Notes

P₄ Activation with $[\{Cp'''(\mathbf{OC})_2\mathbf{Fe}\}_2]$ **(Cp''' = C5H2But 3-1,2,4): Exclusive Formation of the Exo/ Exo-Butterfly Complex** $[\{Cp'''(\mathbf{OC})_2\mathbf{Fe}\}_2(\mu\text{-}\eta^1\text{:}\eta^1\text{-}\mathbf{P}_4)]$

Otto J. Scherer,* Thomas Hilt, and Gotthelf Wolmershäuser[†]

Fachbereich Chemie der Universita¨*t Kaiserslautern, D-67663 Kaiserslautern, Germany*

Received February 19, 1998

Summary: The short-time cothermolysis of [{*Cp*′′′*- (OC)2Fe*}*2](Fe*-*Fe) (1) and white phosphorus, P4, in toluene gives the butterfly complex* $\left[\frac{Cp''}{Cc}\right]_{2}Fe$ *₂* $\left[\frac{u}{c}\right]_{2}$ *η¹:η¹-P₄)] (2), Cp''' = C₅H₂Bu^t₃-1,2,4, as the only product in 75% isolated vield. The open-edged exo/exo-P, dein 75% isolated yield. The open-edged exo/exo-P4 derivative ² where one of the six P*-*P bonds of P4 has been selectively cleaved gives, on thermolysis, the sandwich complexes [Cp*′′′*Fe(η5-P5)] (3) and [*{*Cp*′′′*Fe*}*2(µ-η4:η4-P4)] (4) with a cisoid P4 chain.*

Within the last few years, the chemistry of complexes with naked P_n ligands¹ has grown rapidly. Interestingly, little is known about the details of P_4 activation as well as the mechanistic aspects with respect to the cleavage of its P-P bonds and the degradation of the P_4 tetrahedron.² The successive cleavage of $1-3$ P-P bonds in the P_4 molecule has been realized by its photochemical reaction with $[\{Cp''(OC)_2Fe\}_2](Fe-Fe)$, $Cp'' = C_5H_3Bu_2^t - 1,3.3$ One of the compounds detected
was impure $[1Cp''(OC)_2Fe]_2(\mu_1\mu_2\mu_1\mu_2)$ was impure [{Cp′′(OC)2Fe}2(*µ*-*η*1:*η*1-P4)].3

Organometallic butterfly-type molecules with a tetraphosphabicyclobutane skeleton of type **2** are very rare, and until now, the described examples are of low purity and no crystals of X-ray diffraction quality could be obtained. Also known is $[\{Cp^*(OC)_2Fe\}_2(\mu-\eta^1;\eta^1-P_4)],$ which has been synthesized either from the diphosphene derivatives $[Cp^*(OC)_2Fe-P=P-R]$, $R = Cp^{*4}$ and $Fe(CO)_2Cp^{*,5}$ or by the cothermolysis of $[\{Cp^*(OC)_2Fe\}_2]$ -(Fe $-$ Fe) and P_4 .⁶ In all cases, the yields and purity are moderate moderate.

Short-time thermolysis of $[\{Cp'''(OC)_2Fe\}_2](Fe-Fe)$ (1) and P4 under 31P NMR control affords exclusively, in ca. 75% yield, [{Cp′′′(OC)2Fe}2(*µ*-*η*1:*η*1-P4)] (**2**) (Figure 1) according to Scheme 1.

2 forms air-sensitive orange-yellow crystals which are scarcely soluble in pentane and very soluble in toluene. **3** and **4** form green and dark brown crystals that can

(5) Weber, L.; Sonnenberg, U. *Chem. Ber.* **1991**, *124*, 725.

be handled for a short amount of time in open air and are slightly soluble in pentane and very soluble in toluene.

Heating of **2** in decalin to 190 °C for ca. 3 h gives, after column chromatography in a yield of 25% each, the complex $[Cp''Fe(\eta^5-P_5)]$ (3), a sandwich (Figure 2) with a cyclo- P_5 ligand, the all-phosphorus analogue of the cyclopentadienide ion,¹ in addition to $[{Cp'''Fe}_{2}(u \eta^4$: η^4 -P₄)] (4) with a cisoid P₄ chain (Figure 3).

