Ab Initio Studies of the Contrasting Butadiene **Cheletropic and Diels-Alder Cycloaddition Reactivities Observed for "Carbenic" Phosphorus (Phosphenium) and Arsenic (Arsenium) Cations**[†]

Russell J. Boyd, Neil Burford,* and Charles L. B. Macdonald

Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3

Received February 23, 1998

Quantum-chemical studies (UMP2/6-311G*//UHF/6-311G*) on a series of phosphenium and arsenium derivatives confirm singlet ground states and reveal an unexpected model for the bonding in their lowest triplet state. Models of the novel solid-state dimer structures that are experimentally observed for some arsolanium cations reveal large positive dimerization energies (P. 3, 277 kJ/mol; As, 7, 207 kJ/mol), implying that the observed dimers are imposed by crystal-packing phenomena. The surprising contrast observed in the butadiene cycloaddition reactivities for phosphenium and arsenium cations are understood in terms of the calculated absolute energies of the observed structural arrangements for the cycloadducts in each case; the cheletropic adduct **4** is 52 kJ/mol more stable than the Diels-Alder adduct for the phospholanium cation, while in the case of the arsolanium cation the Diels–Alder adduct **9** is favored by 59 kJ/mol.

Introduction

Interest in carbenes 1a and the analogous systems 1 and 2 stems from their intriguing electronic structure, fascinating reactivity (e.g. electrophilic and nucleophilic behavior and as ligands in homogeneous catalysts

* To whom correspondence should be addressed. E-mail: burford@ is.dal.ca.

[†] This article is dedicated to Prof. Dr. Peter Jutzi on the occasion of his 60th birthday.

(1) See for example: (a) Herrmann, W. A.; Goossen, L. J.; Artus, G. R. J.; Köcher, C. Organometallics 1997, 16, 2472-2477. (b) Hermann, W. A.; Goossen, L. J.; Spiegler, M. J. Organomet. Chem. 1997, 547, 357-366.

(2) (a) Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 2371-2374. (b) Herrmann, W. A.; Köcher, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2162 - 2187.

(3) For a compendium of transient carbenoids see: Nefedov, O. M.; Egorov, M. P.; Ioffe, A. I.; Menchikov, L. G.; Zuev, P. S.; Minikin, V. I.; Simkin, B. Y.; Glukhovtsev, M. N. Pure Appl. Chem. 1992, 64, 265-314.

(4) Regitz, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 725-728 and references therein.

(5) Houben-Weyl, Methoden der Organischen Chemie; Regitz, M., Ed.; Thieme: Stuttgart, Germany, 1989; Part 2, Vol. E19b. (6) Driess, M.; Grützmacher, H. Angew. Chem., Int. Ed. Engl. 1996,

35. 828-856

(7) Arduengo, A. J., III.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.

(8) For example: (a) Dixon, D. A.; Arduengo, A. J., III. *J. Phys. Chem.* **1991**, *95*, 4180–4182. (b) Arduengo, A. J., III.; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530-5534. (c)
 Arduengo, A. J., III; Dixon, D. A.; Kumashiro, K. K.; Lee, C.; Power,
 W. P.; Zilm, K. W. J. Am. Chem. Soc. 1994, 116, 6361-6367. (d) W. P.; Zilm, K. W. J. Am. Chem. Soc. 1994, 116, 6361-6367. (0)
Arduengo, A. J., III; Bock, H.; Chen, H.; Denk, M.; Dixon, D. A.; Green,
J. C.; Herrmann, W. A.; Jones, N. L.; Wagner, M.; West, R. J. Am. Chem. Soc. 1994, 116, 6641-6649. (e) Arduengo, A. J., III; Dias, H. V.
R.; Dixon, D. A.; Harlow, R. L.; Klooster, W. T.; Koetzle, T. F. J. Am. Chem. Soc. 1994, 116, 6812-6822. (f) Arduengo, A. J., III; Goerlich,
J. R.; Marshall, W. J. J. Am. Chem. Soc. 1995, 117, 11027-11028. (g)
Arduengo, A. J., III; Calabrese, J. C.; Cowley, A. H.; Dias, H. V. R.; Goerlich, J. R.; Marshall, W. J.; Riegel, B. Inorg. Chem. 1997, 36, 21512158 (h) Arduengo, A. J., III: Davidson, F.; Dias, H. V. R.; Goerlich, 2158. (h) Arduengo, A. J., III; Davidson, F.; Dias, H. V. R.; Goerlich, J. R.; Khasnis, D.; Marshall, W. J.; Prakasha, T. K. J. Am. Chem. Soc.
 1997, 119, 12742–12749. (i) Arduengo, A. J., III; Goerlich, J. R.; Marshall, W. J. Liebigs Ann./Recl. 1997, 365–374.

(achiral and chiral¹)²), and corresponding synthetic utility.³⁻⁶ Isolable examples are known for carbenes

,	∕ <mark>Pn</mark>
	⊕
1 a: E = C	2 a: Pn = N
b: E = Si	b: Pn = P
c: E = Ge	c: Pn = As
d: E = Sn	d: Pn = Sb
e: E = Pb	e: Pn = Bi

(**1a**),^{4,7–10} silylenes (**1b**),¹¹ germylenes (**1c**),^{11,12} stannylenes (1d),^{11,12} and plumbylenes (1e)¹³ as well as for

(9) Alder, R. A.; Allen, P. R.; Murray, M.; Orpen, A. G. Angew. Chem., Int. Ed. Engl. 1996, 35, 1121-1123.

(10) Denk, M. K.; Thadani, A.; Hatano, K.; Lough, A. J. Angew.
 Chem., Int. Ed. Engl. 1997, *36*, 2607–2609.
 (11) Tsumuraya, T.; Batcheller, S. A.; Masamune, S. Angew. Chem.,
 Int. Ed. Engl. 1991, *30*, 902–930.

- (12) Neumann, W. P. Chem. Rev. 1991, 91, 311-334.
- (13) See, for example: (a) Brooker, S.; Buijink, J.-K.; Edelmann, F
- T. Organometallics 1991, 10, 25-26. (b) Gehrhus, B.; Hitchcock, P.

B.; Lappert, M. F. Angew. Chem., Int. Ed. Engl. 1997, 36, 2514–2516.
 (14) Sanchez, M.; Mazières, M.-R.; Lamandé, L.; Wolf, R. Multiple

(14) Sanchez, M., Mazleres, M.-K., Landalde, L., Wolf, K. Multiple Bonds and Low Coordination in Phosphorus Chemistry, Regitz, M., Sherer, O. J., Eds.; Thieme: New York, 1990; pp 129–148. (15) (a) Flemming, S.; Lupton, M. K.; Jekot, K. Inorg. Chem. **1972**, 11, 2534–2540. (b) Maryanoff, B. E.; Hutchins, R. O. J. Org. Chem.

1972, 37, 3475-3480.

1972, 37, 3475-3480.
(16) Burford, N.; Losier, P.; Macdonald, C.; Kyrimis, V.; Bakshi, P. K.; Cameron, T. S. Inorg. Chem. 1994, 33, 1434-1439.
(17) For example: (a) Burford, N.; Royan, B. W.; White, P. S. J. Am. Chem. Soc. 1989, 111, 3746-3747. (b) Burford, N.; Parks, T. M.; Royan, B. W.; Richardson, J. F.; White, P. S. Can. J. Chem. 1992, 70, 703-709. (c) Veith, M.; Bertsch, B.; Huch, V. Z. Anorg. Allg. Chem. 1988, 559, 73-88. (d) Payrastre, C.; Madaule, Y.; Wolf, J.-G. Tetrahedron Lett. 1992, 33, 1273-1276. (e) Payrastre, C.; Madaule, Y.; Wolf, J.-G.; Kim, T. C.; Mazières, M.-R.; Wolf, R.; Sanchez, M. Heteroat. Chem. 1992, 3, 157-162. (f) Burford, N.; Royan, B. W. J. Chem. Soc., Chem. Commun. 1989, 19-21. Commun. 1989, 19-21.

S0276-7333(98)00126-5 CCC: \$15.00 © 1998 American Chemical Society Publication on Web 08/12/1998

the cationic group 15 analogues phosphenium (**2b**),^{14–16} arsenium (**2c**),^{17–20} stibenium (**2d**),²¹ and bismuthenium (**2e**).²² All structural studies of pnictogenium cations reveal monomeric units in the solid state except in the case of arsolidinium salts **7'** (and the dithia derivatives) which adopt dimeric solid-state structures **10'**.¹⁹ The observation of a monomeric structure for the arsenanium salt **11'**[GaCl₄] implies a small (if any) dimerization energy for **7'**.¹⁸ A more dramatic contrast is apparent between phosphorus and arsenic analogues in the rapid, regiospecific, and quantitative cycloaddition reactions of salts **3'**[GaCl₄] and **7'**[GaCl₄] with 2,3-dimethylbutadiene, which give the spirocyclic cation salts **4'**[GaCl₄]²³ and the Diels–Alder type product **9'**-[GaCl₄],²⁰ respectively (**11'**[GaCl₄] reacts analogously).¹⁸

A rationale for the solid-state structural differences of group 14 and 15 carbene analogues has recently been described in the context of the Carter-Goddard-Malrieu-Trinquier model (CGMT);⁶ however, reactivity differences have not been addressed. In an attempt to understand the factors governing the structure and the cycloaddition behavior of cations **3'** and **7'**, we have performed quantum-chemical investigations of model cations **3** and **7**, confirmed the singlet ground state multiplicity, and determined the thermodynamically preferred products for cycloaddition reactions with butadiene through the examination of potential cycloadducts.^{16,19,23}

Theoretical Methods and Results

All calculations were performed on an IBM RS6000/ 580 workstation using the Gaussian94 set of programs.²⁴ The geometry of each species was optimized

(19) Burford, N.; Parks, T. M.; Royan, B. W.; Borecka, B.; Cameron,
 T. S.; Richardson, J. F.; Gabe, E. J.; Hynes, R. *J. Am. Chem. Soc.* 1992, *114*, 8147–8153.

(20) Burford, N.; Parks, T. M.; Bakshi, P. K.; Cameron, T. S. Angew. Chem., Int. Ed. Engl. **1994**, *33*, 1267–1268.

(21) (a) Coleman, A. P.; Nieuwenhuyzen, M.; Rutt, H. N.; Seddon, K. R. *J. Chem. Soc., Chem. Commun.* **1995**, 2369–2370. (b) Neuhaus, A.; Frenzen, G.; Pebler, J.; Dehnicke, K. *Z. Anorg. Allg. Chem.* **1992**, *618*, 93–97.

(22) See for example: (a) Frank, W.; Weber, J.; Fuchs, E. Angew. Chem., Int. Ed. Engl. 1987, 26, 74–75. (b) Alcock, N. W.; Ravindran, M.; Willey, G. R. J. Chem. Soc., Chem. Commun. 1989, 1063–1065.
(c) Rogers, R. D.; Bond, A. H.; Aguinaga, S.; Reyes, A. J. Am. Chem. Soc. 1992, 114, 2967–2977. (d) Clegg, W.; Farrugia, L. J.; McCamley, A.; Norman, N. C.; Orpen, A. G.; Pickett, N. L.; Stratford, S. E. J. Chem. Soc., Dalton Trans. 1993, 2579–2587. (e) Allman, T.; Goel, R. G.; Prasad, H. S. J. Organomet. Chem. 1979, 166, 365–371. (f) Carmalt, C. J.; Norman, N. C.; Orpen, A. G.; Stratford, S. E. J. Organomet. Chem. 1993, 460, C22–C24. (g) Agocs, L.; Burford, N.; Cameron, T. S.; Curtis, J. M.; Richardson, J. F.; Robertson, K. N.; Yhard, G. B. J. Am. Chem. Soc. 1996, 118, 3225–3232. (h) Agocs, L.; Briand, G. G.; Burford, N.; Cameron, T. S.; Kwiatkowski, W.; Robertson, K. N. Inorg. Chem. 1997, 36, 2855–2860.

