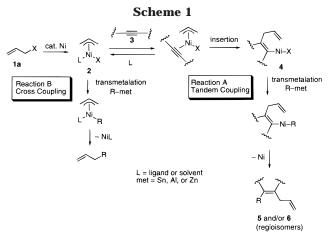
Tandem Coupling of Allyl Electrophiles, Alkynes, and Me₃Al or Me₂Zn in the Presence of a Nickel Catalyst


Shin-ichi Ikeda,* Hitoshi Miyashita, and Yoshiro Sato

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan

Received April 13, 1998

Summary: The tandem reaction of allyl electrophiles with alkynes and Me₃Al or Me₂Zn occurred in the presence of a nickel catalyst to give three-component coupling products. This reaction was applied to the coupling with concomitant cyclization of enynyl electrophiles.

We have investigated the successive introduction of carbon units into a carbon-carbon double or triple bond based on transition-metal-catalyzed coupling reaction with organometallics.¹ It was found that the nickelcatalyzed tandem coupling of some allyl electrophiles 1 with alkynes 3 and alkynyltins (R-met = $PhCC-SnBu_3$ or Me₃SiCC-SnBu₃) regio- and stereoselectively provided three-component coupling products 5 and/or 6 (reaction A in Scheme 1).² This reaction may proceed via insertion of **3** to π -allylnickel(II) intermediate **2**,³ which is generated from nickel(0) and $\mathbf{1}$,⁴ to yield intermediate 4. On the other hand, it is well-known that 1 reacts with organoaluminums or zincs in the presence of transition-metal catalysts, including nickel complexes, to give allylation products under mild reaction conditions.^{5–7} When the insertion of **3** to **2** is faster than the transmetalation with the organometallics, tandem coupling should be established. Herein we reported an investigation of the tandem reaction of 1 with trimethylaluminum (Me₃Al) or dimethylzinc (Me₂-Zn) and **3** in the presence of a nickel catalyst.

When the reaction of allyl chloride (1a, X = Cl, 1.0 equiv) with 1-octyne (**3a**, R' = Hex, 1.1 equiv) and Me₃-Al (1.0 M in hexane, 1.5 equiv) was carried out in the presence of $Ni(acac)_2$ as a precatalyst (5 mol %) in tetrahydrofuran (THF) (5 mL) at room temperature, three-component coupling products 5a and 6a were obtained as a regioisomeric mixture (5a:6a = 88:12) in a total yield of 79% (entry 1 in Table 1). Other solvents (toluene, CH_2Cl_2 , hexane, and DMF) were not efficient, except for ether. Both allyl bromide (1a, X = Br) and acetate (1a, X = OAc) were less effective than the chloride in the coupling reaction (entries 2 and 3). Whereas Me₂Zn (1.0 M in hexane, 1.5 equiv) also reacted with 1a (X = Cl) and 3a to give 5a and 6a, reaction with allyl acetate (1a, X = OAc) did not occur (entry 5). However, when the same reaction was carried out in the presence of LiCl (3 equiv), the desired products 5a and **6a** were provided (entry 6). These results suggest that the acetoxy group on intermediate 3 or 4 (X = OAc) was replaced by chloride from LiCl, with the resulting intermediate 4 (X = Cl) then reacting with Me_2Zn^8 We also used NiCl₂(PPh₃)₂ (5 mol %) as the catalyst in the reaction with Me₃Al (eq 1). However, the total yield of **5a** and **6a** decreased to 47% (**5a**:**6a** = 89:11) from the reaction in the absence of PPh₃ (entry 1). This suggests

^{*} To whom correspondence should be addressed. Fax: +81-52-836-3462. E-mail: ikeshin@phar.nagoya-cu.ac.jp.

Ikeda, S.; Sato, Y. J. Am. Chem. Soc. **1994**, 116, 5975. Ikeda, S.;
 Yamamoto, H.; Kondo, K.; Sato, Y. Organometallics **1995**, 14, 5015.
 Ikeda, S.; Kondo, K.; Sato, Y. J. Org. Chem. **1996**, 61, 8248. Cui, D.-M.;
 Yamamoto, H.; Ikeda, S.; Hatano, K.; Sato, Y. J. Org. Chem. **1998**, 63, 2782.