Within the P-P bonds of the P_4 -butterfly skeleton of **2**, the bond length of the hinge is 2.151(2) Å, whereas the mean value of the four other $P-P$ bonds (wing tips) is 2.21 Å, as in white phosphorus, P_4 , itself. An analogous trend was found for the tetraphospabicyclobutane derivatives $(RP)_2P_2$ (5; 5a, $R = N(SiMe_3)_2$ $(2.13/2.22 \text{ Å})$;⁷ **5b**, $R = C_6H_2Bu_3L_3L_4$,6 $(2.17/2.23 \text{ Å})$;⁸ and
5c, $R = C(R) =$ PPh₂ $(2.21/2.22 \text{ Å}))$, ⁹ In 2 the folding **5c**, $R = C(R') = PPh_3 (2.21/2.22 \text{ Å})$. ⁹ In **2**, the folding angle between the planes P1, P2, P3/P2, P3, P4 is 100.4°; this value is slightly larger than that for the class of compounds **5** $(95.2-96.6^{\circ})^{7-9}$ with a nonmetallic substituent R on the wing-tip atoms of the butterfly. The mean value of the Fe-P-P angle is 108.1° in **²**. All X-ray structurally characterized molecules of this type possess an exo/exo-configuration of the substituents R or the ligands $Cp^RFe(CO)_2$ on the P atoms (cf. Figure 1). Also known are butterfly-like P_4 compounds with a ML*ⁿ* bridge.10

With the synthesis of **2** (cf. Scheme 1), the selective activation of one of the six $P-P$ bonds in P_4 by a dinuclear metal complex has been achieved in high yield (ca. 75% after column chromatography) for the first time. The only other example is $(RP)_2P_2$ (5b),⁸ which has been synthesized besides R_2P_2 starting with P_4 in a yield of only ca. 4%.

[†] X-ray crystal structure determinations.

⁽¹⁾ For reviews, see: Scherer, O. J. *Angew. Chem., Int. Ed. Engl.*

¹⁹⁹⁰, 29, 1104. Scheer, M.; Herrmann, E. Z. Chem. **1990**, 30, 41.
(2) Corbridge, D. E. C. *Phosphorus: An Outline of its Chemistry, Biochemistry and Technology*, 5th ed.; Elsevier: New York, 1995; p 68.

⁽³⁾ Scherer, O. J.; Schwarz, G.; Wolmershäuser, G. *Z. Anorg. Allg.*

Chem. **1996**, *622*, 951 and references therein. (4) Jutzi, P.; Opiela, S. *J. Organomet. Chem.* **1992**, *431*, C29.

⁽⁶⁾ Brück, T. Thesis, Universität Kaiserslautern, 1989.

⁽⁷⁾ Niecke, E.; Rüger, R.; Krebs, B. *Angew. Chem., Int. Ed. Engl.* **1982**, *21*, 544.

⁽⁸⁾ Riedel, R.; Hausen, H.-D.; Fluck, E. *Angew. Chem., Int. Ed. Engl.*
1985, *24*, 1056. Fluck, E.; Riedel, R.; Hausen, H.-D.; Heckmann, G. *Z.*
Anorg. Allg. Chem. **1987**, 551, 85.
(9) Schrödel, H.-P.; Nöth, H.; Schmi

⁽¹⁰⁾ Scherer, O. J.; Swarowsky, M.; Swarowsky, H.; Wolmershäuser, G. *Angew. Chem., Int. Ed. Engl.* **1988**, *27*, 694. Scherer, O. J.; Swarowsky, M.; Wolmershäuser, G. *Organometallics* **1989**, *8*, 841.
Scheer, M.; Troitzsch, C.; Hilfert, L.; Dargatz, M.; Kleinpeter, E.; Jones, P. G.; Sieler, J. *Chem. Ber.* **1995**, *128*, 251. Scheer, M.; Becker, U.; Matern, E. *Chem. Ber.* **1996**, *129*, 721.

