Exclusive C-**Si Bond Formation upon Reaction of a Platinum(II) Alkyl with Silanes**

Milko E. van der Boom, Jürgen Ott, and David Milstein*

Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel

Received April 13, 1998

An unusual, highly selective C-Si coupling reaction takes place upon treating the platinum(II) alkyl complex *cis*-(DIPPIDH)(DIPPID)PtMe (2) (DIPPIDH $= \alpha^2$ -(*diisopropylphosphino) iso durene,* 1) with $HSiR_3$ ($R_3 = Et_3$, $EtMe_2$, Me_2Ph), leading to formation of $MeSiR_3$ and the hydrido complex *trans-*(DIPPIDH)(DIPPID)PtH (**5**). The overall process involves activation of a Si-H bond, reverse-cyclometalation of the phosphine ligand DIPPIDH (**1**), and C-Si elimination. The resulting thermally stable platinum(II) hydride complex **⁵** was independently prepared by thermolysis of a platinum(II) dihydride, $trans$ -(DIPPIDH)₂PtH₂ (6), which was obtained by reaction of **2** with H_2 . In the absence of silane, the cis complex **2** isomerizes thermally to *trans*-(DIPPIDH)(DIPPID)PtMe (**3**), which does not react productively with silanes. Our results indicate that opening of the metallacycle of **2** by benzylic C-H formation is kinetically preferred over formation of CH_4 or CH_3SiR_3 .

Introduction

Hydrosilylation processes of olefins and acetylenes,¹ which are frequently catalyzed by Pt complexes, 2 are thought to proceed by the Chalk-Harrod mechanism which invokes C-Si bond formation as the productforming step.3 Reactions of metal alkyl complexes with primary silanes can lead to products of both C-H and $C-Si$ reductive elimination.^{4,5,6} For instance, reaction of (dmpe)Pt(Me)(OTf) (dmpe $=$ Me₂PCH₂CH₂PMe₂) with Et_3SiH led to formation of CH_4 and CH_3SiEt_3 .^{5a} Methane was formed in the reaction of $M\nu Rh(PMe₃)₄$ with HSiPh₃,^{5b} while, in the analogous reaction with HSiEt₃, both methane and $CH₃SiEt₃$ were formed. A theoretical study showed that CH_3-H reductive elimination from Pt(II) is 26.8 kcal/mol more favorable than that of CH_3 - $\rm SiH_3.^7$

Few detailed studies on selective metal-mediated C-Si formation have been reported. $6,8$ Gladysz et al. observed this key step directly by thermolysis of Fe- $(CO)₄(SiMe₃)(Me)^{8a}$ Kinetic data were obtained for

^C-Si reductive elimination from *cis*-Pt(Me)(SiPh3)- $(PMePh₂)₂$, 8b,c and a reversible C–Si addition to Pt and P_1 and P_2 and P_3 and P_4 and P_5 and P_6 and P_7 to binuclear Ru complexes was observed recently.8d,e We demonstrated that $\overline{C}-H$ and $\overline{C}-S$ i reductive elimination from isolated Ir(III) complexes can occur competitively at comparable rates (Scheme 1).6

We report here that reaction of the cyclometalated *cis*-Pt(II) alkyl complex **2** with $H-SiR_3$ ($R_3 = Et_3$, EtMe₂, Me2Ph), results in *exclusive* ^C-Si bond formation and generation of the new Pt(II) hydride complex **5** (Scheme 2). Interestingly, the trans isomer **3** exhibits totally different reactivity.

Results and Discussion

We reported recently that reaction of $(COD)Pt(CH_3)_2$ $(COD = 1.5$ -cyclooctadiene) with α^2 -(diisopropylphosphino)isodurene (1) in C_6H_6 at room temperature resulted in cyclometalation to form complex **2** and CH4 quantitatively.⁹ Thermolysis of **2** in C_6H_6 resulted in the competitive formation of the trans isomer **3** and complex 4 with liberation of CH₄ (Scheme 2). Continuous heating of complex **3** resulted also in the quantitative formation of CH_4 and **4**, which was fully characterized by X-ray analysis.