^{(2) (}a) Ikeda, S.; Cui, D.-M.; Sato, Y. *J. Org. Chem.* **1994**, *59*, 6877. (b) Cui, D.-M.; Tsuzuki, T.; Miyake, K.; Ikeda, S.; Sato, Y. *Tetrahedron* **1998**, *54*, 1063.

⁽³⁾ Billington, D. C. In *Comprehensive Organic Synthesis*, Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, p 423.

⁽⁴⁾ Chiusoli, G. P. Acc. Chem. Res. 1973, 6, 422. Casser, L.; Chiusoli, G. P.; Guerrieri, F. Synthesis 1973, 509. Llebaria, A.; Moreto, J. Organomet. Chem. 1993, 452, 1.

⁽⁵⁾ For the coupling between allylic-carbon and sp³-carbon centers: Sekiya, K.; Nakamura, E. *Tetrahedron Lett.* **1988**, *29*, 5155.

⁽⁶⁾ For the coupling between allylic-carbon and sp²-carbon centers: Tamao, K. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, p 467.

⁽⁷⁾ For the coupling between allylic-carbon and sp-carbon centers: Cui, D.-M.; Hashimoto, N.; Ikeda, S.; Sato, Y. *J. Org. Chem.* **1995**, *60*, 5752 and references therein.

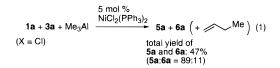

⁽⁸⁾ Scott, W. J.; Crisp, G. T.; Stille, J. K.; *J. Am. Chem. Soc.* **1984**, *106*, 4630. Scott, W. J.; Stille, J. K. *J. Am. Chem. Soc.* **1986**, *108*, 3033. Valle, L. D.; Stelle, J. K.; Hegedus, L. S. *J. Org. Chem.* **1990**, *55*, 3019. Farina, V.; Krishnan, B.; Marshall, D. R.; Roth, G. P. *J. Org. Chem.* **1993**, *58*, 5434.

 Table 1.
 Nickel-Catalyzed Coupling of Allyl Elecrophile, Alkyne, and Me₃Al or Me₂Zn^a

	Licerop	, milling, milling me	,	MC3AI OI MC22	
entry	allyl-X	alkyne	R-met	product	yield, ^b %
1	1a , X = Cl		Me ₃ Al	В' Н Н В'	79
2	1a , X = Br	HexH	Me ₃ Al)=(+)=(22
3	1a , X = OAc	(Hex = C ₆ H ₁₃) 3a	Me ₃ Al	Mế Mế 1	42
4	1a, X = Cl		Me ₂ Zn	R' = Hex 5a:6a = 88:12	74
5	1a, X = OAc		Me ₂ Zn	Ja. Ja - 00. 12	0°
6	1a , X = OAc		Me ₂ Zn		41 ⁰
7	1a, X = Cl	Ph→===−H	Me ₃ AI	R' = Ph	68
8	1a , X = Cl	3b	Me ₂ Zn	5b:6b = 100:0	62
9	1a, X = Cl	TBSOCH ₂	Me ₃ Al	R' = TBSOCH ₂ 5c:6c = 88:12	40
10	1a , X = Cl	TBSO(CH ₂) ₂	Me ₃ Al	R' = TBSO(CH ₂) ₂ 5d:6d = 92:8	61
11	L CI 1b	3b	Me ₃ Al	Ph H Me 5e	40

^a Reaction conditions: Ni(acac)₂ (0.05 mmol), Me₃Al or Me₂Zn (1.0 M hexane, 1.5 mL), alkyne (1.1 mmol), and allyl electrophile (1.0 mmol) in THF (5 mL) at room temperature for 2 h. ^b Isolated yield. ^cReaction time: 3 d. ^dYield in the presence of LiCl (3.0 mmol).

