An Unusual Alkyltrihydroaluminate. Crystal Structures of $[AlH_2{C(SiMe_3)_2(SiMe_2OMe)}(\mu-H)Li(THF)]$, [AlCl₂{C(SiMe₂OMe)(SiMe₃)₂(THF)], and $[Li{C(SiMe_2OMe)(SiMe_3)_2}(THF)_2]$ (THF = **Tetrahydrofuran**)

Colin Eaborn,* Peter B. Hitchcock, J. David Smith,* and Sebnem E. Sözerli

School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton BN1 9QJ, U.K.

Received May 19, 1998

Summary: Reaction of the organolithium reagent [Li-

 $\{C(SiMe_2OMe)(SiMe_3)_2\}(THF)_2\}(THF) = tetrahydrofu$ ran), 1, with LiAlH4 gave the title organotrihydridoaluminate, 2, which is unusual for an alkali metal organotrihydridoaluminate in being monomeric and in having the Al linked to the Li not only through hydride but also through another of its ligands. The corresponding reaction with AlCl₃ gave the title organoaluminum dichloride. The Si–O bonds in 1 and 2 are not significantly lengthened by the O-metal coordination. The bond from Li to the OMe in **1** oxygen is not significantly different in length from that to the THF oxygen.

Introduction

We recently introduced use of the ligand (MeOMe₂Si)- $(Me_3Si)_2C^-$, R^{*}, in which there is comparable bulk around the carbanion center to that in the much used¹ ligand (Me₃Si)₃C⁻ but which in addition has a neutral donor group available for further coordination, and we employed it to obtain novel derivatives of Li,² Mg,² Yb,³ Zn,^{4a} Cd,^{4b} Hg,^{4a} Sn,⁵ and Pb.⁵ We have now used the lithium reagent $[LiR^*(THF)_2]$, **1**,² to generate the alkyltrihydridoaluminate [AlH₂R*(μ -H)Li(THF)], **2**, and the alkylaluminum dichloride [AlCl₂R*(THF)], 3, and shown that the ligand has a different ligating mode in each of these compounds. Two of these modes, A and B, have been previously observed, 2-5 but the third, **C**, is new.

Results and Discussion

Reaction of the organolithium reagent 1 with LiAlH₄ in THF followed by recrystallization of the product from

Figure 1. Molecular structure of [AlH₂{C(SiMe₃)₂(Si- Me_2OMe) {(μ -H)Li(THF)], 2.

light petroleum gave the lithium alkylaluminum hydride 2, with the structure shown in Figure 1 and the geometrical data given in Table 1.

The compound is unusual for an alkali metal organotrihydridoaluminate⁶ in that (a) it is monomeric, whereas the others form dimers as a result of hydride bridging (the most relevant examples in the present context being the dimers $4\mathbf{a} - \mathbf{e}^{7,8}$ formed from LiR and LiAlH₄ or AlH₃-NMe₃), and (b) the Al is linked to the alkali metal not only through a hydride bridge but also through one of

^{(1) (}a) Eaborn, C.; Izod, K.; Smith, J. D. J. Organomet. Chem. 1995, 500, 89. (b) Eaborn, C.; Smith, J. D. Coord. Chem. Rev. 1996, 154, 125.
 (2) Eaborn, C.; Hitchcock, P. B.; Kowalewska, A.; Lu, Z.-R.; Smith,

J. D.; Stanczyk, W. A. J. Organomet. Chem. 1996, 521, 113.

⁽³⁾ Eaborn, C.; Hitchcock, P. B.; Izod, K.; Lu, Z.-R.; Smith, J. D. Organometallics 1996 15, 4783.
(4) (a) Aigbirhio, F. I.; Al-Juaid, S. S.; Eaborn, C.; Habtemariam, A.; Hitchcock, P. B.; Smith, J. D. J. Organomet. Chem. 1991, 405, 149. (b) Al-Juaid, S. S.; Eaborn, C.; Habtemariam, A.; Hitchcock, P. B.;
Smith, J. D. *J. Organomet. Chem.* **1992**, *437*, 41.
(5) Eaborn, C.; Hitchcock, P. B.; Smith, J. D.; Sözerli, S. E.

Organometallics 1997, 16, 5653.

