph)_3-$ (OEt)} moiety. The Cr–Se bond distance, 2.6070 (8) Å, of 8b is somewhat long as compared to the Cr-Se bond

⁽⁶⁾ Dötz, K. H. *Angew. Chem., Int. Ed. Engl.* **1975**, *14*, 644. (7) (a) Stein, F.; Duetsch, M.; Lackmann, R.; Noltemeyer, M.; de Meijere, A. Angew. Chem., Int. Ed. Engl. 1991, 30, 1658. (b) Duetsch, M.; Stein, F.; Lackmann, R.; de Meijere, A. Synlett 1991, 324.

 ^{(8) (}a) Aumann, R.; Heinen, H. J. Organomet. Chem. 1990, 389, C1.
 (b) Aumann, R. Chem. Ber. 1993, 126, 2325. (c) Aumann, R.; Jasper, B.; Fröhlich, R. Organometallics 1995, 14, 3167.

distances in [CrFe₂(CO)₁₀Se₄] (2.411(2) and 2.429(14) Å)⁹ but comparable with the related compound $[Fe_2(CO)_6 Se_{2}\{\mu - (CO)_{3}Cr(\eta^{5}-C_{5}H(CH_{2}Ph)(Ph)(OEt)\}\}$ (1) (2.625(1) Å).^{5a} The Fe–Fe and Fe–Se bond distances in **8b**, 2.5343(9) and 2.3777(8) Å (av), respectively, are comparable with other related molecules of the form $[(CO)_6Fe_2(\mu$ -SeXSe)] (X = CH₂, 2.527(1) and 2.3741 (av) Å;¹⁰ X = C(H) = C(Ph), 2.512(1) and 2.3837 (av) Å;¹¹ X =C(H) = C(C = CMe), 2.507(2) and 2.3838 (av) Å).¹²

Synthesis of $[Fe_2(CO)_6SSe_{\mu-C(H)C(O)C(R)=C-$

 $(\eta^{6}-C_{6}H_{5}Cr(CO)_{3})C(Ph)$] (R = H and Ph) (9a,b). Refluxing a benzene solution of $[(CO)_6Fe_2SSe{\mu-C(Ph)}=$ $C-C-(OEt)=Cr(CO)_{5}$] (7) with the alkynes PhC=CR (R = H, Ph) led to the formation of arene-chromium

complexes [Fe₂(CO)₆SSe{ μ -C(H)C(O)C(R)=C(η ⁶-C₆H₅Cr-

 $(CO)_3$ (Ph)] (9a R = H; 9b R = Ph) in 82% and 85% yield, respectively (Scheme 2).

Scheme 2

Unlike complex 6, complex 7 did not react with 1-hexyne and 3-hexyne. The infrared spectral pattern of 9a and 9b is identical; the spectra show signals corresponding to the presence of terminally bonded metal carbonyl groups and signals in the region 1709-1711 cm⁻¹, typical of a ketonic group. Since an aromatic ketone was the expected product, the high value of 1711 cm⁻¹ suggested the presence of a five-membered cyclic ketone in this molecule. The ¹H NMR spectra of **9a** and **9b** showed one singlet, each associated with selenium satellites. From the chemical shift and coupling constant values ($J_{\text{Se-H}} = 18$ and 16.8 Hz for **9a** and **9b**, respectively), it is clear that the Se atom is attached with a saturated carbon. While the ¹H NMR spectrum of compound **9a** showed a singlet at δ 6.34 ppm, compound **9b** does not show any peak in this region, implying the presence of an olefinic proton in compound **9a**. In both, a set of signals in the region δ 5.16–5.81 ppm indicated the presence of a phenyl ring complexed with Cr(CO)₃. ⁷⁷Se NMR spectra of both compounds showed one doublet at δ 509 ppm ($J_{\text{Se-H}} = 18.3 \text{ Hz}$) and δ 500 ppm ($J_{\text{Se-H}} = 17.5$ Hz), respectively.