(23) See for example: (a) SooHoo, C. K.; Baxter, S. G. J. Am. Chem. Soc. **1983**, *105*, 7443–7444. (b) Cowley, A. H.; Kemp, R. A.; Lasch, J. G.; Norman, N. C.; Stewart, C. A. J. Am. Chem. Soc. **1983**, *105*, 7444– 7445. (c) Cowley, A. H.; Kemp, R. A.; Lasch, J. G.; Norman, N. C.; Stewart, C. A.; Whittlesey, B. R.; Wright, T. C. Inorg. Chem. **1986**, *25*, 740–749.

(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanow, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; DeFrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 94 (Revision B.2); Gaussian, Inc., Pittsburgh, PA, 1995.

by the Hartree–Fock method using the 6-311G* basis set, and all energies were calculated using full secondorder Møller-Plesset perturbation theory with the 6-311G* basis set. Model compounds were restricted to the highest appropriate symmetry; optimized structures are displayed in Figures 1 and 2, and structural parameters are listed in Tables 2 and 366 (see also Chart 1). All energy minima were confirmed by 3N - 6positive eigenvalues of the Hessian matrixes, and the total energies include the HF/6-311G* zero-point vibrational energies (MP2/6-311G*//HF/6-311G* + 0.9 ZPVE (HF)) which are listed in Table 1.66 Molecular orbital (MO) analyses, spin densities, and charge distributions were determined through the use of Mulliken population analysis and natural bond orbital analysis²⁵ (NBO), the results of which are listed in Tables 4 and 5.66

Discussion

Multiplicity of the Ground State for Diazaphosphenium and Diazaarsenium Cations. Various

⁽¹⁸⁾ Burford, N.; Macdonald, C. L. B.; Parks, T. M.; Wu, G.; Borecka, B.; Kwiatkowski, W.; Cameron, T. S. *Can. J. Chem.* **1996**, *74*, 2209–2216.

⁽²⁵⁾ Reed, A. E.; Curtis, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899–926.

Figure 1. Schematic representations of the HF/6-311G* optimized structures of the cyclic phosphorus and arsenic cations.

factors govern the stability of pnictogen salts, including the solvent, the presence of base stabilization (inter- or intramolecular), the nature of the counteranion, and the steric and electronic influence of the substituents adjacent to the dicoordinate site. The relative stabilities of such compounds may be assessed by the measurement of the lifetimes of species and their resistance to rearrangement or addition reactions. The isolation of [GaCl₄] or [AlCl₄] salts of pnictogenium cations 2 is perhaps surprising in view of typical Lewis adduct chemistry ($R_2ClPn \rightarrow ECl_3$) of phosphines and arsines but is indicative of the significance of the crystal lattice energy term in defining their stability.¹⁶ Studies using conventional ab initio methods typically ignore these external factors; however, such studies do yield insight regarding the inherent stability of such species and thus may be extremely valuable in the understanding of results observed experimentally.

Several topical quantum-chemical studies of ylidenes **1** have provided substantial insight into their structure and bonding.^{26–28} Electronic structure models have also been established for the group 15 carbene analogues **2**,^{29–37} which indicate that most, including those possessing adjacent π -electron-donor substituents, have a

но се по р 🖨 As 🛈

Figure 2. Schematic representations of the HF/6-311G* optimized structures of the acyclic phosphorus and arsenic cations and radicals (H(3) atom not shown in **17** t $C_{2\nu}$).

singlet ground state ($[NH_2]^+$ is an exception).³⁸ In this context, we have performed full geometry optimizations and frequency calculations at the HF/6-311G* level of theory for model cations **3** and **7** with singlet (C_2 symmetry) and triplet ground states (C_1 , C_2 , C_s , and $C_{2\nu}$

- (27) Boehme, C.; Frenking, G. J. Am. Chem. Soc. 1996, 118, 2039–2046.
 - (28) Sauers, R. R. Tetrahedron Lett. 1996, 37, 149-152.
- (29) Cowley, A. H.; Cushner, M. C.; Lattman, M.; McKee, M. L.;
 Szobota, J. S.; Wilburn, J. C. *Pure Appl. Chem.* **1980**, *52*, 789–797.
- (30) Harrison, J. F. J. Am. Chem. Soc. 1981, 103, 7406-7413.
 (31) Trinquier, G.; Marre, M.-R. J. Phys. Chem. 1983, 87, 1903-1905
- (32) Cramer, C. J.; Dulles, F. J.; Storer, J. W.; Worthington, S. E. Chem. Phys. Lett. **1994**, 218, 387–394.
- (33) MacLennan, M. T.; Darvesh, K. V. Can. J. Chem. 1995, 73, 544-549.
- (34) Sauers, R. R. Tetrahedron 1997, 53, 2357-2364.
- (35) Latifzadeh-Masoudipour, L.; Balasubramanian, K. J. Chem. Phys. **1997**, *106*, 2695–2701.
- (36) Latifzadeh, L.; Balasubramanian, K. *Chem. Phys. Lett.* **1996**, *258*, 393–399.
- (37) Schoeller, W. W.; Tubbesing, U. J. Mol. Struct. **1995**, 343, 49–55.
- (38) See for example: (a) Ford, G. P.; Scribner, J. D. J. Am. Chem. Soc. **1981**, 103, 4281–4291. (b) Falvey, D. E.; Cramer, C. J. Tetrahedron Lett. **1992**, 33, 1705–1708. (c) Su, K.; Hu, X.; Li, X.; Wang, Y.; Wen, Z. Chem. Phys. Lett. **1996**, 258, 431–435. (d) Cramer, C. J.; Falvey, D. E. Tetrahedron Lett. **1997**, 38, 1515–1518.

⁽²⁶⁾ Heinemann, C.; Müller, T.; Apeloig, Y.; Schwarz, H. J. Am. Chem. Soc. 1996, 118, 2023–2038.

Table 1.	Computed Energies (HF/6-311G* and MP2/6-311G*//HF/6-311G*) and Zero Point Vibrational
	Energies for all Calculations ^a

			0			
cyclic P cation	syn	n <i>N</i> (imag	g) HF	MP2	ZPVE	rel energy
3	C_2	0	-528.695 28	-529.405 88	0.099 15	0.00
3 MP2 optimization	Ĉ.	n/a	n/a	-529 408 49	n/a	
	C_2	11/a	500 C10 25	520.901.99	0.002.04	900.09
31	C_2	1	-528.610 35	-529.291 22	0.093 64	200.02
3 t	C_1	0	-528.61721	$-529.285\ 10$	0.095 13	307.60
3 t	$C_s \rightarrow C_s$	C_{2v}^* 2	-528.60995	-529.29006	0.093 27	290.20
3 prep	$\tilde{C_1}$	0	$-528.658\ 20$	-529.37905	0.097 58	66.76
	~	0	000 701 00		0 40 4 50	0.00
4	C_1	0	$-683.701\ 30$	-684.94874	0.194 50	0.00
5	C_1	0	$-683.676\ 14$	-684.93309	0.198 93	51.54
e	C	0	1057 9 6550	1059 7 0040	0 909 07	
0	C_i	0	-1037.2 0330	-1038.7 0949	0.202 07	
cuclic As extion	cum	N(imag)	ЦЕ	MD9	7DV/F	rolonorgy
cyclic As cation	sym	Tv(imag)	HF	MP2	ZPVE	rei energy
7	C_2	0	-2422.08739	-2422.80044	0.097 42	0.00
7 t	C.	1	-2422 0 2870	-2422 7 0568	0 092 73	237 71
7 +	C_2	1	2422.0 2010	2422.7 0000	0.002 95	240 14
71		0	-2422.0 3716	-2422.7 0234	0.093 85	249.14
7 t	$C_s \rightarrow C_{2v}^*$	2	$-2422.0\ 2819$	-2422.70450	0.092 44	240.14
7 prep	C_1	0	$-2422.0\ 6038$	$-2422.7\ 8217$	$0.096\ 29$	45.28
8	C.	0	-2577 0 6294	-2578 3 1324	0 192 31	58 53
0		0	-2577 0 8024	_2578 2 2004	0.102 01	0.00
J	U	U	2011.0 0024	2010.0 0004	0.137 61	0.00
10	C_i	0	-4844.0~7839	$-4845.5\ 2502$	0.198 04	
11	C	0	-9461 1 9055	-9461 0 0164	0 199 79	0.00
11	C_s	U	-2401.1 3833	-2401.9 9104	0.120/3	0.00
11 prep	C_1	0	-2461.1 0696	-2461.9 6700	0.127 26	61.22
12	C_i	0	$-4922.1\ 6511$	$-4923.8\ 9126$	0.260 13	
butadiene	sym	N(imag)	HF	MP2	ZPVE	rel energy
cis	C	1	-154 942 71	-155 470 37	0.000.46	15.02
CIS trans	C_{2v}	1	154.542 71	155.470.57	0.030 40	10.02
trans	C_{2h}	0	-154.949 27	-155.476 36	0.090 76	0.00
ammonia	sym	M(imag)	HF	MP9	7PVF	relenergy
ammonna	Sym	r (imag)	111	1111 2		rerenergy
16 s	C_{3v}	0	$-56.200\ 97$	$-56.380\ 03$	0.037 22	0.00
16 s	D_{3h}	1	-56.19088	-56.370~79	0.035 14	19.32
16 t	D_{3h}	0	$-56.014\ 11$	-56.17162	0.022 05	511.34
	011					
ammonium radical c	ation	svm /	V(imag) HF	MP2	ZPVE	rel energy
						0.07
19 d	($C_{3v} \rightarrow D_{3h}^{b}$	0 -55.888	-56.02726	0.035 15	0.05
19 d	1	D_{3h}	0 -55.888	74 -56.027 27	0.035 14	0.00
acyclic P cation	sym	N(imag)	HF	MP2	ZPVE	rel energy
17 .	C	0	206 660 06	206 020 72	0.020.09	0.00
175	C_s	U	-390.009.00	-390.939 72	0.039.08	0.00
17 t	$C_s #1$	1	-396.593 85	-396.836 97	0.034 44	258.79
17 t	C_{s} #2	0	$-396.619\ 87$	$-396.845\ 50$	0.034 81	237.26
17 t	C_{2v}	1	$-396.575\ 80$	$-396.827\ 33$	0.028 03	268.96
17 t	C_1	0	-396.61408	-396.86193	0.034 73	193.94
acyclic P radical	sym	N(imag)	HF	MP2	ZPVE	rel energy
	C #1	1	20.0 000 40	207 100 00	0.025.99	0.00
	$C_s \# I$	1	-390.922 42	-397.189 02	0.035 22	0.00
20 d	C_{s} #2	1	-396.91302	-397.17484	0.035 06	36.84
20 d	C_{2v}	2	$-396.854\ 40$	$-397.067\ 81$	0.026 53	297.72
20 d	C_1	0	-396.922~70	-397.18905	0.036 07	1.92
	-					
acyclic As cation	sym	N(imag)	HF	MP2	ZPVE	rel energy
18 s	C	0	-2290 0 8183	-2290 3 5103	0.037.11	0.00
10 5	$C = \pm 1$	9	-2200 0 0474	-9900 9 4755	0.007 11	260 60
10 L	$C_{S} # 1$	2	-2230.0 04/4	-2230.2 4733	0.032 42	200.00
18 t	$C_s #Z$	U	-2290.0 5075	-2290.2 6943	0.033 18	204.95
18 t	C_{2v}	3	$-2289.9\ 4675$	-2290.1 9220	0.030 58	401.58
18 t	C_1	0	$-2290.0\ 5075$	-2290.26944	0.033 18	204.94
		a . a . b .	•			
acyclic As radical	sym	N(imag)	HF	MP2	ZPVE	rel energy
21 d	<i>C</i> , #1	1	$-2290.3\ 3776$	-2290.6 0318	0.033 65	0.20
21 d	C. #2	1	-229026276	-2290.50515	0.031.69	252 94
91 d	C = 2	1	-2200 3 3260	-2200 5 0/18	0.033 86	2/ 22
61 U	$C_{S} # 3$	1		2200 4 4000	0.000 00	64.JJ
	C_{2v}	2	-2290.1 0059	-2290.4 4008	0.041 94	440.03
21 d	C_1	U	-z290.3 3903	-zz90.6 0427	0.034 78	0.00