that the coordination of the ligand ($L = PPh_3$) to **2** inhibits the insertion of alkyne **3** and leads to the undesired cross coupling (reaction B in Scheme 1).⁷

The reactions with a variety of allyl electrophiles **1** and alkynes **3** were investigated. The reaction of **1a** (X = Cl) with phenylacetylene (**3b**, R' = Ph) and Me₃Al or M₂Zn gave **5b** as a sole isomer (entries 7 and 8). Silyl ethers **3c** and **3d** could also be used in this reaction (entries 9 and 10). Whereas β -methallyl chloride (**1b**) reacted with **3b** and Me₃Al to give the desired three-component product **5e** (entry 11), the reaction of cinnamyl chloride (**1c**) produced a direct allylation (cross coupling) product **7** (eq 2).

Nickel-catalyzed coupling with the concomitant cyclization of enynyl electrophiles **8** with Me₃Al or Me₂Zn was also investigated, and the results are summarized in Table 2.⁹ In all cases, an allyl unit in **8** was introduced to the internal carbon atom in the alkyne unit, and the methyl unit in Me₃Al or Me₂Zn was added to the external carbon atom to give five-membered cyclic products **9** as the sole isomers. The reaction of chloride **8a**^{2b} or **8b**^{2b} with Me₂Zn was more efficient than that

 Table 2.
 Nickel-Catalyzed Coupling of Enynyl

 Electrophiles with Me₃Al or Me₂Zn^a

substrate	product	Me-met	yield, ^b %
EtO ₂ C EtO ₂ C	EtO ₂ C EtO ₂ C 9a	Me ₃ Al Me ₂ Zn	29 68
$T_{S} = P \cdot MeC_{\theta}H_{4}SO_{2}$	Ts-N	Me ₃ Al	39
	9b	Me ₂ Zn	57
EtO ₂ C	EtO ₂ C	Me ₃ Al	43
EtO ₂ C	EtO ₂ C	Me ₂ Zn	0
Bc	9c	Me ₂ Zn	57 ^c

^{*a*}Reaction conditions: Ni(acac)₂ (0.05 mmol), Me₃Al or Me₂Zn (1.0 M hexane, 1.5 mL), and **8** (1.0 mmol) in THF (5 mL) at room temperature for 2 h. ^{*b*}Isolated yield. ^cYield in the presence of LiCl (3.0 mmol).

with Me₃Al. The acetate $8c^{2b}$ reacted with Me₂Zn in the presence of LiCl to give 9c.

In summary, the intermolecular reaction of allyl electrophiles **1** with alkynes **3** and Me₃Al or Me₂Zn occurred in the presence of a nickel catalyst to give three-component coupling products under mild conditions. The reaction was applied to the coupling with concomitant cyclization of enynyl electrophiles **8**.

Experimental Section

General. All reactions were carried out under dry N_2 atmosphere. ¹H and ¹³C NMR spectra were recorded in CDCl₃ using Me₄Si as internal standard. Unless otherwise noted, the starting material was obtained from commercial suppliers and used without further purification. Ether, THF, and hexane were distilled from sodium benzophenone. Toluene and CH₂Cl₂ were dried by distillation from CaH₂. DMF was dried by distillation from BaO under reduced pressure.

General Procedure. To a solution of Ni(acac)₂ (13 mg, 0.05 mmol) in THF (5 mL) was added Me₂Zn or Me₃Al in 1.0 M hexane solution (1.5 mL) at 0 °C under N₂ and stirred for 5 min. To this black solution was then added alkyne (1.1 mmol) and allyl electrophile (1.0 mmol) (or enynyl electrophile (1.0 mmol)) at 0 °C, and then the mixture was stirred at room temperature for 2 h. After addition of aqueous HCl, the aqueous layer was extracted with Et₂O. The combined organic layers were washed successively with aqueous NaHCO₃ and brine, dried over MgSO₄, and concentrated in vacuo. Purification by silica gel column chromatography gave a corresponding coupling product.