Reaction of the *cis*-Pt(II)CH₃ complex 2 with 5 equiv of various primary silanes in C_6D_6 at 100 °C (120 h in a sealed vessel) quantitatively afforded the new *trans*-

^{*} To whom correspondence should be addressed. Fax: +972-8- 9344142. E-mail: comilst@wiccmail.weizmann.ac.il.

^{(1) (}a) Collman, J. P.; Hegedus, L. S.; Norton, R. J.; Finke, R. G. *Principles and Applications of Organotransition Metal Complexes*; University Science Book: Mill Valley, CA, 1987. (b) Ojima, I. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989; p 1479. (c) Schubert, U. *Adv. Organomet. Chem.* **1990**, *30*, 151. (d) Braunstein, P.; Knorr, M. *J. Organomet. Chem.* **1995**, *500*, 21.

⁽²⁾ Speier, J. L. *Adv. Organomet. Chem.* **1979**, *17*, 407. Lewis, N. *J. Am. Chem. Soc.* **1986**, *108*, 7228.

⁽³⁾ Chalk, A. J.; Harrod, J. F. *J. Am. Chem. Soc.* **1965**, *87*, 16. (4) Schubert, U. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 419. (5) (a) Goikhman, R.; Aizenberg, M.; Sdimon, L. J. W.; Milstein, D. J. Am. Chem. Soc *Inorg. Chem.* **1990**, *29*, 2017. (c) Gozin, M.; Aizenberg, M.; Liou, S.-Y.; Weisman, A.; Ben-David, Y. Milstein, D. *Nature* **1994**, *370*, 42.

^{(6) (}a) Aizenberg, M.; Milstein, M. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 317. (b) Aizenberg, M.; Milstein, D. *J. Am. Chem. Soc.* **1995**, *117*, 6456.

⁽⁷⁾ Sakaki, S.; Ieki, M. *J. Am. Chem. Soc.* **1993**, *115*, 2373.

^{(8) (}a) Brinkman, K. C.; Blakeney, A. J.; Krone-Schmidt, W.; Gladysz, J. A. *Organometallics* **1984**, *3*, 1325. (b) Ozawa, F.; Hikida, T.; Hayashi, T. *J. Am. Chem. Soc.* **1994**, *116*, 2844. (c) Ozawa, F.; Hikidi, T.; Haseba. K.; Mori, T. *Organometallics* **1998**, 17, 1018. (d)
Hofmann, E.; Heiss, H.; Neiteler, P.; Müller, G.; Lachmann, J. *Angew.*
Chem., Int. Ed. Engl. **1990**, 29, 880. (e) Lin, W.; Wilson, S. R.; Girolami,
 Shimada, S.; Tanaka, M. *Organometallics* **1997**, *16*, 3246. (g) Schubert,
U.; Kunz, E.; Knorr, M.; Müller, J. *Chem. Ber.* **1987**, *120*, 1079. (h) Schubert, U.; Knorr, M.; Stra*â*er, C. *J. Organomet. Chem.* **1991**, *411*, 75.

⁽⁹⁾ Van der Boom, M. E.; Liou, S.-Y.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. *Organometallics* **1996**, *15*, 2562.