^{*a*} Absolute energies are in hartrees. *N*(imag) indicates the number of imaginary vibrational frequencies. Relative energies (MP2/6-311G*//HF/6-311G* + 0.9 ZPVE) are in kJ/mol relative to the appropriate minimum geometry. ^{*b*} The symbol \rightarrow indicates that the symmetry of the structure changed during the optimization.

symmetries). These structures (depicted in Figure 1) were then used to obtain single-point UMP2 energies. Calculated structural parameters for **3** are compared

with experimentally determined values for 3' in Figure 3. The energies, zero-point vibrational energies (ZPVE), and number of imaginary frequencies for singlet and

Table 2. Selected Structural Parameters from HF/6-311G* Optimized G	Geometries of Cyclic Cations ^a
---	--

Tubic S.	buittu	Struct	urur r uru	meters non		mizeu uco	incu ics	or cyclic	Cations
	3 s C ₂	3 t C ₂	3 t C ₁	3 t $C_s \rightarrow C_{2v}{}^b$		3 s C ₂	3 t C ₂	3 t C ₁	3 t $C_s \rightarrow C_{2v}{}^b$
P(1)-N(2)	1.598	1.749	1.660	1.747	N(3)-C(7)	1.478	1.450	1.452	1.449
P(1)-N(3)	1.598	1.749	1.891	1.747	C(6)-C(7)	1.542	1.524	1.529	1.525
N(2)-C(6)	1.478	1.450	1.456	1.449	N(2)-P(1)-N(3)	94.1	83.9	84.1	83.9
	7 s C ₂	7 t C ₂	7 t C ₁	7 t $C_s \rightarrow C_{2v}^{\ b}$		7 s C ₂	7 t C ₂	7 t C ₁	7 t $C_s \rightarrow C_{2v}^{\ b}$
As(1)-N(2)	1.725	1.883	2.046	1.880	N(3)-C(7)	1.476	1.449	1.455	1.447
As(1)-N(3)	1.725	1.883	1.783	1.880	C(6)-C(7)	1.536	1.526	1.530	1.528
N(2)-C(6)	1.476	1.449	1.452	1.447	N(2)-As(1)-N(3)	89.6	80.2	80.3	80.2
4 (71		8 C ₁		4 C ₁			8 C ₁	
P(1)-N(2)	1.632	As	(1)-N(2)	1.768	C(13)-C(15)	1.512	C(13)-	-C(15)	1.512
P(1)-N(3)	1.630	As	(1) - N(3)	1.768	C(14)-C(15)	1.321	C(14)-	-C(15)	1.322
P(1)-C(12)	1.819	As	(1) - C(12)	1.932	N(2) - P(1) - N(3)	94.8	N(2)-	As(1)-N(3)	91.8
P(1)-C(13)	1.818	As	(1) - C(13)	1.932	N(2) - P(1) - C(12)	113.6	N(2)-	As(1)-C(12)	115.3
N(2) - C(6)	1.473	N(2)-C(6)	1.475	N(2)-P(1)-C(13)	117.7	N(2)-	As(1)-C(13)	120.9
N(3)-C(7)	1.474	N(3)-C(7)	1.475	N(3) - P(1) - C(12)	120.0	N(3)-	As(1) - C(12)	120.8
C(6) - C(7)	1.530	C(6)-C(7)	1.526	N(3)-P(1)-C(13)	115.6	N(3)-	As(1) - C(13)	115.3
C(12)-C(14)	1.513	C(12)-C(14)	1.512	C(12) - P(1) - C(13)	96.9	C(12)-	-As(1) - C(13)	s) 95.0
5 C ₁		9 C	1	5 C ₁	5 C ₁		9 C ₁		
P(1) - N(2)	1 872	Δ	s(1) - N(2)	2 051	C(13) - C(15)	1 318	C(13)	-C(15)	1 321
P(1) - N(3)	1.672	Δ.	s(1) - N(3)	1 807	C(13) - C(15)	1.510	C(10)	-C(15)	1.506
P(1) - C(12)	1.839	As	S(1) - C(12)	1.960	N(2) - P(1) - N(3)	88.7	N(2)-	-As(1) - N(3)	87.3
N(2) - C(6)	1.500	N	(2) - C(6)	1.497	N(2) - P(1) - C(12)	94.4	N(2)-	-As(1) - C(12)) 92.4
N(2) - C(14)	1.496	N	(2) - C(14)	1.506	N(3) - P(1) - C(12)	104.1	N(3) -	-As(1) - C(12)) 103.1
N(3) - C(7)	1.463	N	(3) - C(7)	1.457	P(1)-N(2)-C(14)	116.0	As(1)	-N(2)-C(14)) 116.1
C(6) - C(7)	1.544	C	(6) - C(7)	1.530	C(6) - N(2) - C(14)	115.1	C(6) -	N(2) - C(14)	112.7
C(12) - C(13)	1.509	C	(12) - C(13)	1.506		11011	0(0)		
6 (C _i		10 <i>C</i> _{<i>i</i>}		6 <i>C</i> _{<i>i</i>}		10 <i>C</i> _{<i>i</i>}		
P(1) - N(2)	1 818	Δ	s(1) - N(2)	1 940	C(12) - C(14)	1 525	C(12)	-C(14)	1 524
P(1) - N(4)	1 925	A	s(1) - N(4)	2 070	N(2) - P(1) - N(4)	80.6	N(2) -	-As(1) - N(4)	79 7
P(1) - N(5)	1 614	Δ	s(1) - N(5)	1 741	N(2) - P(1) - N(5)	90.6	N(2) -	As(1) - N(5)	86.6
N(2) - C(11)	1.517	N	(2) - C(11)	1 509	N(2) - P(1) - N(5)	104 7	N(4)	-As(1) - N(5)	101.8
N(5) - C(13)	1 471	N	(5) - C(13)	1 468	P(1)-N(2)-P(3)	99.4	$A_{s(1)}$	-N(2) - As(3)	101.0
C(11)-C(13)	1.525	C	(11) - C(13)	1.524	I (I) I (W) I (O)	00.1	115(1)	11(2) 115(0)	100.0
	11 C _s			12 <i>C</i> _{<i>i</i>}	11	Cs		12 C _i	
As(1) - N(2)		1.724	As(1)-N(2)	1.930		C(11) - C	C(15)	1.522
N(2) - C(6)		1.476	As(1)-N(4)	2.086		C(13) - C	C(15)	1.520
C(6) - C(8)		1.522	As(1)-N(5)	1.737		N(2) - As	s(1) - N(4)	79.5
N(2) - As(1) -	-N(3)	99.8	N(2)	-C(11)	1.513		N(2) - As	s(1) - N(5)	97.9
()(-)	(-)		N(5)	-C(13)	1.482		N(4) - As	s(1) - N(5)	104.7
			N(6)	-C(14)	1.482		As(1)-N	I(2) - As(3)	100.5

^{*a*} All lengths are in angstroms; all angles are in degrees. Full listings are available in the Supporting Information. See Chart 1 for structures. ^{*b*} The symbol \rightarrow indicates that the symmetry of the structure changed during the optimization.

triplet cations **3** and **7** are listed in Table $1,^{66}$ and selected structural parameters are listed in Table $2.^{66}$

The singlet states of the phospholanium (**3**) and arsolanium (**7**) cations are lower in energy than the corresponding triplet states by 308 and 249 kJ/mol, respectively, in qualitative agreement with previous quantum-chemical investigations of structurally simpler pnictogenium cations.^{6,30,32,35,37} The singlet-triplet splittings ($E_{s\rightarrow t}$) are much larger than those calculated for [PH₂]⁺ (68.2, 81.6, and 56.9 kJ/mol³² and 67.4 kJ/mol³⁰) and [AsH₂]⁺ (87.9, 111.3, and 86.6 kJ/mol³²). Nevertheless, the splitting in **3** is consistent with those calculated for [HPF]⁺ (178.2 kJ/mol), [PF₂]⁺ (351.5 kJ/mol),³⁰ and [PBr₂]⁺ (159.20 kJ/mol),³⁷ just as the splitting in **7** is consistent with those for [AsCl₂]⁺ (229.7 kJ/mol) and [AsBr₂]⁺ (183.3 kJ/mol).³⁵ These similarities are probably due to the π -donor substituents in **3**, **7**, [HPF]⁺,

and $[PF_2]^+$ (and to a lesser extent in the systems with the weaker π -donors Cl and Br), which therefore stabilize the singlet state, with respect to the triplet state, by π -donation.^{32,39} The inclusion of the pnictogen center in a five-membered ring imposes an acute N-Pn-N bond angle which is also predicted to stabilize the singlet state relative to the triplet state for carbenes,⁴⁰ although the optimized structures for the triplet states of 3 and 7 have even more acute N-Pn-N angles than do the singlets. To assess the relationship between N–Pn–N angle and the relative stability of pnictogenium cations, the energies of a series of simple acyclic pnictogenium cations $[H_2N-Pn-NH_2]$ (14, Pn = P; 15, Pn = As) were studied on the C_{2v} energy hypersurface. The lowest singlet and triplet states were optimized with no constraints; the resultant structures are shown in Figure 2, and selected structural parameters are

⁽³⁹⁾ Cramer, C. J.; Dulles, F. J. J. Am. Chem. Soc. **1994**, *116*, 9787–9788.

⁽⁴⁰⁾ Baird, N. C.; Taylor, K. F. J. Am. Chem. Soc. **1978**, 100, 1333–1338.