⁽⁶⁾ For a review of structures of organoaluminum compounds see: Holloway, C. E.; Melnik, M. *J. Organomet. Chem.* **1997**, *543*, 1. (7) Eaborn, C.; Gorrell, I. B.; Hitchcock, P. B.; Smith, J. D.;

Tavakkoli, K. Organometallics 1994, 13, 4143.

(ucg) iii 2				
Al-H1A	1.66(7)	Si1-01	1.699(4)	
Al-H1B	1.66(7)	C1-Si1	1.842(5)	
Al-H1C	1.57(7)	C1–Si2	1.868(6)	
Al-C1	2.020(6)	C1–Si3	1.876(8)	
Li-01	1.932(11)	O1-C2	1.430(7)	
Li-O2	1.926(10)	Me-Si (mean)	1.876(3)	
Al-H1A-Li Al-C1-Si1	106(4) 107 3(3)	C1-Si1-O1 Si1-O1-C2	107.4(2) 118 2(4)	
Al-C1-Si2	107.1(3)	Si1-O1-Li	132.0(3)	
Al-C1-Si3	105.4(3)	C2-O1-Li	108.5(4)	
Si1-C1-Si2	111.9(3)	O1-Li-H1A	107(2)	
Si1-C1-Si3	111.5(3)	O2-Li-H1A	106(2)	
Si2-C1-Si3	113.2(3)	O1-Li-O2	116.1(6)	
		Me-Si-Me (mean)	105.8(4)	

Table 1. Selected Bond Lengths (Å) and Angles (deg) in 2

its other ligands, the OMe group being coordinated to Li.

The hydrogen atoms attached to Al were located and refined. The bridging and terminal Al-H bonds were found not to be detectably different in length and to have a mean length of 1.61(7) Å, not significantly different from those in **4b**,⁷ **4c**,**d**,^{8a} and **4e**.^{8b} The Li-H distance is markedly longer, at 1.94(7) Å (not significantly different from the corresponding distances in LiAlH₄, 1.88–2.00 Å,⁹ or 4b-d). The compound is thus best described as an intimately bound [AlRH₃]⁻ anion and [Li(THF)]⁺ cation, the binding involving not only the Al-H…Li bridge but also the MeO-Li coordination. The form of the six-membered ring is shown as 5; the Al-H-Li angle is 106(4)°, and the Al···Li distance is 2.891 Å.

There is near-planar geometry at the O atom, the sum of the angles being 358.7°. The Si–O bond, 1.699(4) Å, is distinctly longer than that of normal Si-O(alkyl) bonds, which have lengths in the range 1.64–1.66 Å,¹⁰ but it is similar in length to the Si–O bonds in [{YbR*I-(OEt₂)}₂], 1.684(10) Å,³ or [MgR*₂], 1.705(6) Å,² in each of which there is MeO-metal coordination. It is noteworthy that the MeO-Li bond is not significantly different in length from that between Li and THF even though alkoxysilanes are normally thought to be much weaker bases, and thus poorer donors, than ethers.¹¹

The geometry of the (Me₃Si)₂(MeOMe₂Si)C group (mean Me₃Si–C bond length 1.872(6) Å, mean Si–Me bond length 1.876(7) Å, mean Si-C1-Si angle $112.4(3)^\circ$, mean Me–Si–Me angle $105.8(4)^\circ$) is much as expected from the electronegativity of Al.¹² The (endocyclic) C-SiMe₂OMe bond, 1.842(5) Å, may be shorter than the (exocyclic) C-SiMe₃ bonds.

The NMR spectra of **2** in toluene- d_8 showed that the solid-state structure was essentially preserved in solution. The expected ¹H NMR signals were observed for the SiMe₃, SiMe₂, and OMe groups and the THF, but those from the AlH₃ group were very broad and difficult to locate even at -73 °C. However, when the ²⁷Al nuclei were decoupled, a broad AlH signal centered on δ 3.19, close to that of the OMe signal at δ 3.22, was clearly observed. The expected signals were observed in the ¹³C NMR spectrum except, presumably as a result of quadrupolar interactions with the Al atom, that from the CSi₃ carbon. The chemical shift of the ²⁷Al signal, δ 117, is close to those for the dimeric hydrides **4a** and **4b**,⁷ suggesting that the four-coordination is preserved in solution. The ²⁹Si spectrum showed signals for the SiMe₃ and SiMe₂OMe groups at δ -4.1 and +22.8, respectively. The latter value, being fairly close to that, δ 15.8, for the corresponding group in **3**, might in itself suggest the absence of MeO-Li bonding, but the ⁶Li{¹H} spectrum showed that for irradiation at various frequencies in the ¹H spectrum (cf. ref 13), the largest nuclear Overhauser effect (NOE) was that for irradiation of the OMe protons, indicating that these were close to the Li nucleus. A somewhat smaller NOE was observed for the α -protons of the THF, and there was a smaller but unambiguous NOE over the region in which the AlH signals appeared, indicating that Al–H…Li interaction persisted. Because the technique reveals only time-averaged effects, it is possible that the Li-H bonds are transiently broken in solution, perhaps with exchange of terminal and bridging Al-H bonds.