To confirm the position of the phenyl ring, complexed with $Cr(CO)_3$, the NOE difference spectrum for **9a** (irradiating at 6.4 ppm) was recorded, and it is observed that there is a strong interaction (18.9% peak enhancement at 5.68 ppm) between the complexed phenyl pro-

Figure 2. $[Fe_2(CO)_6SSe\{\mu-C(H)C(O)C(Ph)=C(\eta^6-C_6H_5Cr (CO)_3)C(Ph)$] (9b).

tons and the olefinic proton. When the signal at 3.7 ppm was irradiated and the NOE difference spectrum recorded, we could observe a 12.75% peak enhancement on the uncomplexed phenyl ring at 7.4 ppm. This experiment allowed us to place the Cr(CO)₃ group attached to the phenyl ring as shown in the structure 9a.

For unambiguous structure elucidation, a representative crystal structure determination was carried out. Single crystals of 9b were grown by layering a CH₂Cl₂/ EtOH solution with hexane at -4 °C, and an X-ray structure elucidation was carried out. Its molecular structure is shown in Figure 2. The structure can be described as consisting of an open (CO)₆Fe₂SSe unit attached to a highly substituted cyclopentenone moiety.

The C(7)–C(11) bond distance of 1.545(5) (Å), which is attached to the S and Se atoms is slightly longer than the corresponding C–C bond distance of 1.502(6) Å, in the $[(CO)_6Fe_2\{\mu$ -Se_2(indanone)}] (2) derivative.¹³ The S-C(11)-C(10) bond angle of $110.4(2)^{\circ}$ in **9b** is similar to the corresponding bond angle of $110.4(3)^{\circ}$ in the related compound [(CO)₆Fe₂{ μ -Se₂(indanone)}] (**2**). The Fe(2)-Se bond distance of 2.3609(8) Å is comparable to the corresponding bond distance of 2.3502 Å (av) in 2, 2.3775 Å (av) in $[{(CO)_6Fe_2(\mu-Se)_2}_2C(Ph)C(H)]$,¹¹ and 2.3475 Å (av) in [{(CO)₆Fe₂(μ -SSe}₂C(Ph)C(H)].¹⁴

Although the exact mechanism of formation of 8a-d and 9a,b is not established at present, the fundamental difference in the two types of product formation stems from the difference in the reactivities of the Se-C and S–C bonds in the respective precursors, **6** and **7**. The formation of **8a-d** must involve the cleavage of the more polar Se-C bond in 6, whereas the S-C bond in 7 is more stable and remains intact during the sequence of transformations leading to the formation of 9a,b.

Experimental Section

General Procedures. All reactions and other manipulations were carried out under an argon or nitrogen atmosphere, using standard Schlenk techniques. Solvents were deoxygenated immediately prior to use. Reactions were monitored by thin-layer chromatography and FT-IR spectroscopy. Infrared

⁽⁹⁾ Mathur, P.; Sekar, P.; Rheingold, A. L.; Liable-Sands, L. M. Organometallics 1997, 16, 142.

⁽¹⁰⁾ Mathur, P.; Manimaran, B.; Trivedi, R.; Hossain, M. M.;

 ⁽¹⁰⁾ Mathur, F., Mathualah, B., 1996, 515, 1053ah, M. M.,
 (11) Mathur, P.; Hossain, M. M. Organometallics 1993, 12, 2398.
 (12) Mathur, P.; Hossain, M. M.; Rheingold, A. L. J. Organomet. Chem. 1996. 507. 187.

⁽¹³⁾ Mathur, P.; Ghosh, S.; Sarkar, A.; Rheingold, A. L.; Guzei, I. A. Unpublished results.