Pt(II)H complex **5** and CH_3SiR_3 ($R_3 = Et_3$, EtMe₂, Me₂-Ph) as judged by ${}^{31}P_1{}^{1}H_1$, ${}^{1}H_1{}^{31}P_1$, ${}^{1}H-{}^{1}H$ COSY NMR, IR, FD-MS, and GC-MS analysis of the product solution and by comparison with authentic samples (vide infra). Surprisingly, only traces of CH_4 (<4%) were detected by quantitative GC analysis of the gas phase. When deuterated solvents were used, no deuterium incorporation into the products was observed.¹⁰ The ${}^{31}P{^1H}$ NMR spectrum of 5 exhibits two sharp doublets of equal intensity at *δ* 89.2 and 45.1 ppm, flanked by 195 Pt satellites. The large $^{31}P-^{31}P$ coupling $(^{2}J_{\text{PP}} = 392.8$ Hz) shows that both nuclei are mutually trans, in agreement with the observed $^{195}Pt-^{31}P$ coupling constants $(^1J_{\text{PtP}} = 3193.5$ and 2992.1 Hz, respectively). The low-field shift of *δ* 89.2 reflects a deshielding effect of this phosphorus atom due to the sixmembered ring.^{9,11} The signal at δ 45.1 is in a range normally observed for (*η*1-phosphine)platinum(II) complexes.⁹ The Pt-H ligand appears in the IR at $\nu = 1964$ cm⁻¹ and in the ¹H NMR as a virtual triplet at δ -7.00 (cis ² J_{PH} = 18.4 Hz, flanked by ¹⁹⁵Pt satellites (¹ J_{PH} = 773.2 Hz). These values are typical for a hydride trans to a σ -bonded alkyl.¹² FD-MS analysis shows the molecular ion (M+, *m*/*e* 695) and an expected logical isotope pattern.

By contrast, heating of the thermally more stable *trans*-Pt(II)CH₃ complex **3** with 5 equiv of $HSiR_3$ (R_3 = Et₃, Me₂Ph) in C₆D₆ at 100 °C (120 h in a sealed vessel) resulted in quantitave formation of complex **4** and CH4. Surprisingly, formation of 5 and CH_3SiR_3 was not observed by NMR, IR, and GC-MS analysis of the product solution. Complex **5** is stable under the reaction conditions and would have been easily detected spectroscopically had it been formed. Thus, as opposed to the reactivity of the cis isomer **2**, in the case of the trans isomer **3** formation of complex **4** and CH4 is kinetically (and probably thermodynamically) preferred over C-Si bond generation. Significantly, complex **4** is thermally stable under the reaction conditions and was recovered unchanged even after heating with 5 equiv of $HSiMe₂$ Ph in C_6H_6 at 150 °C for 48 h. Thus, it cannot be an intermediate in the formation of complex **5**. These experiments indicate that *for the selective C*-*Si bond formation the cis geometry of the metal complex is required*.

While reactions of various silanes with (dmpe)Pt(Me)- (OTf) and with MeRh(PMe₃)₄ as well as the competitive $C-H$ and $C-Si$ reductive elimination from Ir(III) complexes are strongly influenced by the electronic properties of the substituents on silicon (Scheme 1), $\hat{5}a, b, \hat{6}$ no such an influence was observed here.

Interestingly, it is possible to reverse the cyclometalation of 2 by the use of mild H_2 pressure. Treating complex **2** with H₂ (30 psi) in C₆H₆ at 60 °C (72 h in a Fischer-Porter pressure vessel) resulted in quantitative formation of the new *trans*-dihydride complex **6** and CH4 (Scheme 2). This complex, which was isolated and fully characterized by ¹H, ¹H{³¹P}, ³¹P{¹H}, and ³¹P-¹H HQMC NMR, IR, FD-MS, and elemental analysis, exhibits spectroscopic features similar to those of analogous Pt(II) *trans*-dihydride complexes.¹³ No other complexes were detected. In the ${}^{31}P_1{}^{1}H_1$ one sharp singlet appears at *δ* 53.7 ppm flanked by ¹⁹⁵Pt satellites (¹*J*_{PtP} $= 2882.2$ Hz), indicating that both phosphorus atoms are magnetically equivalent. The hydride ligands appear in the 1H NMR as a characteristic triplet resonance at δ -3.15 ppm (cis ² J_{PH} = 17.5 Hz; ¹ J_{PtH} = 796.0 Hz), which collapses into a singlet upon ${}^{31}P{^1H}$ decoupling. The IR spectrum shows a strong Pt-H band at ν = 1744 cm-1, which is in the region usually observed for *^ν*(Pt-H) of *trans*-dihydrides (1710-1820 cm⁻¹).¹³ Formation of 1 equiv of CH4 was determined by quantitative GC analysis of the gas phase. Thermolysis of 6 in C_6D_6 at 100 °C (120 h in a sealed vessel) resulted in selective formation of complex 5 and presumably H_2 (Scheme 2). Formation of complex **4** was not observed, in contrast to thermolysis of complexes **2** and **3**, which results in quantitative formation of complex 4 and CH₄.⁹ Presumably, the σ -bonded Pt-CH₃ group promotes C-H activation. Complex **5** is considerably more stable than complex **2** and was recovered unchanged when treated with H₂ (15 psi) in C₆H₆ at 80 °C for 24 h. The fact that 5 was not detected in the reaction of 2 and H_2 suggests that benzylic C-H reductive elimination is kinetically preferred over CH₄ formation.