Scheme 1

Figure 1. ORTEP diagram with labeling scheme for complex **2**. Thermal ellipsoids are drawn at 40% probability. Selected bond distances (Å) and angles (deg): $Fe1-$ P1, 2.3552(19); Fe2-P4, 2.348(2); P2-P3, 2.151(2); P1- P2, 2.210(3); P1-P3, 2.217(3); P2-P4, 2.198(3); P3-P4, 2.209(2); P1…P4, 2.96, Fe1-Cp'''_(centroid), 1.745; Fe2-Cp-
'''_(centroid), 1.746; P2-P1-P3, 58.12(8); P2-P4-P3, 58.42-′′′_(centroid), 1.746; P2−P1−P3, 58.12(8); P2−P4−P3, 58.42-
(8)· P1−P2−P3, 61.11(8)· P1−P3−P2, 60.77(8)· P1−P2− (8); P1-P2-P3, 61.11(8); P1-P3-P2, 60.77(8); P1-P2- P4, 84.49(9); P1-P3-P4, 84.07(9); P2-P3-P4, 60.53(8); P3-P2-P4, 61.04(8); Fe1-P1-P2, 106.02(9); Fe1-P1 -P3, 109.86(9); Fe2-P4-P2, 108.45(9); Fe2-P4-P3, 107.91(9).

Figure 2. ORTEP diagram with labeling scheme for complex **3**. Thermal ellipsoids are drawn at 40% probability. Selected bond lengths (A) and angles (deg) : P1-P2, 2.069(6); P2-P3, 2.082(6); P3-P4, 2.076(8); P4-P5, 2.094(10); P5-P1, 2.075(9); Cp^{m}(centroid)-Fe1, 1.72; P_{5(centroid)}-Fe1, 1.58; P2-P1-P5, 109.1(3); P1-P2-P3, 107.3 (3); P2- P3-P4, 108.5(3); P3-P4-P5, 107.7 (2); P4-P5-P1, 107.3- (2); $\Sigma = 539.9$; Cp'''(centroid)-Fe1-P_{5(centroid)}, 178.

In contrast to the well-studied photochemistry¹¹ of the compounds $[\{Cp^{R}(\overline{OC})_{2}Fe\}_{2}](Fe-Fe)$, to the best of our knowledge, no detailed information on its thermal

Figure 3. ORTEP diagram with labeling scheme for complex **4**. Thermal ellipsoids are drawn at 40% probability. Selected bond lengths (Å) and angles (deg): Fe1-Fe2, 2.6430(8); Fe1-P1(1'), 2.2649(8); Fe1-P2(2'), 2.3337(9); Fe2-P1(1'), 2.2678(8); Fe2-P2(2'), 2.3346(9); P1(1')-P2-
(2'), 2.0877(13); P2-P2', 2.368(2); P1…P1', 3.55; Fe1(2)-(2'), 2.0877(13); P2-P2', 2.368(2); P1…P1', 3.55; Fe1(2)-
Cn'''(intria), 1.74; Fe1(2)-Pi(intria), 1.42; P1(1')-P2(2')- $\text{Cp}'''_{\text{(centroid)}}, \text{ 1.74; Fe1(2)} - \text{P}_{\text{4(centroid)}}, \text{ 1.42; P1(1')}-\text{P2(2')}-\text{P2'(2)}$ 106 48(3): $\text{Cn}'''_{\text{(correction)}} - \text{Fe1(2)} - \text{Fe2(1)}$ 167 9 (167 1) P2'(2), 106.48(3); Cp'''_(centroid)-Fe1(2)-Fe2(1), 167.9 (167.1).

behavior is known. It is likely that on the way to the formation of **2** the radical $[Cp'''(OC)_2Fe]'$ (cf. the stable radical $[({\rm C_5R_5})({\rm OC})_2{\rm Fe}]^{\scriptscriptstyle \bullet},\, {\rm R}=i\text{-}{\rm C_3H_7^{12}})$ plays an important role tant role.

According to Scheme 1, the exo,exo-substituted butterfly molecule **2** can be used as an educt for the thermal formation of **4** and, still more surprisingly, for the preparation of the sandwich compound **3**.

