Notes

P₄ Activation with $[{Cp'''(OC)_2Fe}_2]$ (Cp''' = C₅H₂Bu^t₃-1,2,4): Exclusive Formation of the Exo/ **Exo-Butterfly Complex** [{ $Cp'''(OC)_2Fe$ }₂(μ - η ¹: η ¹- P_4)]

Otto J. Scherer,* Thomas Hilt, and Gotthelf Wolmershäuser[†]

Fachbereich Chemie der Universität Kaiserslautern, D-67663 Kaiserslautern, Germany

Received February 19, 1998

Summary: The short-time cothermolysis of [{Cp'''- $(OC)_2Fe_{2}$ (Fe-Fe) (1) and white phosphorus, P_4 , in toluene gives the butterfly complex $[{Cp'''(OC)_2Fe}_2(\mu \eta^{1}:\eta^{1}-P_{4})$] (2), $Cp''' = C_{5}H_{2}Bu^{t}_{3}-\hat{1},2,4$, as the only product in 75% isolated yield. The open-edged exo/exo-P4 derivative $\boldsymbol{2}$ where one of the six P-P bonds of P_4 has been selectively cleaved gives, on thermolysis, the sandwich complexes $[Cp'''Fe(\eta^5 - P_5)]$ (3) and $[\{Cp'''Fe\}_2(\mu - \eta^4: \eta^4 - P_4)]$ (4) with a cisoid P_4 chain.

Within the last few years, the chemistry of complexes with naked P_n ligands¹ has grown rapidly. Interestingly, little is known about the details of P₄ activation as well as the mechanistic aspects with respect to the cleavage of its P-P bonds and the degradation of the P₄ tetrahedron.² The successive cleavage of 1–3 P–P bonds in the P₄ molecule has been realized by its photochemical reaction with $[{Cp''(OC)_2Fe}_2](Fe-Fe)$, $Cp'' = C_5H_3Bu^t_2$ -1,3.³ One of the compounds detected was impure $[{Cp''(OC)_2Fe}_2(\mu-\eta^1:\eta^1-P_4)]^3$

Organometallic butterfly-type molecules with a tetraphosphabicyclobutane skeleton of type 2 are very rare, and until now, the described examples are of low purity and no crystals of X-ray diffraction quality could be obtained. Also known is $[{Cp^*(OC)_2Fe}_2(\mu-\eta^1:\eta^1-P_4)],$ which has been synthesized either from the diphosphene derivatives $[Cp^*(OC)_2Fe-P=P-R]$, $R = Cp^{*4}$ and Fe(CO)₂Cp*,⁵ or by the cothermolysis of [{Cp*(OC)₂Fe}₂]-(Fe-Fe) and P₄.⁶ In all cases, the yields and purity are moderate.

Short-time thermolysis of [{Cp'''(OC)₂Fe}₂](Fe-Fe) (1) and P₄ under ³¹P NMR control affords exclusively, in ca. 75% yield, $[{Cp'''(OC)_2Fe}_2(\mu-\eta^1:\eta^1-P_4)]$ (2) (Figure 1) according to Scheme 1.

2 forms air-sensitive orange-yellow crystals which are scarcely soluble in pentane and very soluble in toluene. **3** and **4** form green and dark brown crystals that can

be handled for a short amount of time in open air and are slightly soluble in pentane and very soluble in toluene.

Heating of 2 in decalin to 190 °C for ca. 3 h gives, after column chromatography in a yield of 25% each, the complex $[Cp'''Fe(\eta^5-P_5)]$ (3), a sandwich (Figure 2) with a cyclo-P₅ ligand, the all-phosphorus analogue of the cyclopentadienide ion,¹ in addition to $[{Cp'''Fe}_2(\mu \eta^4$: η^4 -P₄)] (**4**) with a cisoid P₄ chain (Figure 3).

Within the P–P bonds of the P₄-butterfly skeleton of **2**, the bond length of the hinge is 2.151(2) Å, whereas the mean value of the four other P-P bonds (wing tips) is 2.21 Å, as in white phosphorus, P_4 , itself. An analogous trend was found for the tetraphospabicyclobutane derivatives $(RP)_2P_2$ (5; 5a, $R = N(SiMe_3)_2$ (2.13/2.22 Å);⁷ **5b**, R = C₆H₂Bu^t₃-2,4,6 (2.17/2.23 Å);⁸ and **5c**, $R = C(R') = PPh_3$ (2.21/2.22 Å)). ⁹ In **2**, the folding angle between the planes P1, P2, P3/P2, P3, P4 is 100.4°; this value is slightly larger than that for the class of compounds 5 $(95.2-96.6^{\circ})^{7-9}$ with a nonmetallic substituent R on the wing-tip atoms of the butterfly. The mean value of the Fe-P-P angle is 108.1° in 2. All X-ray structurally characterized molecules of this type possess an exo/exo-configuration of the substituents R or the ligands Cp^RFe(CO)₂ on the P atoms (cf. Figure 1). Also known are butterfly-like P₄ compounds with a ML_n bridge.¹⁰

With the synthesis of **2** (cf. Scheme 1), the selective activation of one of the six P-P bonds in P_4 by a dinuclear metal complex has been achieved in high yield (ca. 75% after column chromatography) for the first time. The only other example is $(RP)_2P_2$ (**5b**),⁸ which has been synthesized besides R_2P_2 starting with P_4 in a yield of only ca. 4%.