Table 3.	Selected	Structura	l Paramet	ters from	HF/6-311G* Op	otimized	l Geom	etries of	Acyclic Sp	pecies ^a
	14 s C _{2v}	14 t C _{2v}	15 s C_{2v}	15 t C _{2v}		14	s C_{2v}	14 t C _{2v}	15 s C_{2v}	15 t C _{2v}
Pn(1) - N(2)	1.597	1.753	1.724	1.889	N(2)-Pn(1)-N	(3) 10	94.809	90.047	101.360	87.484
N(2) - H(4)	1.000	1.002	0.998	1.002	Pn(1)-N(2)-H	(4) 12	27.281	127.940	126.233	127.478
N(2)-H(5)	1.000	1.004	0.998	1.004	Pn(1)-N(2)-H	(5) 11	9.003	119.129	119.757	120.168
	14	C_{2v} MP2	15 t	C_{2v} MP2			14 t	C_{2v} MP2	15 t (C_{2v} MP2
P(1)-N(2)		1.753	1	.879	N(2)-P(1)-	N(3)	89	9.136	86	.255
N(2)-H(4)		1.015	1	.015	P(1)-N(2)-1	H(4)	12	26.934	12	5.990
N(2)-H(5)		1.017	1	.017	P(1)-N(2)-1	H(5)	1	19.650	12	0.832
16	s C _{3v} 1	6 s D _{3h}	16 t <i>D</i> _{3<i>h</i>}	19 d <i>D</i> _{3<i>h</i>}		16 s C ₃₁	v 16	s D _{3h}	16 t <i>D</i> _{3<i>h</i>}	19 d <i>D</i> _{3<i>h</i>}
N-H 0	.999	0.985	1.064	1.008	H-N-H	107.4	1	20.0	120.0	120.0
	17 s C _s	17 t C _s #1	17 t C _s #	2 17 t C ₁			17 s C _s	17 t C _s #	17 t C _s #2	2 17 t C ₁
P(1)-N(2)	1.583	1.617	1.813	1.640	P(1)-N(2)-H(4))	120.7	122.6	122.8	120.7
P(1) - H(3)	1.400	1.389	1.404	1.403	P(1) - N(2) - H(5))	125.7	121.5	122.8	120.7
N(2) - H(4)	1.002	0.998	1.008	1.003	H(4) - N(2) - H(5))	113.6	115.9	113.9	113.5
N(2) = H(3) N(2) = D(1) = H(3)	1.000	1.000	1.008	1.003	H(3) = P(1) = N(2) H(2) = D(1) = N(2))-H(4)	180.0	180.0	-94.1	103.5
IN(2) I (I) II(0	5) 37.0	117.0	51.1	111.5	II(3) I (1) IV(2)) 11(3)	0.0	0.0	54.1	105.5
	17 t C _{2v}	20 d C ₁	20 d <i>C_s</i> #1	20 d <i>C_s</i> #2			17 t C _{2v}	20 d C ₁	20 d <i>C_s</i> #1	20 d <i>C_s</i> #2
P(1) - N(2)	1.581	1.694	1.685	1.719	P(1)-N(2)-H(4))	123.4	117.7	120.4	115.6
P(1) - H(3)	3.947	1.408	1.408	1.425	P(1)-N(2)-H(5))	123.4	121.7	124.7	115.6
N(2) - H(4)	1.005	0.993	0.991	0.998	H(4) - N(2) - H(5))	113.3	112.8	114.9	109.1
N(2) = H(3) N(2) = D(1) = U(2)	1.005	0.993	0.991	0.998	H(3) = P(1) = N(2) H(2) = P(1) = N(2)	-H(4)	0.0	-170.0	180.0	-64.6
N(2)=F(1)=H(3	6) 180.0	93.8	93.8	101.9	$\Pi(3) = \Gamma(1) = \Pi(2)$)=11(3)	0.0	-23.5	0.0	04.0
			20 d (C_{2v}					20 d d	C_{2v}
P(1)-I	N(2)		4.5	00	P(1)-N	I(2) - H(4)			127.	5
P(1)-I	H(3)		1.4	15	P(I) = N	(2) - H(5)			127.	5
N(2) -	П(4) Н(5)		1.0	09	H(4) = 1 H(3) = F	$N(2) = \Pi(3)$ P(1) = N(2)	-H(4)		103.	0
N(2)	P(1) - H(3)		180.0	00	H(3) -	P(1) - N(2)	-H(5)		0.	Ő
	19 ~ C	19+ C #1	10 + C #9	10 + C #9		., .,	19 - C	10 + C #1	10 + C #9	10 + C #2
A (1) NI(0)	18 S C _s	18 C S #1	18 t C _s #2	18 t C _s #3	A (1) N(0) II(<u>.</u>	101 1	10 L C _S #1	101 C _s #2	10 L C _s #3
As(1) = N(2)	1.709	1.742	2.000	2.000	As(1) = N(2) = H(4)	1)	121.1	122.2	123.5	123.5
N(2) - H(3)	1.010	1.497	1.510	1.010	H(4) = N(2) = H(3))	124.9	120.0	123.5	123.5
N(2) - H(5)	1 000	1 000	1.008	1.008	$H(3) - A_{S}(1) - N(2)$	P_{2}^{\prime} - H(4)	180.0	180.0	-91.9	91.9
N(2) - As(1) - H(0)	3) 95.3	117.6	88.5	88.5	H(3) - As(1) - N(2)	(2) - H(5)	0.0	0.0	91.9	-91.9
	18 t C ₁	18 t C _{2v}	21 d C ₁	21 d <i>C_s</i> #1			18 t C ₁	18 t C ₂	21 d C ₁	21 d <i>C_s</i> #1
As(1)-N(2)	2.000	1.748	1.830	1.809	As(1)-N(2)-H(4)	123.4	119.3	114.9	120.9
As(1)-H(3)	1.516	1.493	1.521	1.520	As(1)-N(2)-H(5)	123.5	119.3	117.6	124.1
N(2) - H(4)	1.008	0.996	0.996	0.992	H(4) - N(2) - H(5))	113.0	121.5	110.6	115.0
N(2) - H(5)	1.008	0.996	0.995	0.991	H(3) - As(1) - N(3)	2) - H(4)	92.0	0.0	-163.8	180.0
N(2)-As(1)-H	(3) 88.5	180.0	94.5	94.4	H(3) - As(1) - N(3)	2)-H(5)	-91.9	0.0	-31.0	0.0
	21 d	l C _s #2 2	21 d <i>Cs</i> #3	21 d C _{2v}			21 d	<i>C</i> _s #2	21 d <i>C_s</i> #3	21 d C _{2v}
As(1)-N(2)	2.	.056	1.854	1.771	As(1)-N(2)-H	(4)	12	3.8	112.8	119.6
As(1)-H(3)	1.	526	1.538	1.452	As(1)-N(2)-H	(5)	12	3.8	112.8	119.6
N(2)-H(4)	1.	.003	1.000	0.988	H(4)-N(2)-H(5)	11	2.3	107.9	120.8
N(2) - H(5)	1.	.003	1.000	0.988	H(3)-As(1)-N	(2) - H(4)	-6	92.1	61.3	0.0

^{*a*} All lengths in are angstroms; all angles are in degrees. Full listings are available in the Supporting Information. See Chart 1 for structures.

listed in Table 3.⁶⁶ The calculated energies (Tables 6 and 7, fully optimized structures are assigned a relative energy of 0.0) show that the singlet species is substantially favored in each case ($E_{s\rightarrow t}$: **14**, 395.8 kJ/mol; **15**, 325.2 kJ/mol). The triplet species are optimized with more acute N–Pn–N angles for both phosphenium (104.8 vs 90.0°) and arsenium cations (101.4 vs 87.5°); however, both triplet cations are not true minima (two imaginary frequencies for both P and As). In addition, the effect of the N–Pn–N bond angle on the energy of the cations on the C_{2v} singlet and triplet surfaces was examined by fixing the bond angle and allowing all other parameters to optimize. The results of these calcula-

tions are listed in Tables 6 and 7⁶⁶ and show that there exists only one minimum for each singlet cation and two "minima" for each of the triplet surfaces. Frequency analysis of each stationary point reveals that the only true minima (N(imag) = 0) on the triplet surface of **14** are at 140 and 150°, which are each more than 100 kJ/ mol higher in energy than the lowest energy structure on the C_{2v} surface. There are no true minima on the triplet C_{2v} surface for **15**. Full MP2/6-311G* optimizations for both [(H₂N)₂Pn] triplet cations yield results nearly identical with those of the HF/6-311G* optimizations; thus, the inclusion of electron correlation does not predict that C_{2v} triplet cations are stable minima or

alter the conclusions drawn from the HF calculations. For the cyclic triplet cations **3** and **7**, the decrease in N–Pn–N angle may be explained by the partial filling of the π^* heteroallylic (N–Pn–N) antibonding orbital (*vide infra*).

The Mulliken and NBO charges listed in Table 4 show a concentration of positive charge at the pnictogen center and a localization of negative charge on the N atoms in both systems. The experimentally observed stability may be due to the internal Coulombic stabilization of the "negative–positive–negative" charge distribution for the N–Pn–N fragment (Pn = P, As), consistent with the conclusions of Wiberg based on an *ab initio* study of allylic systems.⁴¹ This phenomenon is likely due to the σ -electronegative stabilizing (and π -donating) effect of an atom such as N, and in this context the vast majority of isolable pnictogenium systems have two nitrogen atoms adjacent to the pnictogen atom.⁴²

In contrast to the previous reports, 30,32,35,37 the HFoptimized minima for the triplet states of **3** and **7** (*N*(imag) = 0) have *C*₁ symmetry and consist of a partial N–Pn multiple bond (three-electron bond; Pn = P, As) and a nitrogen-based radical. However, at the MP2 level, the C_1 geometry is higher in energy than both the C_2 (N(imag) = 1; $E_{s \to t}(\text{MP2}) = 288 \text{ kJ/mol}$) and C_s (optimizes to $C_{2\nu}$; N(imag) = 2; $E_{s \to t}(\text{MP2}) = 290 \text{ kJ/mol}$) structures. This indicates that the HF and MP2 energy hypersurfaces are not parallel in the case of the triplet species, which is likely a consequence of the introduction of electron correlation in MP2 calculations. As expected, the singlet species are not as susceptible to the effects of electron correlation, as is evident from the optimization of **3** at the full MP2/6-311G* level of theory, which yields a structure and energy (6.85 kJ/mol lower) nearly identical with those of **3** at MP2/6-311G*//HF/6-311G* optimization.

The charge and spin distributions shown in Tables 4 and 5, respectively, are similar for triplets **3** and **7** (C_1 symmetry; N(imag) = 0) with positive charge localized on the pnictogen atom and negative charge on the nitrogen atoms. The charge on the pnictogen center is significantly lower for the triplet than for the singlet in each case (**3** singlet, 1.12; triplet, 0.77; **7** singlet, 1.16; triplet, 0.82) and the negative charges on the nitrogen atoms are no longer equal (**3** triplet N, -0.86 and -0.50; **7** triplet N, -0.50 and -0.87). The spin densities are also found almost exclusively in the N–Pn–N moieties which, along with structural parameters and NBO

⁽⁴¹⁾ Wiberg, K. B.; Breneman, C. M.; LePage, T. J. J. Am. Chem. Soc. 1990, 112, 61-72.

⁽⁴²⁾ Reed, R. W.; Xie, Z.; Reed, C. A. Organometallics **1995**, *14*, 5002–5004 and references therein.

