*π***-Coordination vs Ring-Opening Isomerization of 2-Phenyl-1-methylenecyclopropane upon the Reaction** with RhCl(PPh₃)₃

Kohtaro Osakada,* Hisami Takimoto, and Takakazu Yamamoto*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received February 27, 1998

Summary: The reactions of 2-phenyl-1-methylenecyclopropane with RhCl(PPh₃)₃ for 16 h at 50 °<i>C and at 0 °*C gave RhCl*(*η⁴-CH₂*=*CPhCH*=*CH*₂)(*PPh₃)₂ (1) and RhCl-*

*(η2-CH2*d*CCH2CHPh)(PPh3)2 (2) as respective isolated products. Heating of a benzene solution of 2 at 50* °*C turned it into ¹ in a low yield (*<*7%), while the reactions of 2-phenyl-1-methylenecyclopropane with RhCl(PPh3)3 and with 2 at the same temperature afforded 1 (10%) and 2-phenyl-1,3-butadiene (14%).*

The transition metal complex promoted $C-C$ bond activation of small-membered ring molecules has been of significant interest for the past several decades. Methylenecyclopropane and its derivatives have high strain energy (∆*H*_f larger than that of cyclopropane by approximately 35 kcal mol^{-1} ¹ in their molecules and are employed as the substrates for synthetic organic reactions² and polymer synthesis³ catalyzed by transition metals. The reactions of methylenecyclopropanes with organotransition metal complexes afforded various products such as 1,3-diene *via* ring-opening isomerization (Sc, Rh),⁴ trimethylenemethane-coordinated metal complexes $(Fe, Mo)⁵$ and organometallic compounds formed *via* the insertion of a C=C double bond to the $M-C$ or $M-Cl$ bond (Ti, Pd).⁶ Rh(I) complexes, which were reported to cause $C-C$ bond activation of small-

membered ring molecules, 7 react also with methylenecyclopropanes to form a 1,3-diene^{4c,8} and to generate a trimethylenemethane complex.9 Rh complexes containing *η*2-coordinated methylenecyclopropane were also reported.10 The ring-opening isomerization most probably involves the initial oxidative addition of the $C-C$ bond to the Rh center, followed by a 1,2-hydrogen shift to form a 1,3-diene, as shown in Scheme 1.

^{(1) (}a) Wiberg, K. B. *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 312.

⁽b) Bachrach, S. M. *J. Phys. Chem.* **1993**, *97*, 4996. (2) (a) Donaldson, W. A. *Adv. Met-Org. Chem.* **1991**, *2*, 269. (b) Noyori, R.; Odagi, T.; Takaya, H. *J. Am. Chem. Soc.* **1970**, *92*, 5780. (c) Noyori, R.; Kumagai, Y.; Umeda, I.; Takaya, H. *J. Am. Chem. Soc.* **1972**, *94*, 4018. (d) Noyori, R.; Ishigami, T.; Hayashi, N.; Takaya, H. *J. Am. Chem. Soc.* **1973**, *95*, 1674. (e) Binger, P.; Schuchardt, U. *Chem. Ber.* **1980**, *113*, 3334. (f) Yamago, S.; Nakamura, E. *J. Chem. Soc., Chem. Commun.* **1988**, 1112. (g) Motherwell, W. B.; Shipman, M. *Tetrahedron Lett.* **1991**, *32*, 1103. (h) Lautens, M.; Ren, Y.; Delanghe, P. H. M. *J. Am. Chem. Soc.* **1994**, *116*, 8821. (i) Lautens, M.; Meyer, C.; Lorenz, A. *J. Am. Chem. Soc.* **1996**, *118*, 10676. (j) Tsukada, N.; Shibuya, A.; Nakamura, I.; Yamamoto, Y. *J. Am. Chem. Soc.* **1997**, *119*, 8123.

^{(3) (}a) Jia, L.; Yang, X.; Yang, S.; Marks, T. J. *J. Am. Chem. Soc.*
1996, *118*, 1547. (b) Jia, L.; Yang, X.; Seyam, A. M.; Albert, I. D. L.;
Fu, P.; Yang, S.; Marks, T. J. *J. Am. Chem. Soc.* **1996**, *118*, 7900.

^{(4) (}a) Parkin, G.; Bunel, E.; Burger, B. J.; Trimmer, M. S.; van Asselt, A.; Bercaw, J. E. *J. Mol. Catal.* **1987**, *41*, 21. (b) Brown, J. M.; Kent, A. G. *J. Chem. Soc., Perkin Trans. 2* **1987**, 1597. (c) Chiusoli, G. P.; Costa, M.; Melli, L. *J. Organomet. Chem.* **1988**, *358*, 495.