X-ray crystal structure determinations.

For reviews, see: Scherer, O. J. Angew. Chem., Int. Ed. Engl.
 1990, 29, 1104. Scheer, M.; Herrmann, E. Z. Chem. 1990, 30, 41.
 (2) Corbridge, D. E. C. Phosphorus: An Outline of its Chemistry, Biochemistry and Technology, 5th ed.; Elsevier: New York, 1995; p **68**.

⁽³⁾ Scherer, O. J.; Schwarz, G.; Wolmershäuser, G. Z. Anorg. Allg

⁽d) Jutzi, P.; Opiela, S. J. Organomet. Chem. 1992, 431, C29.
(e) Butzi, P.; Opiela, S. J. Organomet. Chem. 1992, 431, C29.
(f) Weber, L.; Sonnenberg, U. Chem. Ber. 1991, 124, 725.
(f) Brück, T. Thesis, Universität Kaiserslautern, 1989.

⁽⁷⁾ Niecke, E.; Rüger, R.; Krebs, B. Angew. Chem., Int. Ed. Engl. 1982, 21, 544.

⁽⁸⁾ Riedel, R.; Hausen, H.-D.; Fluck, E. Angew. Chem., Int. Ed. Engl. 1985, 24, 1056. Fluck, E.; Riedel, R.; Hausen, H.-D.; Heckmann, G. Z. Anorg. Allg. Chem. 1987, 551, 85.

⁽⁹⁾ Schrödel, H.-P.; Nöth, H.; Schmidt-Amelunxen, M.; Schoeller, W.
(9) Schrödeler, A. *Chem. Ber. Recl.* **1997**, *130*, 1801.
(10) Schurze O. J. Schwarzeler, M. Sprengeler, H. Welsternelö, and Strengeler, M. Welsternelö, M. Strengeler, M. Strengeler, M. Welsternelö, M. Strengeler, M. Welsternelö, M. Strengeler, M. S

⁽¹⁰⁾ Scherer, O. J.; Swarowsky, M.; Swarowsky, H.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. **1988**, 27, 694. Scherer, O. J.; Swarowsky, M.; Wolmershäuser, G. *Organometallics* **1989**, *8*, 841. Scheer, M.; Troitzsch, C.; Hilfert, L.; Dargatz, M.; Kleinpeter, E.; Jones, P. G.; Sieler, J. *Chem. Ber.* **1995**, *128*, 251. Scheer, M.; Becker, U.; Matern, E. *Chem. Ber.* **1996**, *129*, 721.

Scheme 1

Figure 1. ORTEP diagram with labeling scheme for complex **2**. Thermal ellipsoids are drawn at 40% probability. Selected bond distances (Å) and angles (deg): Fe1–P1, 2.3552(19); Fe2–P4, 2.348(2); P2–P3, 2.151(2); P1–P2, 2.210(3); P1–P3, 2.217(3); P2–P4, 2.198(3); P3–P4, 2.209(2); P1…P4, 2.96, Fe1–Cp^{'''}(centroid), 1.745; Fe2–Cp-^{'''}(centroid), 1.746; P2–P1–P3, 58.12(8); P2–P4–P3, 58.42-(8); P1–P2–P3, 61.11(8); P1–P3–P2, 60.77(8); P1–P2–P4, 84.49(9); P1–P3–P4, 84.07(9); P2–P3–P4, 60.53(8); P3–P2–P4, 61.04(8); Fe1–P1–P2, 106.02(9); Fe1–P1–P3, 109.86(9); Fe2–P4–P2, 108.45(9); Fe2–P4–P3, 107.91(9).

Figure 2. ORTEP diagram with labeling scheme for complex **3**. Thermal ellipsoids are drawn at 40% probability. Selected bond lengths (Å) and angles (deg): P1–P2, 2.069(6); P2–P3, 2.082(6); P3–P4, 2.076(8); P4–P5, 2.094(10); P5–P1, 2.075(9); Cp^{'''}(centroid)–Fe1, 1.72; P₅(centroid)–Fe1, 1.58; P2–P1–P5, 109.1(3); P1–P2–P3, 107.3 (3); P2–P3–P4, 108.5(3); P3–P4–P5, 107.7 (2); P4–P5–P1, 107.3-(2); $\Sigma = 539.9$; Cp^{'''}(centroid)–Fe1–P₅(centroid), 178.