	Iable	4. Mui		natura	Donu (nai ge Di			Select			
		3 s (<i>C</i> ₂		3 t C ₁				3 s	<i>C</i> ₂		3 t	C_1	
	Mu	ılliken	NBO	Mull	ken	NBO		Mul	liken	NBO	M	ulliken		NBO
P(1) N(2)	_(1.123	1.552 -1.003	0.7	72 865	0.968	H(4) H(5)	0.4	450 150	0.439		0.446 0.450		0.429
N(2) N(3)	-(0.877	-1.003	-0.5	505 505	-0.370	11(3)	0	450	0.433		5.450		0.337
		3 t (<u></u>		$3 \downarrow C_c \rightarrow 0$	$\gamma_{a,b}$			3 t	$\overline{C_2}$		3 t Ca-	→ Ca	b
	Mu	ılliken	NBO	Mull	ken	NBO		Mul	liken	NBO	M	ulliken	02	NBO
P(1)	(0.627	0.786	0.6	320	0.786	H(4)	0.4	450	0.417).448		0.416
N(2) N(3)	—(—(0.625 0.625	$-0.599 \\ -0.599$	-0.6 -0.6	525 525	$-0.599 \\ -0.599$	H(5)	0.4	450	0.417		0.448		0.416
		4 C ₁			5 C ₁				4 C ₁			5 (71	
	Mu	lliken	NBO	Mullik	en	NBO		Mullil	ken	NBO	Mu	lliken		NBO
P(1)	1	.610	2.049	0.94	0	1.273	H(5)	0.4	23	0.422	().423		0.410
N(2)	-0	.928	-1.036	-0.80	4 -	-0.699	C(12)	-0.7	96	-0.705	-(0.791	-	0.718
H(3) H(4)	-0 0	.931).425	-1.036 0.422	-0.90 0.44	7 -	-1.022 0.412	C(13)	-0.7	92	-0.706	-().142	_	0.141
				6 C _i							6 (7		
			Mulliken	•••	NB	0				Mulliker	n	1	NBC)
	P(1)		1.190		1.5	32	Ι	H(7)		0.487			0.45	1
	N(2) N(5)		$-1.033 \\ -0.898$		$-1.0 \\ -1.0$	30 38	I	H(9)		0.471			0.45	4
		7.0	C		7+ 0				7 .	C		7 +	C	
	M	7 S ulliken	NBO	Mul	iken	NBO		Mu	7 S Iliken	NBO	M	/ t ulliken	c_1	NBO
As(A	.)	1 161	1 642	0	824	1 082	H(4)) 0	439	0 429		0 439		0.386
N(2)	-	-0.868	-1.031 -1.031	-0. -0.	498 872	-0.394 -1.028	H(5)) 0.	439	0.429		0.434		0.422
1(0)		0.000	1.001	0.	012	1.020								
		7 t	C_2		$7 \text{ t } \text{C}_{\text{s}} \rightarrow 0$	C_{2v}^*			7 t	$\frac{C_2}{C_2}$		$7 \text{ t } \text{C}_{\text{s}}$	$\rightarrow C_2$	<i>v</i> *
	M	ulliken	NBO	Mull	iken	NBO		Mu	lliken	NBO	М	ulliken		NBO
As(1 N(2)) _	0.650	$0.853 \\ -0.613$	0. -0.	647 621	$0.851 \\ -0.612$	H(4) H(5)	0.	440 440	0.407		0.438		0.407
N(3)	_	0.618	-0.613	-0.	621	-0.612	11(0)		110	01101				01101
		8 C	, 1		9 C ₁				8 C	1		9 (71	
	Mu	ılliken	NBO	Mullil	ken	NBO		Mulli	ken	NBO	Mu	lliken		NBO
As(1))	1.571	2.055	0.9	97	1.354	H(5)	0.4	04	0.407	(0.395		0.387
N(2) N(3)	—(—(0.887 0.887	-1.020 -1.020	-0.80 -0.84)2 · 45 ·	-0.722 -1.018	C(12) C(13)	-0.7	53 53	-0.691 -0.691	—(—().769).154	_	-0.723
H(4)	(0.404	0.407	0.4	13	0.410	- ()							
		10 C _i			12	Ci			10 C _i			1	2 C _i	
	Mulli	ken	NBO	N	lulliken	NBO		Mullik	xen	NBO		Mullike	n	NBO
As(1)	1.2	272	1.656 A	As(1)	1.271	1.652	H(7)	0.46	8	0.438	H(7)	0.459		0.430
N(2) N(5)	-1.0 -0.9)26 -)14 -	-1.074 M -1.067 M	N(2) N(5)	-1.039 -0.950	$-1.077 \\ -1.078$	H(9)	0.45	8	0.444	H(9)	0.440		0.426
				11 C _s							11 (Cs		_
			Mulliken		NB	0				Mullike	n		NBC)
	As(1) N(2)		$1.155 \\ -0.885$		1.6 -1.0	323)34		H(4)		0.434			0.42	0
	3 pre	р <i>С</i> 1	7 pre	ep <i>C</i> ₁	11 p	orep C ₁		3 prep	0 <i>C</i> ₁	7 pr	rep C ₁	1	l pre	р <i>С</i> 1
	Mulliken	NBO	Mulliken	NBO	Mullike	n NBO		Mulliken	NBO	Mullike	n NBC	D Mulli	iken	NBO
1 P	1.149	1.526	1.133	1.603	1.133	1.602	4 H	0.420	0.404	0.405	0.39	5 0.3	99	0.389
2 N	-0.866	-0.968	-0.802	-0.980	-0.813	-0.992	5 H	0.458	0.442	0.444	0.43	2 0.4	31	0.416
9 IN	-0.850	-0.979	-0.842	-1.008	-0.863	-1.016								
		14 s	C_{2v}		14 t C ₂	V			14 s	C_{2v}		14 t	$\overline{C_{2v}}$	
	Mu	lliken	NBO	Mull	ken	NBO		Mul	liken	NBO	M	ulliken		NBO

0.792 -0.706

H(4)

H(5)

0.446

0.467

0.660

-0.735

0.431 0.438 0.439 0.466 0.398 0.412

P(1) N(2)

1.162

-0.995

1.568

-1.153

	15 s	C_{2v}	15 t	C_{2v}		15 s	C_{2v}	15 t (\tilde{z}_{2v}
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
As(1)	1 249	1.673	0 704	0.857	H(4)	0.440	0.423	0.435	0 390
N(2)	-1.017	-1.188	-0.741	-0.720	H(5)	0.453	0.428	0.454	0.402
	16 s	C_{3v}	16 s <i>i</i>	D_{3h}		16 s	C_{3v}	16 s <i>l</i>	\mathcal{D}_{3h}
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
N(1)	-1.022	-0.983	-1.090	-1.069	H(2)	0.341	0.328	0.363	0.356
	16 t .	D _{3h}	19 d .	D _{3h}		16 t <i>i</i>	D _{3h}	19 d <i>l</i>	D _{3h}
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
N(1)	-0.236	-0.408	-0.478	-0.231	H(2)	0.079	0.136	0.493	0.410
	17 s	Cs	17 t	<i>C</i> ₁		17 s	Cs	17 t (C1
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
P(1)	0.861	1.266	0.700	1.082	H(4)	0.473	0.441	0.476	0.438
N(2) H(3)	-0.906 0.099	-1.066 -0.085	-0.853 0.202	-0.977 0.019	H(5)	0.473	0.444	0.476	0.438
	17 t <i>C</i>	<i>C_s</i> #1	17 t <i>C</i>	s #2		17 t <i>C</i>	<i>S</i> #1	17 t <i>C</i> _s	;#2
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
P(1)	0.796	1.238	0.534	0.758	H(4)	0.478	0.450	0.477	0.407
N(2) H(3)	$\begin{array}{r} -0.986\\ 0.233\end{array}$	$-1.169 \\ 0.030$	$\begin{array}{r}-0.610\\0.122\end{array}$	$-0.510 \\ -0.061$	H(5)	0.479	0.450	0.477	0.407
17 t C _{2v}		C_{2v}	20 d	<i>C</i> ₁		17 t <i>C</i> _{2<i>v</i>}		20 d C ₁	
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
P(1)	0.940	1.230	0.276	0.529	H(4)	0.479	0.448	0.380	0.369
N(2)	-0.902	-1.127	-1.025	-1.140	H(5)	0.479	0.448	0.381	0.370
H(3)	0.005	0.001	-0.012	-0.129		00.1.0	7 11 4	00 1 0	
	20 d C	<i>s</i> #1		NDO		ZU d C	×s #1	20 d C	s #2
D(1)	Mulliken	NBO	Mulliken	NBO	11(4)	Mulliken	NBU	Mulliken	NBO
P(1) N(2)	-1.036	-1.149	-1.039	-1.173	H(4) H(5)	0.385	0.375	0.370	0.359
H(3)	-0.013	-0.128	-0.041	-0.176					
			20 d C _{2v}					20 d C _{2v}	
		Mulliken	N	BO			Mulliken	N	IBO
P(1 N(2) 2)	-0.006 -0.617	-0 -0).167) 509	H(4 H(5	!)))	0.312	0	.255 255
H(3	3)	-0.001	-0	0.168	11(0	·)	0.012	0	
	18 s	Cs	18 t	<i>C</i> ₁			18 s C _s	18 t	<i>C</i> ₁
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
As(1)	0.888	1.345	0.553	0.819	H(4)	0.462	0.432	0.463	0.390
N(2) H(3)	$-0.945 \\ 0.130$	-1.111 -0.101	-0.614 0.136	-0.507 -0.091	H(5)	0.465	0.435	0.463	0.390
	18 t (C _s #1	18 t <i>C</i>	C _s #2		18 t <i>C</i>	<i>C_s</i> #1	18 t <i>C</i>	, #2
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
As(1)	0.813	1.260	0.553	0.819	H(4)	0.467	0.440	0.463	0.389
N(2) H(3)	$-1.000 \\ 0.255$	$-1.178 \\ 0.037$	$\begin{array}{r}-0.614\\0.136\end{array}$	$-0.507 \\ -0.091$	H(5)	0.466	0.441	0.463	0.389
	18 t (C _s #3	18 t <i>C</i> ₉			18 t <i>C</i>	<i>C_s</i> #3	18 t (\tilde{c}_{2v}
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
As(1)	0.553	0.819	0.598	0.962	H(4)	0.462	0.389	0.473	0.443
N(2) H(3)	$\begin{array}{r}-0.614\\0.136\end{array}$	$-0.507 \\ -0.091$	$\begin{array}{r}-0.927\\0.383\end{array}$	$\begin{array}{r}-1.082\\0.234\end{array}$	H(5)	0.462	0.389	0.473	0.443
	21 d	l <i>C</i> 1	21 d (C _s #1		21 d	<i>C</i> ₁	21 d <i>C</i>	s#1
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
As(1)	0.290	0.586	0.302	0.587	H(4)	0.364	0.359	0.377	0.370
N(2)	-1.031	-1.160	-1.065	-1.186	H(5)	0.370	0.362	0.383	0.373
ri(3)	0.006	-0.140	0.003	-0.145					

Table 4. (Continued)

	21 d <i>C_s</i> #2		21 d <i>C_s</i> #3			21 d <i>C_s</i> #2		21 d <i>C_s</i> #3	
	Mulliken	NBO	Mulliken	NBO		Mulliken	NBO	Mulliken	NBO
As(1) N(2) H(3)	$-0.188 \\ -0.616 \\ 0.009$	$-0.101 \\ -0.457 \\ -0.109$	$0.337 \\ -1.032 \\ -0.025$	$0.658 \\ -1.175 \\ -0.186$	H(4) H(5)	0.398 0.398	0.334 0.334	0.360 0.360	0.352 0.352
			21 d C _{2v}					21 d C _{2v}	
		Mulliken	Ν	IBO			Mulliken	-	NBO
As(1 N(2) H(3	1)))	$-0.200 \\ -0.935 \\ 0.313$).057 1.032).201	H(4) H(5)		0.411 0.411	().387).387

^{*a*} Full listings are available in the Supporting Information. See Chart 1 for structures. ^{*b*} The symbol \rightarrow indicates that the symmetry of the structure changed during the optimization.