Reaction of **1** with AlCl₃ in THF followed by recrystallization of the product from light petroleum afforded the compound $[AlCl_2R^*(THF)]$, **3**. This was shown by an X-ray diffraction study to have the structure depicted in Figure 2 (with the geometrical data shown in Table 2), showing the OMe group not to be involved in coordination. (We think it likely that if the compound were formed without coordinated THF, it would have the OMe group coordinated to the Al.) The mean Si-C-Si angle, $110.2(4)^\circ$, may be a little smaller than that, 112.2(3)°, in 2, which would be consistent with the smaller size of the substituents on the Al in the latter. The NMR spectra in solution in toluene- d_8 showed the expected signals, including one at δ 15.8 for the SiMe₂-OMe group in the ²⁹Si NMR spectrum (cf. δ 17.2 for the parent species HC(SiMe₂OMe)(SiMe₃)₂) and one at δ 115 in the ²⁷Al spectrum (cf. δ 108 in 2,4,6-^tBu₃C₆H₂-AlCl₂•THF^{8c} and δ 123 in (Me₃Si)₃CAlCl₂•THF¹⁴).

^{(8) (}a) Wehmschulte, R. J.; Ellison, J. J.; Ruhlandt-Senge, K.; Power, P. P. Inorg. Chem. **1994**, *33*, 6300. (b) Wehmschulte, R. J.; Grigsby, W. J.; Schiemenz, B.; Bartlett, R. A.; Power, P. P. Inorg. Chem. **1966**, 35, 6694. (c) Wehmschulte, R. J.; Power, P. P. Inorg. Chem. 1996, 35, 3262

⁽⁹⁾ Sklar, N.; Post, B. *Inorg. Chem.* 1967, *6*, 669.
(10) Lukevics, E.; Pudova, O.; Sturkovich, R. *Molecular Structure* of Organosilicon Compounds; Horwood: Chichester (U.K.), 1989; pp 180 - 191.

⁽¹¹⁾ Bassindale, A. R.; Taylor, P. G. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z. Eds.; Wiley: Chichester, 1989; pp 822-825.

⁽¹²⁾ Brain, P. T.; Mehta, M.; Rankin, D. W. H.; Robertson, H. E.; Eaborn, C.; Smith, J. D.; Webb, A. D. J. Chem. Soc., Dalton Trans. 1995, 349.

⁽¹³⁾ Andrianarison, M. M.; Avent, A. G.; Ellerby, M. C.; Gorrell, I. B.; Hitchcock, P. B.; Smith, J. D.; Stanley, D. R. J. Chem. Soc., Dalton Trans. 1998, 249.

⁽¹⁴⁾ Al-Juaid, S.S.; Eaborn, C.; Gorrell, I. B.; Hawkes, S. A.; Hitchcock, P. B.; Smith, J. D. J. Chem. Soc., Dalton Trans. 1998, 2411.

Figure 2. Molecular structure of [AlCl₂{C(SiMe₂OMe)-(SiMe₃)₂(THF)], **3**.

Figure 3. Molecular structure of $[Li{C(SiMe_2OMe)-(SiMe_3)_2}(THF)_2]$, 1.