3 is the second cyclo- P_5 sandwich complex characterized by X-ray crystallography. The data (Figure 2) \overline{d} (P-P) = 2.08 Å, \overline{d} (Fe1-P) = 2.38 Å, C_p[']''_{(centroid})-Fe1 $= 1.72$ Å, cyclo-P_{5(centroid)}-Fe1 = 1.58 Å, Cp^{'''}(centroid) $Fe1-P_{5(centroid)} = 178°$ differ only slightly from those of $[Cp^*$ ^TFe(η^5 -P₅)] (6),¹³ Cp^{*}′ = C₅Me₄Et (2.10, 2.35, 1.71, and 1.53 Å; 179°). Obviously, as a consequence of the sterically more demanding $\rm{C_5H_2Bu^t_3}$ ligand in complex **3** (C5Me4Et in **6**), the distance between Fe1 and the cyclo-P5 centroid is enlargened in **3**.

The structural data (Figure 3) of the dinuclear iron complex 4 with an acyclic P_4 ligand are nearly the same as those found for $[{Cp''Fe}_{2}(u - \eta^{4} \cdot \eta^{4} - P_{4})]$ (7), $Cp'' = C_{5}H_{3}$ - $Bu^t₂ - 1, 3.3$

⁽¹¹⁾ Vitale, M.; Lee, K. K.; Hemann, C. F.; Hille, R.; Gustafson, T. L.; Bursten, B. E. *J. Am. Chem. Soc.* **1995**, *117*, 2286 and references therein.

⁽¹²⁾ Sitzmann, H.; Dezember, T.; Kaim, W.; Baumann, F.; Stalke, D.; Kärcher, J.; Dormann, E.; Winter, H.; Wachter, C.; Kelemen, M. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 2872.

⁽¹³⁾ Scherer, O. J.; Brück, T.; Wolmershäuser, G. *Chem. Ber.* 1988, *121*, 935.

Experimental Section

All experiments were carried out under an argon atmosphere in dry solvents.

[{**Cp**′′′**(OC)2Fe**}**2](Fe**-**Fe)(1).**14 1H and 31P NMR spectra were measured on a Bruker AMX 400 (${}^{1}H$, $C_6D_5H = 7.20$ ppm as the internal standard; ^{31}P , 85% H_3PO_4 as the external standard).

[{**Cp**′′′**(OC)2FeP**}**2P2] (2).** To a solution of 240 mg (0.348 mmol) of [{Cp′′′(OC)2Fe}2](Fe-Fe) (**1**) in toluene (50 mL), 50 mg (0.404 mmol) of freshly dried white phosphorus, P4, was added at room temperature. The stirred reaction mixture was heated for ca. 2 min to 110 °C, until the CO bands of **1** had disappeared in the IR spectrum in solution (new bands of **2**, 2000 and 1950 cm⁻¹). After removal of the solvent under vacuum, the residue was taken up in dichloromethane (ca. 10 mL), ca. 2 g of silylated silica gel was added, and the mixture was concentrated until it was free-flowing. Column chromatography (column, 20×1 cm, $SiO_2(II)$, -20 °C, petroleum ether), starting with petroleum ether/toluene (5:1), gave a redviolet fraction (traces of **1**) after traces of a yellow fraction (P4). With a 1:1 mixture, a bright orange fraction containing **2** was eluted. Yield: 220 mg (77.6%). ¹H NMR (C₆D₆, 400 MHz, 25 [°]C; *δ*, ppm): 4.69 (2H, s); 1.26 (18H, s); 1.25 (9H, s). ³¹P NMR $(C_6D_6, 25 °C; \delta, ppm)$: -81.4 (2P, t), -324.5 (2P, t), ¹J(P, P) = -183.1 Hz. IR(toluene), *^ν* (CO): 2000 (vs), 1950 (vs) cm-1.

Complexes [Cp^{′′′}FeP₅] (3) and [${Cp$ ^{′′′}**Fe** ${2p}$ **(P**₄)] (4). A solution of 720 mg (0.884 mmol) of **2** in decalin (ca. 50 mL) was heated for ca. 3 h to 190 °C until no CO bands could be detected by IR. Work up was as described above (1 g of silylated silica gel; column 15×2 cm). With petroleum ether, green **3** was eluted. Yield: 100 mg (25%). A petroleum ether/ toluene mixture 5:2 gives 160 mg (yield 25%) of dark brown **4**. 1H NMR (cf. **2**): **3** 3.99 (s, 2H), 1.25 (s,18H), 1.13 (s, 9H); **4** 4.31 (s, 2H), 1.35 (s, 18H), 1.28 (s, 9H). 31P NMR (cf. **2**): **3** 165.6 (s); **4** 91 (br s at 298 and 243 K).