Table 5.	Calculated Spin	Densities of Doublet	and Triplet S	Species of Selected A	tomsa
----------	------------------------	-----------------------------	---------------	------------------------------	-------

		3 t C ₁	3 t C ₂		3 t $C_s \rightarrow C_{2v}$
P(1)	0.	787 359	0.570 22	22	0.567 805
N(2)	0	234.2	0 797 11	8	0 798 349
N(2)	0.	111 636	0.707 11	8	0 708 340
14(3)	1.	111 030	0.797 11	.0	0.798 349
		7 t <i>C</i> ₁	7 t C ₂		7 t $C_s \rightarrow C_{2v}$
As(1)	0	.771 37	0.457 42	29	0.457 074
N(2)	1	.139 47	0.855 82	26	0.855 291
N(3)	Ō	215 669	0 855 85	26	0 855 291
11(0)			0.000 0.		0.000 201
	1	4 t C _{2v}	14 t C _{2v} l	MP2	15 t C _{2v}
Pn(1)	0	.569 402	0.573	133	0.455 039
N(2)	0	.829 083	0.829	303	0.885 66
H(4)	-0	.056 652	-0.057	781	$-0.056\ 115$
H(5)	-0	.057 132	-0.058	088	$-0.057\ 065$
	47 - 0	4.9	7 U.4	4.41 - 62 - 110	48.0
	17 t C ₁	17 t C	s #1	17 t C _s #2	17 t C_{2v}
P(1)	1.459 99	1.738	679	1.014 774	1.184 236
N(2)	0.421 357	0.210	809	1.068 443	$-0.256\ 47$
H(3)	0.145 637	0.067	874	0.020 893	0.995 796
H(4)	-0.013494	-0.023	644	-0.052055	0.038 219
H(5)	-0.01349	0.006	282	-0.052.055	0.038.219
11(0)	0.010 10	0.000		0.002 000	0.000 210
	20 d C ₁	20 d <i>C</i>	C _s #1	20 d <i>C_s</i> #2	20 d C _{2v}
P(1)	0.964 238	0.949	062	1.092 082	2.092 449
N(2)	0.116 866	0.141	537	-0.063~631	-1.144~654
H(3)	-0.054573	-0.053	942	$-0.056\ 067$	-0.090582
H(4)	-0.014537	-0.018	096	0.013 808	0.071 393
H(5)	-0.011.994	-0.018	562	0.013.808	0 071 393
11(0)	0.011 001	0.010		0.010 000	0.071 000
	18 t <i>C</i> ₁	18 t <i>C_s</i> #1	18 t <i>C_s</i> #2	18 t <i>C_s</i> #3	18 t C _{2v}
As(1)	0.976 501	1.654 095	0.976 405	0.976 396	2.205 972
N(2)	1.140 386	0.241 983	1.140 418	1.140 591	0.058 054
H(3)	-0.000567	0.120 56	-0.000519	-0.00064	-0.267776
H(4)	-0.058.171	-0.024501	-0.058.152	-0.058.174	0 001 875
H(5)	-0.058.15	0.007.862	-0.058152	-0.058174	0.001.875
11(0)	0.000 10	0.007 002	0.000 102	0.000 174	0.001 070
	21 d C ₁	21 d <i>C_s</i> #1	21 d <i>C_s</i> #2	21 d <i>C_s</i> #3	21 d C _{2v}
As(1)	0.983 212	0.947 211	-0.084 1	1.095 731	1.101254
N(2)	0.087 019	0.137 583	1.156 323	$-0.058\ 375$	0.089 37
H(3)	-0.055~764	$-0.054\ 055$	0.064 992	$-0.056\ 85$	$-0.168\ 619$
H(4)	-0.008674	-0.015264	$-0.068\ 607$	0.009 747	$-0.011\ 002$
H(5)	-0.005 794	-0.015475	-0.068607	0.009 747	-0.011002
(0)	0.000.001	0.010 1.0		0.000 / 1/	0.011.00W
		16 t <i>i</i>	D_{3h}	1	9 d <i>D</i> _{3<i>h</i>}
Ν	J(1)	0.917	497	1	202 094
I I	4(2)	0.360	834	-0	067 365

^{*a*} Full listing are available in the Supporting Information. See Chart 1 for structures. ^{*b*} The symbol \rightarrow indicates that the symmetry of the structure changed during the optimization.

analysis, suggest that the triplets each contain a Pn-N multiply bonded (three-electron bond) radical (sum of spin densities on Pn and N: **3**, 1.01; **7**, 0.98) cation and a separated nitrogen radical (spin density: **3**, 1.11; **7**, 1.13).

In an attempt to understand the unexpected symmetry and bonding of triplets **3** and **7**, calculations were performed on the singlet and triplet ground states of NH₃ (**16**), $[H_2NPH]^+$ (**17**),³¹ $[H_2NAsH]^+$ and (**18**) and the doublet ground states of $[NH_3]^{\bullet+}$ (**19**), $[H_2NPH]^{\bullet}$ (**20**),

Figure 3. Comparison of selected experimentally (left) and theoretically (right) determined structural parameters for **3**, **11**, **10**, and **9** (angles in deg, lengths in Å).

and [H₂NAsH][•] (21). All appropriate symmetries were examined for each species, and the energies, the number of imaginary frequencies, and the ZPVEs are listed in Table 1. The structures are shown in Figure 2, and the structural parameters are listed in Table 3. Models 16-18 are not consistent with the results obtained for triplets **3** and **7** and predictably confirm that triplet ammonia is much less favorable than singlet ammonia and has a much larger singlet-triplet splitting (511.7 kJ/mol) than both 16 and 17. An isodesmic comparison of the singlet and triplet species is thus unproductive; however, an isogyric comparison of the doublet species 19, 20, and 21 to 16, 17, and 18 accurately reproduces the behavior observed in triplets 3 and 7. The lengths for the shorter Pn-N bond in triplets 3 and 7 are consistent with those of doublets 20 and 21, respectively (**3** t C1, 1.66 Å; **20** C1, 1.694 Å; **7** t C1, 1.783 Å; **21** C1, 1.83 Å), which are also shown to be partial multiple bonds through NBO analysis (approximately threeelectron bonds) in each case. Likewise, the length of the **3** t C_1 N(3)-H(5) bond (1.005 Å) (**7** t C_1 N(2)-H(4) (1.005 Å)) (the hydrogen atom bonded to the nitrogen atom not involved in multiple bonding) is most closely reproduced by the 1.008 Å N–H bond in the ammonium radical cation **19**. The structures of triplet cations **3** and **7** are thus best explained as a combination of distinct radical and radical cation units; however, the reason for the adoption of this structure remains unclear. A possible rationalization is found in the reaction energies shown in Table 8.⁶⁶ Isogyric reaction energies show that singlet ammonia and the lowest energy triplet cation are favored over all of the combinations of doublet species; however, if the singlet and triplet species are restricted to the symmetries observed in cations **3** and **7** (planar R₂N–Pn–NR₂ moiety) the doublet species are favored (18.6 kJ/mol, Pn = P; 29.0 kJ/mol, Pn = As).

Dimerization of Pnictogenium Cations. Carbenes and their analogues are by definition formally subvalent (dicoordinate) and electron deficient, and as such, they are susceptible to dimerization to enable the adoption of a "normal" coordination number and valence octet. For example, group 14 carbenoids without π -donor substituents (including carbenes with π -donors) dimerize to form olefin-type compounds **22**.^{6,43} Certain

heavier carbene analogues bearing π -donor groups are predicted^{6,44} and observed^{6,45} to form bridged dimers **23**, which may be considered σ -bonded alternatives to the corresponding multiply bonded monomers (two- or four- π -electron systems) or mutual donor-acceptor complexes of the monomers. π -Bonding is weaker for heavier elements (n > 2) so that four single bonds (four σ -bonds) are energetically favored over two double bonds (two σ -bonds and two π -bonds), as depicted in Scheme 1. This prediction arises from the assumption that π -overlap decreases as *n* increases, although Schlever has shown that it is actually the increase in the energy of planarization with increasing n that decreases the favorability of π -interactions.⁴⁶ The experimentally observed dimers of arsolanium cations,¹⁹ in contrast to the universally monomeric structures of phospholanium salts, are consistent with such trends. However, our recent isolation and characterization of the monomeric arsenanium salt 11'[GaCl₄] implies that the centrosymmetric dimer 10'[GaCl₄]₂ ($P2_1/n$ space group) is likely a

⁽⁴³⁾ Regitz, M. Angew. Chem., Int. Ed. Engl. **1991**, 30, 674–676 and references therein.

⁽⁴⁴⁾ See, for example: (a) Apeloig, Y. In *The Chemistry of Organic Silicon Compounds*, Patai, S., Rappoport, Z., Eds.; Wiley: Toronto, 1989; Part 1, Chapter 2, and references therein. (b) Maxka, J.; Apeloig, Y. *J. Chem. Soc., Chem. Commun.* **1990**, 737–739. (c) Karni, M.; Apeloig, Y. *J. Am. Chem. Soc.* **1990**, *112*, 8589–8590. (d) Apeloig, Y.; Müller, T. *J. Am. Chem. Soc.* **1995**, *117*, 5363–5364.

⁽⁴⁵⁾ See, for example: (a) Schönherr, H.-J.; Wanzlick, H.-W. Chem. Ber. **1970**, 103, 1037–1046, and references therein. (b) Veith, M. Z. Naturforsch., B **1978**, 33, 1–6. (c) Veith, M. Z. Naturforsch., B **1978**, 33, 7–13. (d) Veith, M.; Recktenwald, D.; Humpfer, E. Z. Naturforsch., B **1978**, 33, 14–19. (e) Jutzi, P.; Holtmann, U.; Bögge, H.; Müller, A. J. Chem. Soc., Chem. Commun. **1988**, 305–306. (f) Sakamoto, K.; Tsutsui, S.; Sakurai, H.; Kira, M. Bull. Chem. Soc. Jpn. **1997**, 70, 253– 260.

⁽⁴⁶⁾ Schleyer *et al.* have determined that it is not inherently poor π -overlap but an increasing hybridization (planarization) energy that renders heavier π -bonding unfavorable: Kapp, J.; Schade, C.; El-Nahasa, A. M.; Schleyer, P. v. R. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 2236–2238.

 Table 6. Effect of Changes in N-P-N Angle for C2v Acyclic Phosphenium Cations 14: Computed Energies (HF/6-311G* and MP2/6-311G*//HF/6-311G*) and Zero Point Vibrational Energies for All Calculations^a

N-P-N					rel
angle	N(imag)	HF	MP2	ZPVE	energy
-		14 s	Can		
60	2	-451.514.21	-451.996.58	0.057 46	591.40
70	ĩ	-451.644 74	-452.108.39	0.059 28	302.13
80	1	-451.722.55	-452.175.81	0.059 55	125.75
90	0	-451.762.08	-452.20990	0.059 53	36.21
100	0	-451.777 23	-452.22252	0.059 40	2.76
104.8073	0	-451.778 73	-452.22349	0.059 30	0.00
110	0	-451.777 17	-452.22174	0.059 22	4.41
120	0	-451.76664	-452.21174	0.059 10	30.36
130	0	-451.74784	-452.19447	0.058 98	75.41
140	0	-451.72187	-452.17092	0.058 80	136.81
150	0	-451.68934	$-452.141\ 70$	0.058 49	212.81
160	0	-451.65059	-452.10724	0.057 89	301.87
170	0	$-451.605\ 85$	-452.068~36	0.056 35	400.31
		14 t	Con		
60	4	-451,450,81	-451.880.93	0.051 44	484.99
70	3	-451.625.04	-452.043.08	0.054 50	66.51
80	3	-451.657.20	-452.071.69	0.053 33	-11.40
90	2	-451.665.15	-452.078.02	0.065 30	0.28
90.0467	2	-451.66515	-452.07802	0.065 18	0.00
100	2	-451.66006	-452.07227	0.057 36	-3.38
110	4	-451.64566	-452.05867	0.052 95	21.90
120	4	-451.64692	$-452.060\ 21$	0.052 69	17.25
130	4	-451.64191	-452.05607	0.052 51	27.69
140	0	-451.58164	-452.02305	0.058 05	127.48
150	0	$-451.607\ 61$	$-452.045\ 83$	0.084 90	131.13
160	1	-451.62644	$-452.062\ 42$	0.056 15	19.62
170	1	$-451.637\ 85$	$-452.062\ 42$	0.056 34	20.06
		14 t	$C_{2\nu}$		
89.135	2		-452.078 75	$0.183 \ 19^{b}$	

^{*a*} Absolute energies are in hartrees. N(imag) indicates the number of imaginary vibrational frequencies. Relative energies (MP2/6-311G*//HF/6-311G* + 0.9 ZPVE) are in kJ/mol relative to the appropriate optimized minimum geometry. ^{*b*} Optimized.

function of crystal packing.¹⁸ Steplike dimeric structures analogous to those of the cation 10' have been observed in centrosymmetric space groups for compounds involving elements from groups 13,47 14,48 and 15.¹⁸ To further evaluate and quantify the dimerization reaction, the structures of dimers 6 and 10 have been optimized at the HF/6-311G* level with restriction to *C_i* symmetry (*vide supra*) and are shown in Figure 1. The MP2 energies obtained at these geometries and their ZPVE values are listed with those of the monomers **3** and **7** in Table 1. Dimerization reaction energies are listed in Table 8. Selected calculated structural features are compared with those observed experimentally (Xray crystallographic studies) in Figure 3.^{16,23,19,18} The structures of cations 3', 10', and 11' are very closely approximated by the optimized geometries of **3**, **10**, and **11**, respectively. All bond lengths are within the estimated standard deviations obtained experimentally, and all angles are within 5° of the experimentally determined values.