While the reason for the surprising, exclusive $C-Si$ bond formation is uncertain, we suggest that the following speculative mechanism can account for the observations. Complex **2** can undergo phosphine dissociation, promoted by the strong trans influence of the *σ* benzyl ligand and the steric hindrance of the cyclometalated ligand.¹⁴ H-Si or H-H oxidative addition may afford a Pt(IV) species such as **A** (Scheme 3).15,16 The silyl or hydride ligands can labilize the benzyl group $(ArCH₂-Pt)$ trans to it. The strong trans influence of silyl ligands is similar or even higher than that of

⁽¹⁰⁾ Formation of **5**, **6**, CH3SiR3, and disiloxanes was observed at 55 °C. Reaction of **2** with 5 equiv of HSiPh₃ in C₆D₆ at 55 °C (24 h in a sealed vessel) resulted also in the formation of $\overline{5}$, $\overline{6}$, CH_3SiPh_3 , and Ph₃SiOSiPh₃, Only traces of CH₄ (<4%) were detected. The formation Ph3SiOSiPh3. Only traces of CH4 (<4%) were detected. The formation of **6** and disiloxanes could be suppressed using silanized glassware, suggesting that adventitious water is involved in this process.

⁽¹¹⁾ Pregosin, P. S. In *Phosphorus-31 NMR-Spectroscopy in Stere-ochemical Analysis*; Verkade, J. G., Quin, L. D., Eds.; VCH: Deerfield Beach, FL, 1987.

⁽¹²⁾ Moulton, C. J.; Shaw, B. L. *J. Chem. Soc., Dalton Trans.* **1976**, 1020.

^{(13) (}a) Packett, D. L.; Trogler, W. C. *J. Am. Chem. Soc.* **1986**, *108*, 5036. (b) Yoshida, T.; Otsuka, S. *J. Am. Chem. Soc.* **1977**, *99*, 2134. (c) Clark, H. C.; Goel, A. B.; Ogino, W. O. *J. Organomet. Chem.* **1978**, *157*, C16. (d) Immirzi, A.; Musco, A.; Garturan, G.; Belluco, U. *Inorg. Chim. Acta* **1975**, *12*, L23. (e) Shaw, B. L.; Uttley, M. F. *J. Chem. Soc., Chem. Commun.* **1974**, 918. (f) Goel, A. B.; Goel, S. *Inorg. Chim. Acta* **1982**, *65*, L77, 78. (g) Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. *J. Am. Chem. Soc.* **1971**, *93*, 3543. (h) Fornies, J.; Green, M.; Spencer, J. L.; Stone, F. G. A. *J. Chem. Soc., Dalton Trans.* **1977**, 1006.

⁽¹⁴⁾ Bubbling CO through a benzene solution of **2** at room temperature for 1 h results in displacement of the *η*¹-phosphine: Van der
Boom, M. E.; Milstein, D. Unpublished results.