⁽¹⁴⁾ Mathur, P.; Dash, A. K.; Hossain, M. M.; Chen, Y.-S.; Holt, E. M.; Rao, S. N. J. Organomet. Chem. 1996, 526, 379.

spectra were recorded on Nicolet-Impact 400 FTIR spectrometer as an *n*-hexane solution in a sodium chloride cell with a 0.1 mm path length. Elemental analyses were performed using a Carlo Erba 1106 automatic analyzer. ¹H, ¹³C, and ⁷⁷Se NMR spectra were recorded on a Varian VXR 300S spectrometer in CDCl₃ at 25 °C. The operating frequency for ⁷⁷Se NMR was 57.23 MHz with a pulse width of 15 μ s and a delay of 1.0 s. ⁷⁷Se NMR spectra were referenced to Me₂Se ($\delta = 0$ ppm).

Chromium hexacarbonyl, phenylacetylene, diphenylacetylene, 1-hexyne, and 3-hexyne were purchased from Aldrich Chemical Co., and these were used without further purification. The homo- and mixed-chalcogenide iron carbonyl clusters $[Fe_2(\mu-Se_2)(CO)_6]^{15}$ and $[Fe_2(\mu-SSe)(CO)_6]^{16} \alpha,\beta$ -unsaturated homo- and mixed-chalcogenide carbene complexes $[(CO)_6Fe_2-EE'{\mu-C(Ph)=C-C(OEt)=Cr(CO)_5}]$, (6 E = E' = Se; 7 E = S, E' = Se),⁴ and the alkynyl Fischer carbene complexes $[(CO)_5M=C(OEt)(C=CPh)]$ (M = Cr, W)¹⁷ were prepared as previously reported.

Thermolysis of $[(CO)_6Fe_2Se_2\{\mu$ -C(Ph)=C-C(OEt)=Cr-(CO)_5]] with RC=CR' (Where R = H, R' = Ph; R, R' = Ph; R = H, R' = (CH₂)₃CH₃ and R, R' = Et). In a typical preparation, a freshly prepared solution of 1 equiv of $[(CO)_6Fe_2-Se_2\{\mu$ -C(Ph)=C-C(OEt)=Cr(CO)_5]] (6) in benzene (10 mL) was refluxed with 3 equiv of RC=CR' (R = H, R' = Ph; R, R' = Ph; R = H, R' = (CH₂)₃CH₃ and R, R' = Et) for 1 h. The solution was filtered through Celite to remove the insoluble materials, and after removal of the solvent from the filtrate, the residue was subjected to chromatographic workup using silica gel TLC plates. Elution with a hexane/CH₂Cl₂ (8:2 v/v) mixture afforded a reddish-brown band [Fe₂(CO)₆Se₂{ μ -(CO)₃Cr(η ⁵-C₅(R')-(R)(Ph)(OEt)]] (8a R = H, R' = Ph, 79%; 8b R, R' = Ph, 74%; 8c R = H, R' = (CH₂)₃CH₃, 70%; and 8d R, R' = C₂H₅, 72%).

8a. IR [(ν(CO), cm⁻¹]: 2066 (s), 2030 (s), 2012 (s), 1996 (s), 1981 (w), 1953 (m), 1947 (m). ¹H NMR (δ, ppm): 1.59 (t, 3H, *CH*₃), 4.06 (dq, 1H, J = 9.8 and 7.2 Hz, OC*H*₂), 4.24 (dq, 1H, J = 10 and 7.1 Hz, OC*H*₂), 4.77 (s, 1H, Cp ring), 6.98–7.57 (m, 10H, 2C₆H₅). ¹³C NMR (δ, ppm): 14.4 (*C*H₃), 67.5 (J =147.5 Hz, O*C*H₂), 68.6 (J = 180.2 Hz, *C*H), 98.7, 116.6, 128.2, 128.6, 129.1, 129.6, 130.4, 131.6, 132.5, 134.1, 149.6, 208.1 and 209.4 (CO in Fe(*C*O)₃), 235.5, 237.1, and 247.3 (*C*O in Cr(*C*O)₃). ⁷⁷Se NMR (δ, ppm): 395 and 209. Mp (°C): 114–116 (dec). Anal. Calcd (Found) for C₂₈H₁₆CrFe₂O₁₀Se₂: C, 40.30 (40.51); H, 1.91 (2.11).