The energy of dimerization for the arsolanium cation 7' is calculated to be +206.7 kJ/mol, confirming that the monomer is favored in the gas phase in contrast to the experimentally observed solid-state structure **10**'. An experimental observation consistent with the unfavorability of dimerization is found in the case of the sixmembered-ring analogue of 7'[GaCl₄]. The arsenanium cation in the salt **11**'[GaCl₄] is unquestionably mono-

meric in the solid state (space group *Pca*₂): the closest intermolecular As–N contact is 5.62 Å, despite the weak dimer structure observed for the chloroarsine 13 (space group $P2_1/n$).¹⁸ The energy of dimerization of **11** to centrosymmetric dimer 12 is calculated to be +247.9 kJ/ mol, almost 20% more than that of 7, which shows that six-membered cyclic 11 is more stable vis à vis dimerization than is five-membered cyclic 7 and may imply that 11 is an inherently more stable carbenoid environment. A possible explanation for the seemingly enhanced stability of 11 is that the less restricted sixmembered ring allows the N-As-N angle (99.8° in 11) to approach the optimum angle (101.4° in the acyclic analogue, vide supra), whereas the smaller ring constrains the N-As-N angle to be significantly more accute (89.6° in 7). In acyclic $[(H_2N)As]^+$, changing the angle at the arsenic atom from 100° to 90° results in a destabilization of 17.9 kJ/mol (or 35.8 kJ/mol for the two molecules that form the dimer, vide infra), which represents almost the entire difference between the dimerization energies of 7 and 11.

Similarly, the phosphenium cation in salt **3**'[GaCl₄] is monomeric (space group $P2_1$) and the calculated energy of dimerization for **3** (+277.4 kJ/mol) is greater than those for **7** or **11**; however, the rationale for the significant difference in dimerization energies between the phosphenium and arsenium systems is different. The relative stability of the phosphenium cation in comparison to the analogous arsenium species with respect to dimerization is consistent with more favorable N–P (2p–3p) π -bonding versus N–As (2p–4p) π -bonding in the respective monomers.

^{(47) (}a) Brown, D. S.; Decken, A.; Schnee, C. A.; Cowley, A. H. *Inorg. Chem.* **1995**, *34*, 6415–6416. (b) Cowley, A. H.; Brown, D. S.; Decken, A.; Kamepalli, S. *J. Chem. Soc., Chem. Commun.* **1996**, 2425–2426. (48) Sohn, H.; Powell, D. R.; West, R.; Hong, J.-H.; Joo, W.-C. *Organometallics* **1997**, *16*, 6, 2770–2772.

Table 7. Effect of Changes in N-As-N Angle for C_{2v} Acyclic Arsenium Cations 15: Computed Energies (HF/6-311G* and MP2/6-311G*//HF/6-311G*) and Zero Point Vibrational Energies for All Calculations^a

N-As-N					rel
angle	N(imag)	HF	UMP2	ZPVE	energy
		15	s Can		
60	2	-2 344.970 19	-2345.44615	0.056 80	452.04
70	$\tilde{2}$	-2345.07829	-2345.53762	0.057 31	213.08
80	1	-2345.13799	-2 345.588 71	0.057 45	79.26
90	0	-2345.16535	-2345.61202	0.057 46	18.08
100	0	$-2\ 345.173\ 49$	-2345.61872	0.057 32	0.17
101.3561	0	-2 345.173 59	$-2\ 345.618\ 77$	0.057 30	0.00
110	0	-2 345.169 92	$-2\ 345.615\ 31$	0.057 17	8.79
120	0	-2 345.157 99	-2 345.604 71	0.057 03	36.27
130	0	-2 345.139 17	-2 345.588 16	0.056 83	79.24
140	0	-2 345.114 26	-2 345.566 47	0.056 49	135.40
150	0	-2 345.083 83	$-2\ 345.540\ 27$	0.055 91	202.82
160	1	$-2 \ 345.048 \ 42$	-2 345.510 50	0.054 75	278.24
170	2	$-2 \ 345.008 \ 99$	$-2 \ 345.479 \ 56$	0.053 15	355.69
		15	t $C_{2\nu}$		
60	3	-2 345.007 68	-2 345.422 52	0.053 07	180.04
70	3	-2 345.061 51	$-2\ 345.473\ 62$	0.052 88	45.46
80	2	$-2\ 345.086\ 44$	$-2\ 345.495\ 03$	0.057 34	-0.22103
87.483	2	-2 345.086 44	$-2\ 345.495\ 02$	0.057 42	0.00
90	2	$-2 \ 345.086 \ 44$	$-2\ 345.495\ 02$	0.057 42	0.00
100	2	$-2 \ 345.086 \ 44$	$-2\ 345.495\ 02$	0.057 39	-0.10
110	2	$-2 \ 345.086 \ 44$	$-2\ 345.495\ 03$	0.057 39	-0.10
120	2	$-2 \ 345.086 \ 44$	$-2\ 345.495\ 03$	0.057 39	-0.09
130	2	$-2 \ 345.086 \ 44$	$-2 \ 345.495 \ 02$	0.057 39	-0.11
140	2	$-2 \ 345.086 \ 44$	$-2\ 345.495\ 03$	0.057 38	-0.14
150	2	$-2 \ 345.086 \ 44$	$-2 \ 345.495 \ 02$	0.057 40	-0.08
160	4	$-2 \ 345.045 \ 78$	$-2 \ 345.459 \ 69$	0.051 55	78.88
170	4	$-2 \ 345.045 \ 78$	$-2\ 345.459\ 70$	0.051 55	78.86
		15	t C_{2v}		
86.2547	n/d		-2 345.495 93	n/d	

^{*a*} Absolute energies are in hartrees. N(imag) indicates the number of imaginary vibrational frequencies. Relative energies (MP2/6-311G*//HF/6-311G* + 0.9 ZPVE) are in kJ/mol relative to the appropriate optimized minimum geometry. ^{*b*} MP2. ^{*c*} Optimized; not determined.

Table 8. Calculated Enthalpies of Reactions, Dimerizations, and Singlet-Triplet Energy Splittings^a

reacn	MP2	HF			
Cycloaddition Reaction Energies					
$3 + trans - 1, 3$ -butadiene $\rightarrow 4$	-163.74	-138.11			
$3 + trans - 1,3$ -butadiene $\rightarrow 5$	-112.20	-61.59			
$7 + trans - 1,3$ -butadiene $\rightarrow 8$	-85.92	-59.23			
$7 + trans - 1,3$ -butadiene $\rightarrow 9$	-144.45	-93.06			
Dimerization Energies					
$3 + 3 \rightarrow 6$	277.44	337.27			
$7 + 7 \rightarrow 10$	206.70	260.63			
$11 + 11 \rightarrow 12$	247.92	294.00			
Isogyric Reaction Energies					
16 s + 17 t $C_1 \rightarrow$ 16 t + 17 s	317.41	320.69			
16 s + 17 t $C_s #2 \rightarrow 19 d + 20 d C_1$	22.24	22.73			
16 s D_{3h} + 17 t C_s #1 \rightarrow 19 d + 20 d C_1	-18.60	-66.25			
16 s + 18 t C ₁ → 16 t + 18 s	306.41	382.41			
16 s + 18 t $C_s #2 \rightarrow$ 19 d + 21 d C_1	45.91	61.73			
16 s D_{3h} + 18 t C_s #1 \rightarrow 19 d + 21 d C_1	-29.05	-78.82			

 a All enthalpies in kJ/mol.) MP2 denotes MP2/6-311G*//HF/6-311G* + 0.90 ZPVE; HF denotes HF/6-311G* + 0.90 ZPVE.

Scheme 1

An estimate of the dimerization activation energy was obtained through the use of the generalized transition state method,⁴⁹ in which the dimerization process is assumed to proceed via the deformation of each monomeric unit to the structure in which it is found in the dimer followed by the coupling of two of these "protodimeric" moieties (**3** prep, **7** prep and **11** prep in the following discussion). In most systems where dimerizations occur the energy of the deformation of each monomer (the energy of which is denoted ΔE_{prep}) is generally endoenthalpic and the coupling is exoenthalpic. The energy of coupling is divided into two terms: ΔE° (the energy of the stabilizing electrostatic interactions and the destabilizing repulsive interaction between the two fragments) and ΔE_{el} (the energy of the stabilizing interaction of filled and empty orbitals on each fragment).⁵⁰ The dimerization energy can be expressed as

 $\Delta E_{\text{dimerization}} = E_{\text{dimer}} - 2E_{\text{monomer}}$

and

(1)

$$\Delta E_{\text{dimerization}} = 2\Delta E_{\text{prep}} + \Delta E^{\circ} + \Delta E_{\text{el}} \qquad (2)$$

The dimerizations studied in this work are all highly endothermic (*vide supra*), and analysis of the relative contributions to the dimerization energy using eq 2 offers valuable insight into the cause of this endothermicity. In all three systems, the term $\Delta E^{\circ} + \Delta E_{\rm el}$ is negligible (**3**, 10.4 kJ/mol; **7**, 25.6 kJ/mol; **11**, 3.0 kJ/mol), which is likely because of the repulsion caused by the positive charge on each fragment (destabilizing) and

⁽⁵⁰⁾ See, for example: Sandblom, N.; Ziegler, T.; Chivers, T. *Inorg. Chem.* **1998**, *37*, 354–359.

the lack of purely filled or empty π -orbitals in the monomeric fragments (some π -delocalization is still present in the monomer fragments in their respective dimer geometries). Thus, the dominant factor contributing to $\Delta E_{\text{dimerization}}$ is ΔE_{prep} , the energy of distorting the monomers from their most stable geometry to the geometry observed in the dimer. The distortion energy is very large for each monomer (ΔE_{prep} : **3**, 133.5 kJ/mol; **7**, 90.6 kJ/mol; **11**, 122.4 kJ/mol) and precludes the formation of the dimers. Note that this distortion energy may also be used as a gauge for the relative stabilities of **7** and **11** in that the six-membered ring containing the more favorable arsenium N-As-N angle requires 35% more energy to distort than does the relatively less stable five-membered ring.