Table 2. Selected Bond Lengths (Å) and Angles(deg) in 3

		•	
Al-C1	1.956(12)	C1-Si1	1.888(11)
Al-Cl1	2.149(5)	C1–Si2	1.903(11)
Al-Cl2	2.155(5)	C1–Si3	1.902(12)
Al-O2	1.878(9)	Si1-O1	1.664(9)
		Me–Si (mean)	1.883(6)
	110 0(4)		111.9(5)
CI-AI-CII	118.0(4)	AI-CI-SI3	111.2(3)
C1-Al-Cl2	113.3(4)	Si1-C1-Si2	109.8(6)
O2-Al-Cl1	100.5(3)	Si1-C1-Si3	109.4(6)
Cl1-Al-Cl2	106.6(2)	Si2-C1-Si3	111.3(6)
Al-C1-Si1	106.2(6)	Si1-O1-C2	122.1(8)
Al-C1-Si2	108.8(6)	Me–Si–Me (mean)	105.8(4)

We take the opportunity to present the geometrical data for the lithium compound **1**, the structure of which is shown in Figure 3. We reported previously that **1** had this structure,² but the quality of the data was not good enough for a detailed account. Better crystals obtained during the present work yielded the results given in Table 3. Features worthy of brief comment are as follows: (a) The four-membered ring is nearly planar (sum of angles 358.7°) and there is a planar geometry at the ring-oxygen. The angles at Si1, C1, Li, and O1 are 103.4(2)°, 80.5(3)°, 79.7(4)°, and 95.1(3)°, respectively. (b) As in **2**, there is no significant difference between the lengths of the Li–O bonds to the OMe group and the THF ligands. (c) The Li–C bond is not

Table 3. Selected Bond Lengths (Å) and Angles (deg) in 1

		0	
Li-C1	2.304(11)	O1-C2	1.422(7)
Li-01	1.933(11)	C1-Si1	1.792(6)
Li-O2	1.949(11)	C1–Si2	1.809(6)
Li-O3	1.970(11)	C1–Si3	1.818(6)
01-Si1	1.684(4)	Me–Si (mean)	1.880(5)
Si1-C1-Li	80.5(3)	01-Li-O3	105.8(5)
Si1-C1-Si2	116.1(3)	O2-Li-O3	98.3(5)
Si1-C1-Si3	122.9(3)	Li-O1-Si1	95.1(3)
Si2-C1-Si3	116.2(3)	Li-O1-C2	139.8(5)
C1-Li-O1	79.7(4)	C2-O1-Si1	124.5(4)
C1-Li-O2	129.6(5)	C3-Si1-C4	102.8(4)
		Me-Si-Me (mean)	103.9(5)

significantly different in length from the electrondeficient bond in [{LiC(SiMe₃)₃]₂],¹⁵ suggesting that the coordination of the OMe group is accompanied by significant weakening of the Li-C bond compared with those in Li{ $C(SiMe_3)_{3-x}(SiMe_2Ph)_x$ }(OEt₂) with $x = 1^{16a}$ or 3.^{16b} (d) The Si–O bond, 1.684(4) Å, may be a little shorter than those in **2**, 1.699(4) Å, and MgR $*_2$, 1.705(6) Å, and when account is taken of the experimental uncertainty cannot even be regarded as significantly longer than those in **3**, 1.664(9) A, or ZnR_{2}^{*} , in neither of which is the oxygen coordinated to the metal. (e) As is usual for a $C(SiMe_3)_3$ or related ligand attached to an alkali metal, the C1-Si bonds, mean length 1.806(4) Å (that to the endocyclic Si may be a little shorter than the other two), are very short and the Si-C1-Si angles (116.1°, 116.2°, and 122.9°) large, implying a high degree of ionic character in the bond. (Compare the corresponding mean bond lengths and angles of 1.800(3) Å and 119.8(5)°, respectively, in the fully ionic species [Li(THF)₄][(C(SiMe₂C₆H₄Me-*o*)₃.¹⁷). It is noteworthy that two Me groups of each Me₃Si lie in toward the center of the molecule, as they do in as in the anions $[M\{C(SiMe_3)_3\}_2]^{-,1b}$ whereas in neutral $M\{C(SiMe_3)_3\}_2$ compounds only one does so, and much further in than do those in 1.^{1a} This conformation in the case of 1 avoids the contacts between Me substituents in the Me₃Si groups and those on the ring that give rise to the small Me₃Si-C-SiMe₃ angle when the arrangement with a single inward-pointing Me from each Me₃Si group is adopted.^{1a,18}

Experimental Section

Air and moisture were excluded as rigorously as possible by use of Schlenk techniques, flame-dried glassware, and argon as blanket gas. Solvents were dried by standard procedures and distilled immediately before use.