In contrast to the well-studied photochemistry¹¹ of the compounds $[{Cp^{R}(OC)_{2}Fe}_{2}](Fe-Fe)$, to the best of our knowledge, no detailed information on its thermal

Figure 3. ORTEP diagram with labeling scheme for complex **4**. Thermal ellipsoids are drawn at 40% probability. Selected bond lengths (Å) and angles (deg): Fe1–Fe2, 2.6430(8); Fe1–P1(1'), 2.2649(8); Fe1–P2(2'), 2.3337(9); Fe2–P1(1'), 2.2678(8); Fe2–P2(2'), 2.3346(9); P1(1')–P2(2'), 2.0877(13); P2–P2', 2.368(2); P1…P1', 3.55; Fe1(2)–Cp^{'''}_(centroid), 1.74; Fe1(2)–P₄(centroid), 1.42; P1(1')–P2(2')–P2'(2), 106.48(3); Cp^{'''}_(centroid)–Fe1(2)–Fe2(1), 167.9 (167.1).

behavior is known. It is likely that on the way to the formation of **2** the radical $[Cp'''(OC)_2Fe]^{\bullet}$ (cf. the stable radical $[(C_5R_5)(OC)_2Fe]^{\bullet}$, $R = i-C_3H_7^{12}$) plays an important role.

According to Scheme 1, the exo, exo-substituted butterfly molecule **2** can be used as an educt for the thermal formation of **4** and, still more surprisingly, for the preparation of the sandwich compound **3**.

3 is the second cyclo-P₅ sandwich complex characterized by X-ray crystallography. The data (Figure 2) $\bar{d}(P-P) = 2.08$ Å, $\bar{d}(Fe1-P) = 2.38$ Å, $Cp^{\prime\prime\prime}_{(centroid)}-Fe1 = 1.72$ Å, cyclo-P_{5(centroid)}-Fe1 = 1.58 Å, $Cp^{\prime\prime\prime}_{(centroid)}-Fe1-P_{5(centroid)} = 178^{\circ}$ differ only slightly from those of [Cp*′Fe(η^{5} -P₅)] (**6**),¹³ Cp*′ = C₅Me₄Et (2.10, 2.35, 1.71, and 1.53 Å; 179°). Obviously, as a consequence of the sterically more demanding C₅H₂Bu^t₃ ligand in complex **3** (C₅Me₄Et in **6**), the distance between Fe1 and the cyclo-P₅ centroid is enlargened in **3**.

The structural data (Figure 3) of the dinuclear iron complex **4** with an acyclic P₄ ligand are nearly the same as those found for [{Cp"Fe}₂(μ - η ⁴: η ⁴-P₄)] (7), Cp" = C₅H₃-But₂-1,3.³

⁽¹¹⁾ Vitale, M.; Lee, K. K.; Hemann, C. F.; Hille, R.; Gustafson, T. L.; Bursten, B. E. *J. Am. Chem. Soc.* **1995**, *117*, 2286 and references therein.

⁽¹²⁾ Sitzmann, H.; Dezember, T.; Kaim, W.; Baumann, F.; Stalke, D.; Kärcher, J.; Dormann, E.; Winter, H.; Wachter, C.; Kelemen, M. Angew. Chem., Int. Ed. Engl. **1996**, *35*, 2872.

⁽¹³⁾ Scherer, O. J.; Brück, T.; Wolmershäuser, G. *Chem. Ber.* **1988**, *121*, 935.

Experimental Section

All experiments were carried out under an argon atmosphere in dry solvents.

[{ $Cp'''(OC)_2Fe$ }₂](Fe-Fe)(1).¹⁴ ¹H and ³¹P NMR spectra were measured on a Bruker AMX 400 (¹H, C₆D₅H = 7.20 ppm as the internal standard; ³¹P, 85% H₃PO₄ as the external standard).

 $[{Cp'''(OC)_2FeP}_2P_2]$ (2). To a solution of 240 mg (0.348 mmol) of [{Cp'''(OC)₂Fe}₂](Fe-Fe) (1) in toluene (50 mL), 50 mg (0.404 mmol) of freshly dried white phosphorus, P4, was added at room temperature. The stirred reaction mixture was heated for ca. 2 min to 110 °C, until the CO bands of 1 had disappeared in the IR spectrum in solution (new bands of 2, 2000 and 1950 cm⁻¹). After removal of the solvent under vacuum, the residue was taken up in dichloromethane (ca. 10 mL), ca. 2 g of silvlated silica gel was added, and the mixture was concentrated until it was free-flowing. Column chromatography (column, 20×1 cm, SiO₂(II), -20 °C, petroleum ether), starting with petroleum ether/toluene (5:1), gave a redviolet fraction (traces of 1) after traces of a yellow fraction (P₄). With a 1:1 mixture, a bright orange fraction containing 2 was eluted. Yield: 220 mg (77.6%). ¹H NMR (C₆D₆, 400 MHz, 25 °C; δ, ppm): 4.69 (2H, s); 1.26 (18H, s); 1.25 (9H, s). ³¹P NMR $(C_6D_6, 25 \text{ °C}; \delta, \text{ppm}): -81.4 (2P, t), -324.5 (2P, t), {}^1J(P, P) =$ -183.1 Hz. IR(toluene), ν (CO): 2000 (vs), 1950 (vs) cm⁻¹.