5-Methylundeca-1,4-diene (5a): regioselectivity 88%; a colorless oil; bp 40 °C (15 mmHg); $R_f = 0.8$ (hexane); ¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 1.20–1.30 (m, 8H), 1.60 (s, 3H), 1.99 (t, J = 7.6 Hz, 2H), 2.75 (t, J = 6.7 Hz, 2H), 4.93 (dd, J = 10.4, 1.8 Hz, 1H), 5.01 (dd, J = 17.1 Hz, 1.8 Hz, 1H), 5.15 (t, J = 6.7 Hz, 1H) 5.81 (ddt, J = 17.1, 10.4, 6.7 Hz, 1H); ¹³C NMR (125.7 MHz, CDCl₃) δ 14.13, 15.88, 22.67, 27.95, 29.15, 31.82, 32.28, 39.71, 114.03, 121.07, 136.90, 137.59; IR (neat) 2959, 2928, 2857, 909 cm⁻¹; GC/MS (EI, 70 eV) m/z (rel int) 166 (M⁺, 25), 81 (100); HRMS for C₁₂H₂₂ (M⁺) calcd 166.1721, found 166.1769

5-Phenylhexa-1,4-diene (5b): regioselectivity 100%; a colorless oil; bp 100 °C (20 mmHg); R_f = 0.4 (hexane); ¹H NMR

^{(9) (}a) Oppolzer's group developed the cyclization of **9**, the so-called "metallo-ene" reaction, using a nickel or palladium catalyst; see: Oppolzer, W. *Angew. Chem., Int. Ed. Engl.* **1989**, *28*, 38. Oppolzer, W. *Pure Appl. Chem.* **1990**, *62*, 1941. Recently, a palladium-catalyzed reaction of **9** with organometallics was also reported; see: (b) Oppolzer, W.; Ruiz-Montes, J. *Helv. Chim. Acta* **1993**, *76*, 1266.

(500 MHz, CDCl₃) δ 2.02 (s, 3H), 2.96 (t, J = 6.3 Hz, 2H), 5.02 (dd, J = 10.4, 1.8 Hz, 1H), 5.09 (dd, J = 17.1, 1.8 Hz, 1H), 5.80 (t, J = 6.3 Hz, 1H), 5.86 (ddt, J = 17.1, 10.4, 6.31, 1H), 7.21–7.40 (m, 5H); ¹³C NMR (125.7 MHz, CDCl₃) δ 15.75, 32.97, 114.82, 125.17, 125.66, 126.65, 128.16, 135.96, 136.58, 143.74; IR (neat) 3081, 1493, 1445, 910, 756, 696 cm⁻¹; GC/MS (EI, 70 eV) *m*/*z* (rel int) 158 (M⁺, 71), 143 (100). Anal. Calcd for C₁₂H₁₄: C, 91.08; H, 8.92. Found: C, 91.08; H, 9.04.

5-Methyl-6-[(*tert*-butyldimethylsilyl)oxy]hexa-1,4-diene (5c): regioselectivity 88%; a colorless oil; bp 105 °C (30 mmHg); $R_f = 0.26$ (hexane); ¹H NMR (500 MHz, CDCl₃) δ 0.07 (s, 6H), 0.91 (s, 9H), 1.61 (s, 3H), 2.79 (t, J = 7.0 Hz, 2H), 4.03 (s, 2H), 4.96 (dd, J = 10.1, 1.8 Hz, 1H), 5.01 (dd, J = 19.9, 1.8 Hz, 1H), 5.43 (t, J = 7.0 Hz, 1H), 5.82 (ddt, J = 19.9, 10.1, 6.1 Hz, 1H); IR (neat) 2930, 2857, 1462, 1256, 1078, 837, 775, 442, 428, 409 cm⁻¹; GC/MS (EI, 70 eV) *m*/*z* (rel int) 169 (M⁺ - ^tBu, 62), 75 (100); HRMS for C₉H₁₇OSi (M⁺ - ^tBu), calcd 169.1049, found 169.1049.