8b. IR [(ν (CO), cm⁻¹]: 2067 (s), 2031 (s), 2011 (s), 1995 (s), 1980 (w), 1952 (m), 1948 (m). ¹H NMR (δ , ppm): 1.23 (t, 3H, CH₃), 3.74 (dq, 1H, J = 9.9 and 7 Hz OCH₂), 4.12 (dq, 1H, J = 9.8 and 6.8 Hz, OCH₂), 6.83–7.55 (m, 15H, 3C₆H₅). ¹³C NMR (δ , ppm): 15.5 (CH₃), 72.4 (J = 145.5 Hz, OCH₂), 89.4, 97.6, 101.4, 115.7, 123.3, 128.3, 129.1, 129.5, 130.2, 130.8, 131.6, 132.9, 140.5, 145.9, 207.9 and 209.2 (CO in Fe(CO)₃), 235.9, 236.5, and 248.2 (CO in Cr(CO)₃). ⁷⁷Se NMR (δ , ppm): 382 and 210. Mp (°C): 118–120 (dec). Anal. Calcd (Found) for C₃₄H₂₀CrFe₂O₁₀Se₂: C, 44.85 (44.99); H, 2.19 (2.30).

8c. IR $[(\nu(CO), cm^{-1}]$: 2067 (s), 2030 (s), 2011 (s), 1994 (s), 1980 (w), 1951 (m), 1948 (m). ¹H NMR (δ , ppm): 0.67 (t, 3H, CH₂CH₃), 1.05 (m, 2H, CH₂CH₃), 1.57 (q, 5H, OCH₂ and CH₂-CH₂CH₃), 1.82 (m, 2H, CH₂CH₂CH₂CH₃), 2.40 (m, 2H, CH₂-CH₂CH₃), 4.02 (dq, 1H, J = 10.1 and 7.2 Hz, OCH₂), 4.19 (dq, 1H, J = 10.2 and 7 Hz, OCH₂), 4.58 (s, 1H, Cp ring), 7.47– 7.63 (m, 5H, C₆H₅). ¹³C NMR (δ , ppm): 13.5 (CH₂CH₂CH₃), 32.0 (CH₂CH₂CH₂CH₃), 22.1 (CH₂CH₃), 27.3 (CH₂CH₂CH₂CH₃), 32.0 (CH₂CH₂CH₂CH₃), 67.2, 67.3 (OCH₂ and CH in Cp ring), 96.3, 116.1, 128.7, 129.4, 129.7, 131.4, 135.9, 149.3, 208.2 and 209.5 (CO in Fe(CO)₃), 235.1, 237.3, and 247.2 (CO in Cr(CO)₃). ⁷⁷Se NMR (δ , ppm): 389 and 212. Mp (°C): 104–106 (dec).

Table 1.	Crystallographic	Data	for	8b	and	9b
----------	------------------	------	-----	----	-----	----

	8b	9b
formula	C ₃₄ H ₂₀ CrFe ₂ O ₁₀ Se ₂	C ₃₂ H ₁₆ CrFe ₂ O ₁₀ SSe
fw	910.12	835.17
space group	$P2_1/c$	$P\overline{1}$
cryst syst	monoclinic	triclinic
a, Å	12.380(2)	10.2105(12)
<i>b</i> , Å	17.563(3)	11.4013(14)
<i>c</i> , Å	15.636(3)	13.695(2)
α, deg	90	94.553(12)
β , deg	90.07(2)	99.223(14)
γ , deg	90	93.975(8)
V, Å ³	3399.7(10)	1563.2(3)
Z	4	2
$D(\text{calc}), \text{Mg/m}^3$	1.778	1.774
$2\theta_{\rm max}$, deg	50	50
F(000)	1792	828
abs coeff, mm ⁻¹	3.354	2.547
goodness-of-fit on F^2	0.875	0.931
final R indices	R1 = 0.0358	R1 = 0.0344
R indices (all data)	wR2 = 0.0756	wR2 = 0.0824

Anal. Calcd (Found) for $C_{26}H_{20}CrFe_2O_{10}Se_2$: C, 38.34 (38.51); H, 2.45 (2.60).