Complexes [**Cp**^{/''}**FeP**₅] (3) and [{**Cp**^{/''}**Fe**}₂(**P**₄)] (4). A solution of 720 mg (0.884 mmol) of **2** in decalin (ca. 50 mL) was heated for ca. 3 h to 190 °C until no CO bands could be detected by IR. Work up was as described above (1 g of silylated silica gel; column 15 × 2 cm). With petroleum ether, green **3** was eluted. Yield: 100 mg (25%). A petroleum ether/ toluene mixture 5:2 gives 160 mg (yield 25%) of dark brown **4**. ¹H NMR (cf. **2**): **3** 3.99 (s, 2H), 1.25 (s, 18H), 1.13 (s, 9H); **4** 4.31 (s, 2H), 1.35 (s, 18H), 1.28 (s, 9H). ³¹P NMR (cf. **2**): **3** 165.6 (s); **4** 91 (br s at 298 and 243 K).</sup>

Crystal Data for 2, 3, and 4. 2: Crystals were obtained from a hot saturated hexane solution upon cooling to room

temperature. $C_{38}H_{58}Fe_2O_4P_4$, $M_r = 814.5$, monoclinic space group $P2_1/n$, a = 16.1344(9) Å, b = 15.7131(13) Å, c = 18.1964-(11) Å, $\beta = 111.271(6)^{\circ}$, V = 4298.9(5) Å³, Z = 4, $\rho_{calcd} = 1.258$ g/cm³, crystal dimensions $0.30 \times 0.20 \times 0.05$ mm, $\lambda = 0.710$ 73 Å, μ (Mo K α) = 0.858 mm⁻¹. Measured reflections 35 578, independent reflections 7282 ($R_{int} = 0.1918$), θ range 2.59-24.71°, refinement against F^2 with all data, $R_1 = 0.0451$, ([I > $2\sigma(I)$]), w $R_2 = 0.0920$. **3**: C₁₇H₂₉FeP₅, $M_r = 444.1$, monoclinic space group $P2_1/c$, a = 16.6082(13) Å, b = 16.4341(15) Å, c =16.3015(11) Å, $\beta = 90.227(8)^{\circ}$, V = 4449.3(6) Å³, Z = 8, $\rho_{calcd} =$ 1.326 g/cm³, 0.48 \times 0.18 \times 0.16 mm. Measured reflections 55 780, independent reflections 7479 ($R_{int} = 0.0770$), θ range 2.75–24.71°, refinement against F^2 with all data, $R_1 = 0.0411$ $([I > 2\sigma(I)]), WR_2 = 0.1096.$ There are two independent molecules one of which shows rotational disorder in the cyclo- P_5 part. **4**: $C_{34}H_{58}Fe_2P_4$, $M_r = 702.4$, monoclinic space group $P2_1/m$, a = 10.4933(11) Å, b = 14.0126(12) Å, c = 12.9439(11)Å, $\beta = 103.621(7)^\circ$, V = 1849.7(3) Å³, Z = 2, $\rho_{calcd} = 1.261$ g/cm³, $0.40 \times 0.32 \times 0.21$ mm. Measured reflections 5360, independent reflections 4245 ($R_{int} = 0.0162$), θ range 2.18–27.50°, refinement against F^2 with all data, $R_1 = 0.0404$ ([$I > 2\sigma(I$)]), $wR_2 = 0.1076$. Data were collected on a Stoe IPDS (compounds 2 and 3) and a Siemens P4 (compound 4) diffractometer at 293 K. Structure solutions by direct methods, SIR 92 (Giacovazzo et al. 1993), least-squares refinement: SHELXL-97.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Graduierten-kolleg: "Phosphorus Chemistry as a Link between Different Chemical Disciplines" for financial support.

Supporting Information Available: Tables giving crystal data and structure refinement details, positional and thermal parameters, and bond distances and angles and figures giving additional views of 2-4 (24 pages). Ordering information is given on any current masthead page.

OM9801148

⁽¹⁴⁾ Hilt, T.; Scherer, O. J. Unpublished results.