^{(5) (}a) Billups, W. E.; Lin, L.-P.; Baker, B. A. *J. Organomet. Chem.* **1973**, *61*, C55. (b) Whitesides, T. H.; Slaven, R. W. *J. Organomet. Chem.* **1974**, *67*, 99. (c) Whitesides, T. H.; Slaven, R. W.; Calabrese, J. C. *Inorg. Chem.* **1974**, *13*, 1895. (d) Pinhas, A. R.; Samuelson, A. G.; Risemberg,
R.; Arnold, E. V.; Clardy, J.; Carpenter, B. K. *J. Am. Chem. Soc.* **1981**,
103, 1668. (e) Allen, S. R.; Barnes, S. G.; Green, M.; Moran, G.; Tr L.; Murrall, N. W.; Walch, A. J.; Sharaiha, D. M. *J. Chem. Soc., Dalton Trans.* **1984**, 1157.

^{(6) (}a) Green, M.; Hughes, R. P. *J. Chem. Soc., Chem. Commun.* **1974**, 686. (b) Mashima, K.; Takaya, H. *Organometallics* **1985**, *4*, 1464. (c) Mashima, K.; Sakai, N.; Takaya, H. *Bull. Chem. Soc. Jpn.* **1991**, *64*, 2475.

⁽⁷⁾ Rh complex promoted ring opening of cyclopropanes: (a) Roundhill, D. M.; Lawson, D. N.; Wilkinson, G. *J. Chem. Soc. (A)* **1968**, 845. (b) Volger, H. C.; Hogeveen, H.; Gaasbeek, M. M. P. *J. Am. Chem. Soc.* **1969**, *91*, 218 and 2137. (c) Katz, T. J.; Cerefice, S. *J. Am. Chem. Soc.*
1969, *91*, 2405. (d) Cassar, L.; Halpern, J. *J. Chem. Soc., Chem.
<i>Commun.* **1970**, 1082. (e) McQuillin, F. J.; Powell, K. C. *J. Chem. Soc. Dalton Trans.* **1972**, 2129. (f) Ogoshi, H.; Setsune, J.-I.; Yoshida, Z.-I. *J. Chem. Soc., Chem. Commun.* **1975**, 572. (g) Alcock, N. W.; Brown, J. M.; Conneely, J. A.; Williamson, D. H. *J. Chem. Soc., Perkin Trans. 2* **1979**, 962. (h) Periana, R. A.; Bergman, R. G. *J. Am. Chem. Soc.* **1984**, *106*, 7272.

⁽⁸⁾ Jun, C.-H.; Lim, Y.-G. *Bull. Korean Chem. Soc.* **1989**, *10*, 468. (9) Chiusoli, G. P.; Costa, M.; Schianchi, P.; Salerno, G. *J. Organomet. Chem.* **1986**, *315*, C45.

⁽¹⁰⁾ Green, M.; Howard, J. A. K.; Hughes, R. P.; Kellett, S. C.; Woodward, P. *J. Chem. Soc., Dalton Trans.* **1975**, 2007.

⁽¹¹⁾ X-ray data of 1: triclinic, *P*1 (No. 2), $a = 13.395(10)$ Å, $b = 16.613(11)$ Å, $c = 10.157(9)$ Å, $\alpha = 92.47(7)$ ^o, $\beta = 103.29(7)$ ^o, $\gamma = 71.17$ -
(6)^o, $V = 2080$ Å³, $Z = 2$, $D_{calc} = 1.335$ g cm⁻³, $F(000) = 8$ $(R_w) = 0.062$ (0.046) for 3729 reflections with $I > 3\sigma(I)$ among 9554 unique reflections ($R_{int} = 0.071$), GOF = 1.83.

Figure 1. ORTEP drawing of $RhCl(CH_2=CHPhCH=CH_2)$ -(PPh3)2 (**1**) with 50% thermal ellipsoidal plotting. Selected bond distances (Å) and angles (deg): $Rh1-Cl1$ 2.459(3), Rh1-P1 2.354(3), Rh1-P2 2.368(3), Rh1-C1 2.159(10), Rh1-C2 2.21(1), Rh1-C3 2.144(9), Rh1-C4 2.082(10), C1- C2 1.42(1), C2-C3 1.44(1), C2-C5 1.51(1), C3-C4 1.40- (1), Cl1-Rh1-P1 96.90(10), Cl1-Rh1-P2 88.1(1), P1- $Rh1-P2 107.6(1), C1-C2-C3 114(1), C1-C2-C5 127.0(7),$ C3-C2-C5 121(1), C2-C3-C4 118.1(10).