⁽¹⁵⁾ An analogous Pt species with $R' = CH_3$ was postulated to be an intermediate in the selective formation of complex **2** and CH₄ $(Scheme 2).9$

⁽¹⁶⁾ As pointed out by a reviewer, direct H-Si oxidative addition to give a hexacoordinate Pt(IV) species, followed by a selective C-Si reductive elimination, cannot be excluded.

hydride ligands. $6,17$ Thus, ArCH₂-H formation might be preferred over that of CH₄ or CH₃SiR₃ elimination.¹⁸ Since both C-H and C-Si reductive elimination processes are possible, $4-6,19,20$ it can be suggested that the overall process is kinetically controlled by electronic factors in the (unobserved) Pt(IV) intermediate **A**. Consequently, CH_3-R' ($R' = H$, SiR_3) elimination occurs from \mathbf{B} ,¹⁵ to afford a Pt(0) species \mathbf{C} . ^{10,21} As is well documented, *cis*-alkyl(hydrido)Pt(II) and Pt(IV) species are very unstable toward $C-H$ reductive elimination.¹⁹ *cis*-Alkyl(silyl)Pt(II) species are postulated intermediates in the hydrosilylation processes of olefins.^{1,2} Ozawa et al. showed that C-Si reductive elimination from *cis*- $Pt(Me)(SiPh₃)(PMePh₂)₂$ is a facile process and proceeds by dissociation of a phosphine.^{8b,c} Selective C-H reductive elimination from $PtMe₂(H)(bis(2-pyridylmethyl)$ amine)Cl was recently observed by Puddephat et al.^{19a}

Complex **C** can undergo cyclometalation to yield **5** or may be trapped by H_2 to give 6 , ^{10, 13} thermolysis of which gives **⁵**. Activation of benzylic C-H bonds by Pt(0) and Pt(II) complexes was reported.^{9,22} While intermediacy of an isomer of **A** in which the silane is in the apical position and the hydride in the basal one is also possible, it seems less likely on steric grounds.²³

Conclusions

Addition of $H-SiR_3$ ($R_3 = Et_3$, EtMe₂, Me₂Ph) to the Pt(II) alkyl complex **2** results in kinetically preferred exclusive alkyl-SiR₃ bond formation to yield complex **5**. Interestingly, the cis geometry and the presence of the metallacycle, which readily opens up, play a key role in the selective product formation. The overall process involves a series of reactions that are influenced by electronic and steric factors. The C-Si coupling is probably directed by the strong trans influence of the ligands, while formation of the *trans*-Pt(II)H complex **5** is sterically influenced by the bulky phosphine ligand **1**.

Experimental Section

The procedures and spectroscopic analysis are similar to those previously reported. (17) (a) Zlota, A. A.; Frolow, F.; Milstein, D. *J. Chem. Soc., Chem.* ⁹ All reactions were carried out

Commun. **1989**, 1826. (b) Haszeldine, R. N.; Parish, R. V.; Setchfield, J. H. *J. Organomet. Chem.* **1973**, *57*, 279.

⁽¹⁸⁾ Recent examples of reverse-cyclometalation as the following. (a) Pd: Beller, M.; Riermeier, T.-H.; Haber, S.; Kleiner, H.-J.; Herrmann, W. A. *Chem. Ber.* **1996**, *129*, 1259. (b) Pt: Thorn, D. L. *Organometallics* **1998**, *17*, 348. (c) Ir: Aizenberg, M.; Milstein, D.

Organometallics **1996**, *15*, 3317.
(19) C-H reductive elimination from Pt(IV): (a) Jenkins, H. A.; Yap,
G. P. A.: Puddenhatt, R. J. *Organometallics* **1997**, *16*, 1946, (b) Hill G. P. A.; Puddephatt, R. J. *Organometallics* **1997**, *16*, 1946. (b) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. *Organometallics* **1995**, *14*, 4966. (c) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **1996**, 118, 5961. C–H reductive elimination from Pt(II): (d) Abis, L.;
Sen, A.; Halpern, J. *J. Am. Chem. Soc.* **1978**, 100, 2915.
(20) Levi, C. J.; Puddephatt, R. J. *Organometallics* **1995**, 14, 5019.