Butadiene Cycloaddition Reactions. Cycloaddition reactions are of immense utility to synthetic chemists,⁵¹ and the theoretical principles that explain pericyclic reactions have been studied extensively since Woodward and Hoffmann's seminal articles in 1965.⁵² The cycloaddition behavior of phosphenium cations is well-documented,¹⁴ including reactions with 1,3-dienes which give phospholenium cations **24**, and on the basis

24

of a number of stereospecific experimental results, Cowley proposed that the reaction proceeds via a [2 + 4] disrotatory cheletropic mechanism.⁵³ The observed products in the reaction of carbenes,⁵⁴ silylenes, germylenes,^{12,54,55} and stannylenes with 1,3-dienes^{54–56} are similar. However, data for the cycloaddition reactivity of heavier low coordinate pnictogen species are limited.⁵⁷ Cations 7' and **11**' are the only carbene analogues that have been observed to react with butadiene to form a Diels-Alder type product.^{18,19}

The Diels–Alder (DA) reaction⁵⁸ is probably the most well-known pericyclic reaction and has been thoroughly investigated synthetically and theoretically.⁵⁹ The [2 + 2] and [4 + 2] cycloaddition reactivity of methylene has been studied theoretically;⁶⁰ however, despite the

Figure 4. Schematic representation of reaction energies for the cycloaddition of **3** or **7** with *trans*-1,3-butadiene.

dramatic contrasts which are definitively experimentally demonstrated for phospholanium and arsolanium cations, we are unaware of ab initio studies for the cycloaddition behavior of pnictogenium cations. To model these reactions, we have optimized the structures of cycloaddition products 4, 5, 8, and 9 and all minima were found to have the expected C_1 symmetry. Their single-point MP2 energies and ZPVE values are tabulated with those of cations 3 and 7 and those of trans-1,3-butadiene in Table 1. The structure of 9 is compared to that of 9' in Figure 3. Reaction energies are listed in Table 8, and as illustrated schematically in Figure 4, the experimentally observed cycloaddition products for both 3' and 7' are calculated to be the thermodynamically favored product with respect to the other possible cycloaddition product in each system. Reaction of 3 to give 4 (-163.7 kJ/mol) and 5 (-112.2 kJ/mol) are both exothermic, but the Diels-Alder product 5 is more than 50 kJ/mol higher in energy. The theoretical model also mimics the experimental observations for arsolanium derivatives, predicting that the formation of 8 from 7 has a calculated reaction enthalpy of -85kJ/mol, while the formation of arsonium 9 is more exothermic (-144.5 kJ/mol).

These conclusions validate the necessity of such a computational study, as a comparison of empirical bond energies ((all energies in kJ/mol) two P–C (552) bonds vs P–C (276) and C–N (314) and two As–C bonds (458) vs As–C (229) and C–N (314))⁶¹ predict a DA-type product for both pnictogenium cations, but this has not even been observed in butadiene reactions with iminophosphines, which contain a formal P–N double bond.⁶² Phosphorus and arsenic have nearly identical spectroscopic electronegativity values (P, 2.253, As, 2.211 Pauling units),⁶³ and the calculated charge distributions in **3** and **7** (*vide supra*) are not significantly different so that the contrasting cycloaddition behavior is not likely controlled by either property. One possible explanation arises from the different oxidation potentials of phos-

⁽⁵¹⁾ Sauer, J.; Sustmann, R. Angew. Chem., Int. Ed. Engl. 1980, 19, 779–807 and references therein.

^{(52) (}a) Woodward, R. B.; Hoffmann, R. J. Am. Chem. Soc. 1965, 87, 395–397. (b) Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87, 2046–2048. (c) Woodward, R. B.; Hoffmann, R. J. Am. Chem. Soc. 1965, 87, 2511–2513. (d) Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87, 4388–4389. (e) Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87, 4388–4390.

⁽⁵³⁾ See for example: *Multiple Bonds and Low Coordination in Phosphorus Chemistry*; Regitz, M., Sherer, O. J., Eds.; Thieme: New York, 1990.

⁽⁵⁴⁾ Evanseck, J. D.; Mareda, J.; Houk, K. N. *J. Am. Chem. Soc.* **1990**, *112*, 73–80 and references therein.

⁽⁵⁵⁾ See for example: Tokitoh, N.; Kishikawa, K.; Matsumoto, T.; Okazaki, R. *Chem. Lett.* **1995**, 827–828.

⁽⁵⁶⁾ For example: Saito, M.; Tokitoh, N.; Okazaki, R. Chem. Lett. 1996, 265-266.

⁽⁵⁷⁾ Review of arsaalkene and arsaalkynes: Weber, L. *Chem. Ber.* **1996**, *129*, 367–379.

⁽⁵⁸⁾ Diels, O.; Alder, K. *Justus Liebigs Ann. Chem.* **1928**, *460*, 98–122.

⁽⁵⁹⁾ Houk, K. N.; González, J.; Li, Y. Acc. Chem. Res. 1995, 28, 81– 90.

⁽⁶⁰⁾ See for example: Houk, K. N.; Li, Y.; Evanseck, J. D. Angew. Chem., Int. Ed. Engl. 1992, 31, 682–708 and references therein.

⁽⁶¹⁾ Mean bond enthalpies from: Elschenbroich, C.; Salzer, A. *Organometallics*, 2nd ed.: VCH: New York, 1992; p 11.

⁽⁶²⁾ Niecke, E. In *Multiple Bonds and Low Coordination in Phosphorus Chemistry*; Regitz, M., Sherer, O. J., Eds.; Thieme: New York, 1990; pp 293–320.

⁽⁶³⁾ Allen, L. C. J. Am. Chem. Soc. 1989, 111, 9003-9014.

phorus and arsenic. Whereas phosphorus(III) oxidizes preferentially to the P(V) state (ca. -50 kJ/mol), the corresponding oxidation of arsenic(III) is unfavorable (ca. +100 kJ/mol); thus, formal oxidation product 8 is unstable with respect to structural isomer 9.64 Ab initio calculations of the reaction $PnH_3 + H_2 \rightarrow PnH_5$ give ΔH values of 189.5 (P), 228.4 (As), 210.0 (Sb) and 305.4 (Bi) kJ/mol and correctly predict that As(V) and Bi(V) are significantly less favorable than P(V).65 The relative instability of the As(V) oxidation state is due to the "dblock contraction" and results in the preferential formation of the adduct with the tricoordinate arsenic center. The Pn(III) to Pn(V) oxidation for antimony (ca. +100 kJ/mol) and bismuth (ca. +300 kJ/mol)⁶⁴ leads to the prediction that bismuthenium and possibly stibenium cations will also react in a fashion similar to that for the arsenium cations; however, these reactions have not as yet been examined experimentally. Unambiguous prediction is not possible for antimony, because the atom is more readily oxidized than either As or Bi and thus may form cheletropic adducts.

The rapid, quantitative, and regiospecific reactions observed experimentally imply concerted reaction mechanisms; thus, symmetries of the calculated frontier orbitals were examined in this context. The frontier orbitals that we have determined for cations 3 and 7 are consistent with previous results²⁹ and correspond to an "allylic-type" π -system with the additional σ_n nonbonding (A in C_2 , A₁ in $C_{2\nu}$) MO (the lone pair) lower in energy than the π_n HOMO (A in C_2 , A_2 in $C_{2\nu}$). As such, these systems cannot be considered truly isolobal with singlet carbones which feature a σ_n HOMO.⁶ Of the possible frontier orbital interactions, only that of the diene HOMO and pnictogenium LUMO is allowed. Although the A symmetry of the pnictogen lone pair MO (HOMO-1) is the same as that of the HOMO, the large energy difference between the HOMO and HOMO-1 (182.0 kJ/mol for 3, 207.9 kJ/mol for 7) and the node at the Pn center in the HOMO precludes a contribution of the lone pair in the frontier interaction (although orbital mixing is still a possibility). The π -type and lone pair frontier orbital interactions are qualitatively illustrated in Figures 5 and 6 and are consistent with both cheletropic and Diels-Alder type mechanisms involving the diene HOMO and the pnictolanium LUMO, while neither mechanism has a symmetry-allowed diene-LUMO-ene-HOMO interaction. If the lone pair molecular orbital (HOMO-1) is used in the frontier orbital interactions instead of the true ene HOMO (as for carbenes),6 it becomes apparent that both HOMO-LUMO interactions (diene-pnictolanium and pnictolanium-diene) are of the appropriate symmetry for bond formation.

Conclusions

Diazapnictogenium cations are calculated to have singlet ground states, in agreement with experimental

Figure 5. Frontier orbital interactions for the cheletropic mechanism of pnictolanium–diene cycloaddition.

Figure 6. Frontier orbital interactions for the Diels–Alder type mechanism of pnictolanium–diene cycloaddition (viewed from above with butadiene plane above that of pnictolanium).

observations and consistent with previous calculations on structurally simpler acyclic cations, while the calculated models of the triplet species are in contrast with those of previous theoretical studies. HF/6-311G* geometry optimizations (gas phase) accurately predict the molecular structures of **3'**, **9'**, **10'**, and **11'**, which were previously determined experimentally by X-ray crystallography.

Dimerization reactions of cyclic diazapnictogenium cations are predicted to be unfavorable in the gas phase because of the requisite distortion of the stable monomeric forms. These conclusions are based on the energetics of the cations obtained from *ab initio* calculations and ignore all interactions such as those with the anions or solvent that are found in condensed phases. The experimentally observed dimer of the arsolanium cation **7**' is concluded to be a crystal-packing phenomenon which is likely dominated by the large difference in crystal lattice energy between (+1)(-1) salts and $(+2)(-1)_2$ salts.

⁽⁶⁴⁾ Phillips, C. S. G.; Williams, R. J. P. *Inorganic Chemistry*; Oxford University Press: London, 1966; Vol. 1, pp 632–638.
(65) Given values are from MP4/ECP calculations in: Moc, J.;

⁽⁶⁵⁾ Given values are from MP4/ECP calculations in: Moc, J.; Morokuma, K. J. Am. Chem. Soc. **1995**, *117*, 11790–11797. See also: Nagase, S. In *The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds*; Patai, S., Ed.; Wiley: New York, 1994; pp 17– 21 and references therein.

⁽⁶⁶⁾ In all tables the following format is used: **compound number** multiplicity label (s, singlet; d, doublet; t, triplet) symmetry (numbered when more than one structure of that symmetry).

More importantly, the dramatic contrast observed in the quantitative butadiene cycloaddition reactions of phosphenium (formal cheletropic cycloaddition \rightarrow phosphonium cation) and arsenium (formal Diels-Alder cycloaddition \rightarrow arsinoammonium cation) cations have been modeled by determining the absolute energies of structures 3, 4, 5, 7, 8, and 9 (UMP2/6-311G*//UHF/6- $311G^* + 0.90$ ZPVE). The relative energies of cycloaddition products 4 and 5 (52 kJ/mol) and 8 and 9 (-59 kJ/mol) are consistent with the experimental observations and indicate that the observed products are thermodynamically favored in each case. The anomalous butadiene cycloaddition behavior of arsenium cations is rationalized in terms of the relative instability of the As(V) oxidation state. The theoretical data obtained do not allow for analysis of the mechanism of the reactions of **3** or **7**, and it is possible that arsenium cations react with dienes to form spirocyclic adducts (8), which rapidly rearrange to the thermodynamically favored DA-type adducts (9).

Acknowledgment. We thank the Killam Trust and the Natural Sciences and Engineering Research Council of Canada (NSERC) for scholarships (C.L.B.M.) and the NSERC for funding (R.J.B., N.B.). We also thank the reviewers for helpful suggestions.

Supporting Information Available: Tables giving selected structural parameters from HF/6-311G* optimized geometries, Mulliken and NBO charge distributions, and calculated spin densities (11 pages). Ordering information is given on any current masthead page.

OM980126T