8d. IR $[(\nu(CO), cm^{-1}]$: 2069(s), 2031 (s), 2010 (s), 1992 (s), 1982 (w), 1950 (m), 1946 (m). ¹H NMR (δ , ppm): 0.61 (t, 3H, J = 7.5 Hz, CH₂CH₃), 1.17 (t, 3H, J = 7.5 Hz, CH₂CH₃), 1.62 (t, 3H, J = 7.2 Hz, OCH₂CH₃), 1.84 (m, 1H, J = 7.5 Hz, CH₂), 2.03 (m, 1H, J = 7.5 Hz, CH₂), 2.39 (m, 1H, J = 7.2 Hz, CH₂), 2.53 (m, 1H, J = 7.2 Hz, CH₂), 3.99 (dq, 1H, J = 9.8 and 7.1 Hz, OCH₂), 4.67 (dq, 1H, J = 9.9 and 7.2 Hz, OCH₂), 7.48– 7.67 (m, 5H, C₆H₅). ¹³C NMR (δ , ppm): 14.01 (CH₃), 15.53 (CH₃), 15.86 (CH₃), 17.53 (CH₂), 18.53 (CH₂), 73.5 (OCH₂), 96.79, 98.79, 114.22, 128.89, 129.43, 130.06, 131.21, 143.26, 208.19 and 209.42 (CO in Fe(CO)₃), 234.12, 237.06, and 248.14 (CO in Cr(CO)₃). ⁷⁷Se NMR (δ , ppm): 384 and 214. Mp (°C): 108–110 (dec). Anal. Calcd (Found) for C₂₆H₂₀CrFe₂O₁₀Se₂: C, 38.34 (38.51); H, 2.45 (2.60).

Thermolysis of [(CO)₆Fe₂SSe{ μ -C(Ph)=C-C(OEt)=Cr-(CO)₅] with RC=CPh (R = H and Ph). In a typical preparation, a freshly prepared solution of 1 equiv of [(CO)₆Fe₂-SSe{ μ -C(Ph)=C-C(OEt)=Cr(CO)₅] (7) in benzene (10 mL) was refluxed with 2 equiv of RC=CPh (where R = H and Ph) for 1 h. The solution was filtered through Celite to remove the insoluble materials, and the residue was subjected to chromatographic workup using silica gel TLC plates. Elution with a hexane/CH₂Cl₂ (4:6 v/v) mixture afforded a red band

 $[Fe_2(CO)_6SSe{\mu-C(H)C(O)C(R)=C(\eta^6-C_6H_5Cr(CO)_3)C(Ph)}]$ (9a R = H, 82%; 9b R = Ph, 85%).

9a. IR [(ν(CO), cm⁻¹]: 2076 (s), 2040 (vs), 2009 (s), 2000 (m), 1985 (s), 1930 (br, m), 1712 (m). ¹H NMR (δ, ppm): 3.70 (s, 1H, $J_{Se-H} = 18$ Hz, aliphatic proton in cyclopentenone ring), 5.10–5.80 (m, 5H, { η^6 -C₆H₅Cr(CO)₃}, 6.34 (s, 1H, olefinic proton in cyclopentenone ring), 7.32–7.62 (m, 10H, 2C₆H₅). ¹³C NMR (δ, ppm): 61.1 ($J_{C-H} = 153.2$ Hz, *C*(H)Se), 65.4 (*C*(Ph)S), 89.2–95.1 { η^6 -C₆H₅Cr(CO)₃}, 114.5 ($J_{C-H} = 158.1$ Hz, α-*C* in cyclopentenone ring), 126.1, 126.9, 127.8, 128.5, 128.9, 129.2, 130.5, 136.4, 137.9, 143.3, 171.6 (β-*C* in cyclopentenone), 199.2 (*C*O in cyclopentenone), 207.8 (CO in Fe(*C*O)₃). ⁷⁷Se NMR (δ, ppm): 509 ($J_{Se-H} = 18.3$ Hz). Mp (°C): 82–84. Anal. Calcd (Found) for C₂₆H₁₁CrFe₂O₁₀-SSe: C, 41.12 (41.41); H, 1.58 (1.76).