Spectra. Unless otherwise stated the NMR spectra were determined for solutions in toluene- d_8 . The frequencies (MHz) used for the various nuclei were ¹H, 300.1; ⁷Li, 97.2; ¹³C, 125.8; ²⁷Al, 65.2; ²⁹Si, 99.4; and ¹¹⁹Sn, 186.6. Chemical shifts are relative to SiMe₄ for H, C, and Si, external aqueous LiNO₃ for Li, and [Al(OH₂)₆]³⁺ for Al. Enhancement by polarization transfer (INEPT) was used to reveal the ²⁹Si signals and those

⁽¹⁵⁾ Adam, F.; Eaborn, C.; Hitchcock, P B.; Smith, J. D. Chem. Commun. 1996, 741.

^{(16) (}a) Eaborn, C.; Clegg, W.; Hitchcock, P. B.; Hopman, M.; Izod, K.; O'Shaughnessy, P. N.; Smith, J. D. Organometallics 1997, 16, 4728.
(b) Eaborn, C.; Smith, J. D.; Sullivan, A. C. J. Chem. Soc., Chem. Commun. 1983, 1390.

⁽¹⁷⁾ Almansour, A. I.; Eaborn, C.; Hawkes, S. A.; Hitchcock, P. B.; Smith, J. D. Organometallics **1997**, *16*, 6035.

⁽¹⁸⁾ Eaborn, Č.; Smith, J. D.; Hitchcock, P. B.; Sözerli, S. E. *J. Chem. Res. (S)*, in press.

Table 4.	Summary	of Crysta	llographi	c Data f	or 1–3
			0 1		

	1	2	3
empirical formula	C ₁₈ H ₄₃ LiO ₃ Si ₃	C14H38AlLiO2Si3	C14H35AlCl2O2Si3
fw	398.7	356.6	417.6
temp (K)	173(2)	173(2)	173(2)
cryst size (mm)	0.4 imes 0.3 imes 0.1	0.5 imes 0.5 imes 0.5	$0.20 \times 0.05 \times 0.05$
cryst syst	orthorhombic	monoclinic	orthorhombic
space group	P2 ₁ 2 ₁ 2 ₁ (No. 19)	$P2_1/n$ (No. 14)	Pbca (No. 61)
a (Å)	16.518(5)	9.072(2)	12.272(4)
b (Å)	9.614(4)	22.655(11)	27.236(12)
c (Å)	15.776(6)	11.122(6)	13.176(7)
β (deg)	90	95.55(3)	90
Z	4	4	8
$V(Å^3)$	2505(2)	2275(2)	4404(3)
$d_{\rm c}$ (Mg m ⁻³)	1.06	1.04	1.26
F(000)	880	784	1792
$\mu ({ m mm^{-1}})$	0.20	0.25	0.50
θ range (deg)	2 to 25	2 to 25	2 to 25
index range	$0 \le h \le 19$	$0 \le h \le 10$	$0 \le h \le 14$
-	$0 \le k \le 11$	$0 \le k \le 26$	$0 \le k \le 32$
	$0 \le l \le 18$	$-13 \le l \le 13$	$0 \le l \le 15$
no. of rflns collected	2523	4262	3874
no. of unique reflns	2523	4004, $R_{\rm int} = 0.060$	3874
no. of rflns with $I > 2(\sigma)I$	1771	3130	1848
R1; wR2 $(I > 2\sigma(I))$	0.060; 0.132	0.102; 0.263	0.111; 0.268
R1; wR2 (all data)	0.099; 0.154	0.127; 0.376	0.224; 0.384
no. of data/restraints/parameters	2523/0/226	3939/0/199	3864/0/199
GOF on F^2	0.999	1.119	0.981
max shift/error	0.001	0.001	0.001
largest diff peak/hole (e Å ⁻³)	0.33 and -0.26	1.42 and -0.80	1.06 and -0.84
abs cor T_{max} ; T_{min}	1.00; 0.92	not applied	not applied

from quaternary carbon in the 13 C spectra. Mass spectra were obtained by EI at 70 eV; m/z values refer to 28 Si and 35 Cl.