Crystal Data for 2, 3, and 4. 2: Crystals were obtained from a hot saturated hexane solution upon cooling to room temperature. $C_{38}H_{58}Fe_2O_4P_4$, $M_r = 814.5$, monoclinic space group $P2_1/n$, $a = 16.1344(9)$ Å, $b = 15.7131(13)$ Å, $c = 18.1964$ -(11) Å, $\beta = 111.271(6)$ °, $V = 4298.9(5)$ Å³, $Z = 4$, $\rho_{\text{calcd}} = 1.258$ g/cm³, crystal dimensions $0.30 \times 0.20 \times 0.05$ mm, $\lambda = 0.710$ 73
 λ = μ (Mo Kg) = 0.858 mm⁻¹ Measured reflections 35.578 Å, μ (Mo K α) = 0.858 mm⁻¹. Measured reflections 35 578, independent reflections 7282 (*R*_m = 0.1918) θ range 2.59– independent reflections 7282 ($R_{\text{int}} = 0.1918$), θ range 2.59-24.71°, refinement against F^2 with all data, $R_1 = 0.0451$, ([*I* > $2\sigma(I)$]), w $R_2 = 0.0920$. **3**: C₁₇H₂₉FeP₅, $M_r = 444.1$, monoclinic space group $P2_1/c$, $a = 16.6082(13)$ Å, $b = 16.4341(15)$ Å, $c =$ 16.3015(11) Å, $\beta = 90.227(8)$ °, $V = 4449.3(6)$ Å³, $Z = 8$, $\rho_{\text{calcd}} =$ 1.326 g/cm³, $0.48 \times 0.18 \times 0.16$ mm. Measured reflections 55 780, independent reflections 7479 ($R_{\text{int}} = 0.0770$), θ range 2.75-24.71°, refinement against F^2 with all data, $R_1 = 0.0411$ $([I > 2\sigma(I)], wR_2 = 0.1096$. There are two independent molecules one of which shows rotational disorder in the cyclo- P_5 part. **4**: $C_{34}H_{58}Fe_2P_4$, $M_r = 702.4$, monoclinic space group $P_2/m_a = 10.4933(11)$ $\AA_b = 14.0126(12)$ $\AA_c = 12.9439(11)$ *P*2₁/*m*, *a* = 10.4933(11) Å, *b* = 14.0126(12) Å, *c* = 12.9439(11) $\hat{\bf{A}}$, *B* = 103.621(7)[°] $V = 18.497(3) \hat{\bf{A}}^3$, $Z = 2$, $Q_{\text{old}} = 1.261 \text{ g/cm}^3$ \hat{A} , $\beta = 103.621(7)$ °, $V = 1849.7(3) \hat{A}^3$, $Z = 2$, $\rho_{\text{calcd}} = 1.261 \text{ g/cm}^3$, $0.40 \times 0.32 \times 0.21$ mm. Measured reflections 5360, independent reflections 4245 ($R_{\text{int}} = 0.0162$), θ range 2.18-27.50°, refinement against F^2 with all data, $R_1 = 0.0404$ ([$I > 2\sigma(I)$]), $wR_2 = 0.1076$. Data were collected on a Stoe IPDS (compounds **2** and **3**) and a Siemens P4 (compound **4**) diffractometer at 293 K. Structure solutions by direct methods, SIR 92 (Giacovazzo et al. 1993), least-squares refinement: SHELXL-97.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Graduierten-kolleg: "Phosphorus Chemistry as a Link between Different Chemical Disciplines" for financial support.

Supporting Information Available: Tables giving crystal data and structure refinement details, positional and thermal parameters, and bond distances and angles and figures giving additional views of **²**-**⁴** (24 pages). Ordering information is given on any current masthead page.

⁽¹⁴⁾ Hilt, T.; Scherer, O. J. Unpublished results. OM9801148