5-Methyl-7-[*(tert*-butyldimethylsilyl)oxy]hepta-1,4-diene (5d): regioselectivity 92%; a colorless oil; bp 70 °C (30 mmHg); $R_f = 0.3$ (hexane); ¹H NMR (500 MHz, CDCl₃) δ 0.07 (s, 6H), 0.91 (s, 9H), 1.61 (s, 3H), 2.79 (t, J = 7.0 Hz, 2H), 4.03 (s, 2H), 4.96 (dd, J = 10.1, 1.8 Hz, 1H), 5.01 (dd, J = 19.9, 1.8 Hz, 1H), 5.43 (t, J = 7.0 Hz, 1H), 5.82 (ddt, J = 19.9, 1.6, 12; ¹³C NMR (125.7 MHz, CDCl₃) δ –5.26, 1.03, 13.37, 18.44, 31.85, 68.47, 114.41, 121.50, 133.56, 137.02; IR (neat) 2955, 2932, 2899, 2859, 1256, 1098, 910, 835, 775 cm⁻¹; GC/MS (EI, 70 eV) m/z (rel int) 183 (M⁺ – ^tBu, 100); HRMS for C₁₀H₁₉OSi (M⁺ – ^tBu), calcd 183.1205, found 183.1215.

3-Methyl-6-phenyl-hepta-1,5-diene (5e): regioselectivity 100%; a colorless oil; bp 80 °C (20 mmHg); $R_f = 0.5$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 1.16 (d, J = 6.7 Hz, 3H), 2.05–2.06 (c, 3H), 3.21–3.27 (m, 1H), 4.96 (dd, J = 10.4 Hz, 1.83 Hz, 1H), 5.04 (dd, J = 17.1 Hz, 1.83 Hz, 1H), 5.61 (d, J = 9.2 Hz, 1H), 5.78–5.87 (m, 1H), 7.20–7.40 (m, 5H); IR (neat) 3081, 3021, 2967, 2924, 2361, 1636, 1597, 1493, 1445, 1381, 1080, 1026, 910, 756, 696, 405 cm⁻¹; GC/MS (EI, 70 eV) m/z (rel int) 172 (M⁺, 38), 157 (100). Anal. Calcd for C₁₃H₂₆: C, 90.06; H, 9.36. Found: C, 89.90; H, 9.54.

1-Phenyl-1-butene (7): a colorless oil; $R_f = 0.6$ (hexane); bp 60 °C (30 mmHg); ¹H NMR (400 MHz, CDCl₃) δ 1.09 (t, J = 7.4 Hz, 3H), 2.23 (qd, J = 7.4, 6.9 Hz, 2H), 6.27 (dt, J = 15.9, 6.3 Hz, 1H), 6.33 (d, J = 15.9 Hz, 1H), 7.18–7.35 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 13.64 (CH₃), 26.05 (CH₂), 125.89, 126.73, 128.45, 128.79, 132.62 (CH), 137.94 (C); IR (neat) 3027, 2965, 2932, 1092, 1020, 965, 741, 693, 627; GC/MS (EI, 70 eV) m/z (rel int) 132 (M⁺, 83), 117 (100); HRMS for C₁₀H₁₂ (M⁺), calcd 132.0939, found 132.0940. **Diethyl Cyclopentan-3-ethenyl-4-ethylidenyl-1,1-dicarboxylate (9a):** a colorless oil; $R_f = 0.4$ (hexane:AcOEt = 8:1); bp 120 °C (25 mmHg); ¹H NMR (400 MHz, CDCl₃) δ 1.23 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.54 (ddd, J = 7.1, 1.2, 1.2 Hz, 3H), 1.98 (dd, J = 13.2, 7.1 Hz, 1H), 2.71 (dd, J = 13.2, 1.7 Hz, 1H), 2.78 (dd, J = 15.6, 1.2 Hz, 1H), 3.00 (ddd, J = 15.6, 1.2, 1.2 Hz, 1H), 3.37 (dd, J = 13.2, 7.1 Hz, 1H), 4.16 (m, 4H), 4.96 (dd, J = 10.0, 1.7 Hz, 1H), 5.00 (dd, J = 17.0, 1.7 Hz, 1H), 5.47 (td, J = 7.1, 1.2 Hz, 1H), 5.70 (ddd, J = 17.0, 10.0, 7.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.00, 40.55, 41.72, 43.56, 59.07, 61.33, 61.37, 113.85, 119.32, 139.81, 140.11, 171.55; IR (neat) 2980, 2936, 2364, 1734, 1449, 1368, 1289, 1246, 1184, 1096 cm⁻¹; GC/MS (EI, 70 eV) m/z (rel int) 266 (M⁺, 30), 192 (100). Anal. Calcd for C₁₅H₂₂O₄: C, 67.66; H, 8.33. Found: C, 67.40; H, 8.30.