Compound 1. This was made as previously described² except that recrystallization was from light petroleum (bp 40–60 °C) at -30 °C. ¹H NMR: δ 0.43 (s, 18H, SiMe₃), 0.45 (s, 6H, SiMe₂), 1.28 (THF), 3.11 (s, 3H, OMe), 3.36 (THF). ¹³C NMR: δ 3.3 (SiMe₂), 7.1 (CSi₃), 7.9 (SiMe₃), 25.3 (THF), 49.7 (OMe), 68.1 (THF). ²⁹Si NMR: δ –7.9 (SiMe₃), 19.4 (SiMe₂) (this latter value was previously² given in error as 0.7).

Compound 3. A solution of **1** (0.62 g, 1.60 mmol)² in THF (15 cm³) was added dropwise to a solution of AlCl₃ (0.30 g, 2.3 mmol) in THF (15 cm³) at room temperature, and the mixture was stirred overnight. The THF was removed under vacuum and the residue extracted with light petroleum (bp 40-60 °C, 30 cm³). The extract was filtered and the filtrate concentrated to 10 cm³, then kept at 5 °C to deposit crystals of 3, yield 0.40 g, 62%, mp 82-84 °C. ¹H NMR: δ 0.19 (s, 6H, SiMe₂), 0.25 (s, 18H, SiMe₃), 1.10 (THF), 2.89 (s, 3H, OMe), 3.78 (THF). ¹³C NMR: δ 2.3 (SiMe₂), 5.6 (SiMe₃), 24.9 (THF), 50.3 (OMe), 71.8 (THF); the signal from CSi₃ was not observed. ²⁷Al NMR: δ 115 ($\Delta v_{1/2}$ 2500 Hz). ²⁹Si NMR: δ –3.8 (SiMe₃), 15.8 (SiMe2). MS: m/z 329 (65%, M - THF - Me), 233 (90, CH-(SiMe₃)₂(SiMe₂OMe) - Me), 217 (100, Me₂Si=C(SiMe₂OMe)-SiMe₃ (or isomer) - Me), 187 (15), 129 (50, Me₂Si=CHSiMe₃ Me). A satisfactory analysis was not obtained, but the identity of the product was confirmed by an X-ray diffraction study.

Compound 2. A solution of **1** (0.52 g, 1.30 mmol) in THF (20 cm³) was added dropwise to a solution of LiAlH₄ (0.10 g, 2.6 mmol) in THF (15 cm³) at room temperature, and the mixture was stirred overnight. Workup as described above

gave crystals of **2**, yield 0.30 g, 60%, mp 64–65 °C. Anal. Calcd for C₁₄H₃₈AlLiO₂Si₃: C, 47.2; H, 10.7. Found: C, 47.7; H, 10.5. ¹H NMR: δ 0.32 (s, 6H, SiMe₂), 0.37 (s, 18H, SiMe₃), 1.38 (THF), 3.22 (s, 3H, OMe), 3.58 (THF). ¹H{²⁷Al} NMR δ 3.19 (AlH). ⁷Li NMR: δ –0.11. ¹³C NMR: δ 2.3 (SiMe₂), 4.2 (SiMe₃), 25.4 (THF), 50.3 (OMe), 68.6 (THF); the signal from CSi₃ was not observed. ²⁷Al NMR: δ 117 ($\Delta \nu_{1/2}$ 1000 Hz). ²⁹Si NMR: δ –4.1 (SiMe₃), 22.8 (SiMe₂). The identity of the product was confirmed by an X-ray diffraction study.

Crystal Structure Determinations. Data were collected at 173(2) K on an Enraf-Nonius CAD4 diffractometer using monochromated Mo K α radiation (0.710 73 Å) and corrected for Lorentz and polarization effects; details are given in Table 4. The structures were determined by direct methods, with SHELXS 86 and SHELXL 93 programs used for structure solution and refinement on F^2 using all reflections. Nonhydrogen atoms were anisotropic. Except for those attached to Al in **2**, which were freely refined, H atoms were refined in riding mode with $U_{iso}(H) = 1.2 U_{eq}(C)$ or, for Me groups, $1.5 U_{eq}(C)$. In the ORTEP plots the thermal ellipsoids are shown at the 50% probability level.

Acknowledgment. We thank the EPSRC for financial support and the Turkish Government for the award of a postgraduate scholarship to S.E.S.

Supporting Information Available: Tables of atom coordinates, bond lengths and angles, and anisotropic displacement parameters for 1-3 (9 pages). Ordering information is given on any current masthead page.

OM9804024