9b. IR [$(\nu(CO), \text{ cm}^{-1}$: 2077 (s), 2039 (vs), 2011 (s), 1999 (m), 1980 (s), 1922 (br, m), 1711 (m).¹H NMR (δ , ppm): 3.92 (s, 1H, $J_{Se-H} = 16.8$ Hz, proton in cyclopentenone ring), 4.74–5.51 (m, 5H, { $\eta^{6}-C_{6}H_{5}Cr(CO)_{3}$ }), 7.23–7.74 (m, 15H, 3C_{6}H_{5}). ¹³C NMR (δ , ppm): 60.9 (*C*(H)Se, $J_{C-H} = 152.6$ Hz), 76.2 (*C*(Ph)S), 86.2–97.9 { $\eta^{6}-C_{6}H_{5}Cr(CO)_{3}$ }, 127.7, 128.1, 129.1, 129.4, 129.7, 139.13, 141.1, 164.1 (β -*C* in cyclopentenone ring), 198.8 (*C*O in cyclopentenone), 208.1 (CO in Fe(*C*O)₃). ⁷⁷Se NMR (δ , ppm): 500 ($J_{Se-H} = 17.5$ Hz).

⁽¹⁵⁾ Mathur, P.; Chakrabarty, D.; Hossain, M. M.; Rashid, R. S.; Rugmini, V.; Rheingold, A. L. *Inorg. Chem.* **1992**, *31*, 1106.

⁽¹⁶⁾ Mathur, P.; Šekar, P.; Satyānarayana, C. V. V.; Mahon, M. F. Organometallics 1995, 14, 2115.

⁽¹⁷⁾ Fischer, E. O.; Kreissl, F. R. J. Organomet. Chem. **1972**, 35, C47.

 Table 2.
 Selected Bond Distances (Å) and Bond

 Angles (deg) for 8b

	•	0	
Cr-Cp (center)	1.838	Fe(1) - C(1)	1.780(6)
Fe(1)-Se(1)	2.3693(9)	Fe(1)-Se(2)	2.4035(9)
Fe(1)-Fe(2)	2.5343(9)	Fe(2) - C(5)	1.781(6)
Fe(2)-Se(2)	2.3777(8)	Fe(2)-Se(1)	2.3897(8)
Se(1)-C(10)	1.940(4)	Se(2)-Cr	2.6070(8)
Cr-C(12)	1.852(5)	Cr-C(13)	1.877(5)
Cr-C(11)	1.877(5)		
Se(1)-Fe(1)-Se(2)	84.19(3)	Se(1)-Fe(1)-Fe(2)	58.22(2)
Se(2)-Fe(1)-Fe(2)	57.50(2)	Se(2)-Fe(2)-Se(1)	84.31(3)
Se(2)-Fe(2)-Fe(1)	58.49(3)	Se(1)-Fe(2)-Fe(1)	57.43(2)
C(10) - Se(1) - Fe(1)	107.77(11)	C(10) - Se(1) - Fe(2)	107.38(11)
Fe(1)-Se(1)-Fe(2)	64.35(3)	Fe(2)-Se(2)-Fe(1)	64.01(3)
Fe(2)-Se(2)-Cr	112.15(3)	Fe(1)-Se(2)-Cr	110.35(3)
C(12)-Cr-Se(2)	123.72(14)	C(13)-Cr-Se(2)	74.14(14)
C(11)-Cr-Se(2)	70.03(14)		
	· · ·		

Mp (°C): 88–90. Anal. Calcd (Found) for $C_{32}H_{16}CrFe_2O_{10}$ -SSe: C, 46.0 (46.21); H, 1.91 (2.08).