3-Ethenyl-2-ethylidenyl-1-(4-toluenesulfonyl)pyrrolidine (9b): a colorless oil; $R_f = 0.3$ (hexane:AcOEt = 5:1); bp 150 °C (1 mmHg); ¹H NMR (400 MHz, CDCl₃) δ 1.55 (d, J = 6.8 Hz, 3H), 2.43 (s, 3H), 3.24–3.28 (m, 2H), 3.32 (b, 1H), 3.64 (dt, J = 13.2, 1.9 Hz, 1H), 3.85 (dq, J = 13.2, 1.9 Hz, 1H), 4.98–5.09 (m, 2H), 5.43 (qd, J = 6.8, 1.9 Hz, 1H), 5.63 (m, 1H), 7.26–7.71 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 14.10, 21.66, 44.01, 52.15, 54.00, 115.36, 119.40, 128.07, 129.72, 132.80, 136.80, 136.97, 143.71; IR (neat) 3414, 2978, 2920, 2859, 2361, 2340, 1597, 1453, 1402, 1346, 1163, 1094, 1046, 1015, 922, 816, 710, 664, 596, 550; GC/MS (EI, 70 eV) m/z (rel int) 277 (M⁺, 29), 91 (100); HRMS for C₁₅H₁₉NO₂S (M⁺), calcd for 277.1136, found 277.1141.

Diethyl 9-Ethylidenylbicyclo[4.3.0]-2-en-7,7-dicarboxylate (9c): a colorless oil; $R_f = 0.3$ (hexane:AcOEt = 8:1); bp 165 °C (25 mmHg); ¹H NMR (400 MHz, CDCl₃) δ 1.14–1.30 (c, 7H), 1.41–1.47 (m, 1H), 1.64 (d, J = 6.8 Hz, 3H), 1.90–2.05 (m, 2H), 2.62 (dd, J = 15.6, 1.0 Hz, 1H), 2.92–2.98 (m, 1H), 3.20 (dq, J = 15.6, 2.7 Hz, 1H), 3.37 (b, 1H), 4.10–4.29 (m, 4H), 5.33–5.37 (m, 1H), 5.76–5.81 (m, 1H), 5.91 (dt, J = 10.0, 2.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.01, 14.12, 14.27, 22.41, 23.50, 39.05, 40.10, 42.33, 61.16, 61.25, 63.07, 117.59, 126.67, 126.87, 140.30, 169.82, 171.48; IR (neat) 3032, 2980, 2936, 2862, 2365, 1734, 1449, 1366, 1296, 1256, 1233, 1198, 1182, 1154, 1123, 1098, 1071, 856, 689 cm⁻¹; GC/MS (EI, 70 eV) m/z (rel int) 292 (M⁺, 5), 145 (100). Anal. Calcd for C₁₇H₂₄O₄: C, 69.84; H, 8.27. Found: C, 69.56; H, 8.25.

Acknowledgment. This work was supported by Grants-in-Aid for Scientific Research (No. 09771916) from the Ministry of Education, Science and Culture, Japan.

OM980277W