⁽²¹⁾ Formation of **C** was observed upon reacting 2 equiv of **1** and 5 equiv of HSiMe₂Ph with (COD)Pt(CH₃)₂ at room temperature. This reaction is not selective since CH₄ and SiMe₃Ph were detected. The ³¹P{¹H} NMR of the reaction mixture shows a broadened signal at *δ* 61.15 (¹ J_{PtP} = 4220 Hz; compare (${}^{1}P_{\text{B}}P_{2}Pt$, ${}^{1}J_{\text{PtP}}$ = 4202 Hz (Mann, B.
E.: Musco, A. *J. Chem. Soc. Dalton Trans*, **1980**, 776)). Thermolysis E.; Musco, A. *J. Chem. Soc., Dalton Trans.* **1980**, 776)). Thermolysis results in quantitative formation of complex **5**. Apparently, the metallacycle of **²** plays a key role in the selective C-Si formation.

⁽²²⁾ Hackett, M.; Whitesides, G. M. *J. Am. Chem. Soc.* **1988**, *110*, 1449.

⁽²³⁾ Oxidative addition of silanes to Ir(I) has been found to proceed with 98% stereoselectivity: Johnson, C. E.; Eisenberg, R. *J. Am. Chem. Soc.* **1985**, *107*, 6531.

under an inert atmosphere. Solvents were dried, distilled, and degassed before use. Complexes $2-4$ and (COD)Pt(CH₃)₂ were prepared according to published procedures.9,24

Reaction of Complex 2 with $HSiR_3$ $(R_3 = Et_3, Me_2Et,$ **Me₂Ph) at 100** $\mathrm{^{\circ}C}$.¹⁰ A colorless solution of complex **2** (36 mg, 0.050 mmol) and a 5-fold excess of $HSiR_3$ in C_6D_6 (1.5 mL) was heated using a pressure flask at 100 °C for 5 days. Quantitative analysis of the gas phase by GC showed only traces of CH₄ (<4%). The product solution was analyzed by ${}^{1}H$, ${}^{1}H{}^{31}P$ }, ${}^{31}P{}^{1}H{}$ } NMR, IR, GC-MS, and FD-MS showing the quantitative formation of complex **5** (vide infra) and MeSiR₃. ¹H NMR and GC-MS analysis showed traces of Et₄-Si, HSiMe₃, Me₂SiPh₂, Me₃SiPh, and disiloxanes; formation of the latter could be suppressed using silanized glassware.

Formation of the *trans***-Dihydride 6.** A colorless solution of **2** (43 mg, 0.06 mmol) in benzene (10 mL) was loaded in a Fischer-Porter and pressurized with 30 psi of H_2 . The yellowish solution was stirred at 60 °C for 3 days. Quantitative analysis of the gas phase by GC showed formation of 1 equiv of CH4. Subsequently, the solvent was removed in a vacuum and the resulting brownish solid was recrystallized from pentane to afford complex **6** (33 mg, 80%) as a colorless crystalline powder. FD-MS (*m*/*z*): 697 (calcd M+, 697; correct isotope pattern). Anal. Calcd for $C_{32}H_{55}P_2Pt$: C, 55.24; H 7.82. Found: C, 54.94; H, 7.42. ¹H NMR (400.19 MHz; C₆D₆): δ -3.15 (t, ²J_{PH} = 17.5 Hz, ¹J_{PtH} = 796 Hz, 2 H, Pt*H*), 1.05 (q, ${}^{3}J_{\text{HH}} = 7.5$ Hz, 12 H, PCH(C*H*₃)₂), 1.20 (vq, ${}^{3}J_{\text{HH}} = 7.4$ Hz, 12 H, PCH(C*H*3)2), 1.95 (m, 4 H, PC*H*(CH3)2), 2.14 (s, 6 H, *p*-ArC*H*₃), 2.48 (s, 12 H, o -ArC*H*₃), 3.31 (vt, ²*J*_{PH} = 3.4 Hz, ³*J*_{PtH} $=$ 36.2 Hz, 4 H, PC*H*₂Ar), 6.79 (s, 4 H, Ar*H*). ³¹P{¹H} NMR $(161.9 \text{ MHz}; \text{ C}_6\text{D}_6): \delta 53.7 \text{ (s, }^1\text{J}_{\text{PtP}} = 2882.2 \text{ Hz}). \text{ IR (film):}$ ν (Pt-H) = 1744 cm⁻¹.