Crystal Structure Determination of 8b and 9b. Red crystals of 8b and 9b suitable for crystal structure determination were grown from a hexane/CH₂Cl₂ solution (8b) or by layering a CH_2Cl_2 /EtOH solution with hexane (9b) at -4 °C. Red crystals of 8b and 9b were mounted on glass fibers and transferred to the cold gas stream (-100 °C) of a Siemens P4 diffractometer equipped with an LT-2 low-temperature attachment. Monochromated Mo K α radiation ($\lambda = 0.710$ 73 Å) was used for the measurements. Cell constants were refined from setting angles of 50 reflections in the 2θ range $6-25^{\circ}$. Appropriate absorption corrections based on ψ scans were applied. The crystal structures were solved by direct methods. All non-hydrogen atoms were refined anisotropically using fullmatrix least-squares methods based upon F^2 (SHELXL-93).¹⁸ Hydrogens were included using a riding model. Pertinent crystallographic data 8b and 9b are summarized in Table 1. Selected bond lengths and bond angles for 8b and 9b are listed in Tables 2 and 3.

(18) Sheldrick, G. M. *SHELXL-93, a program for refining crystal structures*; University of Göttingen: Göttingen, Germany, 1993.

 Table 3.
 Selected Bond Distances (Å) and Bond

 Angles (deg) for 9b

	0	0	
Fe(1)-S	2.2609(11)	Cr-C(23)	1.833(5)
Fe(1)-Se	2.3582(8)	Fe(1)-Fe(2)	2.5219(9)
Fe(2)-C(5)	1.805(5)	Fe(2)-S	2.2354(11)
Fe(2)-Se	2.3609(8)	Se-C(7)	1.969(3)
S-C(11)	1.865(4)	C(8)-C(9)	1.476(5)
C(7)-C(11)	1.545(5)	C(9) - C(10)	1.353(5)
Cr-C(21)	1.857(5)	Cr-C(22)	1.840(5)
Cr-C(23)	1.833(5)		
S-Fe(1)-Se	81.01(3)	S-Fe(2)-Se	81.47(3)
C(7)-Se-Fe(1)	99.44(10)	C(7)-Se-Fe(2)	101.16(10)
Fe(1)-Se-Fe(2)	64.61(2)	C(11)-S-Fe(2)	109.58(12)
C(11) - S - Fe(1)	104.83(12)	Fe(2)-S-Fe(1)	68.23(3)
C(8) - C(7) - C(11)	106.4(3)	C(8)-C(7)-Se	109.2(2)
C(11)-C(7)-Se	114.1(2)	C(7) - C(11) - S	110.4(2)
C(10) - C(11) - S	110.4(2)	C(23)-Cr-C(21)	89.5(2)
C(21) - Cr - C(22)	91.1(2)	C(22)-Cr-C(23)	86.4(2)

Conclusions

In summary, we have reported an annulation reaction between Fischer carbene complexes tethered on chalcogen stabilized diiron clusters, $[(CO)_6Fe_2EE'{\mu-C(Ph)=}C-C(OEt)=Cr(CO)_5]$ (EE' = SeSe and SSe), and alkynes. We observe that *no* CO insertion takes place in this case and different annulated products are formed, where formation of products are determined by the nature of the chalcogen atoms present.

Acknowledgment. S.G. thanks the Council for Scientific and Industrial Research, New Delhi, for a Senior Research Fellowship.

Supporting Information Available: Tables of atomic coordinates, all bond lengths and angles, and anisotropic displacement parameters for **8b** and **9b** (10 pages). Ordering information is given on any current masthead page.

OM980338Q