(24) Clark, H. C.; Manzer, L. E. *J. Organomet. Chem.* **1973**, *59*, 411. OM9802818

Formation of 5 from 6. A solution of **6** (14 mg, 0.02 mmol) in C_6D_6 (1 mL) was transferred to a 5 mm screw cap NMR tube. The sealed NMR tube was placed in an oil bath at 100 °C and monitored by 31P{1H} NMR at room temperature. After 5 days **6** was selectively converted to **5**; removal of the solvent in a vacuum afforded a white powder. Performing the thermolysis of 6 in the presence of a 5-fold excess of HSiMe₂Ph resulted also in the selective formation of complex **5**; no influence of the silane on the progress and the product formation was observed by 31P{1H} NMR. FD-MS (*m*/*z*): 695 (calcd M+, 695; correct isotope pattern). Anal. Calcd for C32H53P2Pt: C, 55.32; H 7.69. Found: C, 55.21; H, 7.41. 1H NMR (400.19 MHz; C_6D_6): δ -7.00 (br t, ²J_{PH} = 18.4 Hz, ²J_{PH} $= 773.2$ Hz, 1 H, Pt*H*), 0.86 (dd, ²*J*_{PH} $= 14.2$ Hz, ³*J*_{PH} $= 7.0$ Hz, 6 H, PCH(C*H*3)2), 1.00-1.10 (m, 12 H, PCH(C*H*3)2), 1.15 $(dd, {}^2J_{PH} = 13.9$ Hz, ${}^3J_{HH} = 7.0$ Hz, 6 H, PCH(C*H*₃)₂), 1.66 (m, 1 H, PC*H*(CH3)2), 1.85 (m, 3 H, PC*H*(CH3)2), 2.13 (s, 3 H, ArC*H*3), 2.18 (s, 3 H, ArC*H*3), 2.30 (s, 6 H, *o*-ArC*H*3), 2.44 (m, partly overlapped, 2 H, ArC*H*2Pt), 2.46 (s, 3 H, ArC*H*3), 2.84 (m, ³*J*_{PtH} = 37.3 Hz, 2 H, ArC*H*₂P), 3.26 (dd, ²*J*_{PH} = 3.2 Hz, 3_{*J*PtH} = 10.2 Hz, 2 H, ArC*H*₂P), 6.70–6.80 (m, 4 H, Ar*H*). ³¹P- 1H NMR (161.9 MHz; C₆D₆): *δ* 45.1 (d, ²J_{PP} = 392.8 Hz, ¹J_{PPt} $= 2992.1$ Hz, 1 P), 89.2 (d, ² J_{PP} = 392.8 Hz, ¹ J_{PtP} = 3193.5 Hz, 1 P). IR (film): ν (Pt-H) = 1964 cm⁻¹.

Acknowledgment. This work was supported by the Israel Science Foundation, Jerusalem, Israel, and by the MINERVA foundation, Munich, Germany. J.O. thanks the DAAD foundation for a fellowship. D.M. is the holder of the Israel Matz Professorial Chair in Organic Chemistry. We thank R. Fokkens (University of Amsterdam, Amsterdam, The Netherlands) for performing the FD-MS experiments.