Figure 2. Plots of the products of the reaction of 2-phenyl-1-methylenecyclopropane with $RhCl(PPh₃)₃$ at 50 °C. Relative amounts of (a) 2-phenyl-1-methylenecyclopropane, (b) 2-phenyl-1,3-butadiene, (c) **1**, and (d) **2** to the initial amount of RhCl(PPh₃)₃ are shown. On cooling to 25 °C, the ³¹P-{1H} NMR spectrum indicates the presence of **1** in a yield higher than 80%.

In this paper we report the reaction of 2-phenyl-1 methylenecyclopropane with RhCl(PPh₃)₃, leading to the ring-opening isomerization or the η^2 -coordination of a $C=C$ double bond of the substrate depending on the conditions as well as the mechanism for C-C bond activation.

2-Phenyl-1-methylenecyclopropane reacts with RhCl- $(PPh_3)_3$ (5:1 molar ratio) at 50 °C to give RhCl(η^4 -CH₂= $CPhCH=CH₂ (PPh₃)₂ (1)$ in 95% yield after 16 h, while the reaction at 0 °C in toluene leads to isolation of RhCl-

Complex **1** has a distorted piano-stool coordination around the Rh center that is bonded to a η^4 -2-phenyl-

Scheme 3

1,3-butadiene ligand and to Cl and $PPh₃$ ligands, as shown in Figure $1.^{11}$ The ligand adopts an s-cis conformation similarly to other reported Rh(I) complexes with 1,3-diene ligands.12 Complex **2** was characterized based on NMR spectra. The much higher magnetic field positions of the 1H NMR signals of two vinylic hydrogens (*δ* 2.27 and 2.34) than that of uncoordinated 2-phenyl-1-methylenecyclopropane (*δ* 5.58) and the 13C{1H} NMR signals of vinylic carbons (*δ* 61.5 and 34.2) with large *J*(RhC) values (13 and 22 Hz, respectively) are crucial to the assignment of the structure containing 2-phenyl-1-methylenecyclopropane, whose $C=C$ double bond is bonded to the Rh center in a *η*2-fashion. The *J*(RhP) value (133 Hz) suggests a structure with PPh₃ ligands at mutually trans positions, similarly to other RhCl(olefin)(PR_3)₂-type complexes.¹³ The reaction of CO (1 atm) with **2** to give quantitative amounts of 2-phenyl-1-methylenecyclopropane and RhCl- $(CO)(PPh₃)₂$ (eq 1) also supports the proposed structure.

The change in the amounts of organic and inorganic products during the reaction of 2-phenyl-1-methylenecyclopropane with $RhCl(PPh₃)₃$ was monitored by ¹H NMR spectroscopy. Figure 2 shows the plots of the increase in **1** and 2-phenyl-1,3-butadiene, which reached 55% and 165%/Rh, respectively, after the reaction for 4.5 h. The reactions of **2** at 50 °C were conducted to compare

⁽ $η$ ²-CH₂=CCH₂CHPh)(PPh₃)₂ (**2**) (Scheme 2). Complex **2** is sparingly soluble in toluene and separated from the solution during the reaction.

⁽¹²⁾ Rh(I)-1,3-diene complexes: (a) Schrock, R. R.; Osborn, J. A. *J. Am. Chem. Soc.* **1971**, *93*, 2397. (b) Johnson, B. F. G.; Lewis, J.; Yarrow, D. J. *J. Chem. Soc., Dalton Trans.* **1972**, 2084. (c) Abel, E. W.; Blackmore, T.; Whitley, R. J. *J. Chem. Soc., Dalton Trans.* **1976**, 2484. (d) Caddy, P.; Green, M.; Howard, J. A. K.; Squire, J. M.; White, N. J. *J. Chem. Soc., Dalton Trans.* **1981**, 400. (e) Moreto, J.; Maruya, K.; Bailey, P. M.; Maitlis, P. M. *J. Chem. Soc., Dalton Trans.* **1982**, 1341. (f) Powell, P.; Stephens, M.; Muller, A.; Drew, M. G. B. *J. Organomet. Chem.* **1986**, *310*, 255. (g) Claret, F.; Vogel, P. *Organometallics* **1990**, *9, 2785. (h) Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc.* **1996**, *118,* 11672. (i) Murakami, M.; Itami, K.; Ito, Y. *J. Am. Chem. Soc 119*, 2950.

⁽¹³⁾ RhCl(PR3)2(olefin)-type complexes: (a) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. *J. Chem. Soc. (A)* **1966,** 1711. (b) Mague, J. T.; Wilkinson, G. *J. Chem. Soc. (A)* **1966**, 1736. (c) Tolman, C. A.; Veakin, P. Z.; Lindner, D. L.; Jesson, J. P. *J. Am. Chem. Soc.*
C. *Organomet. Chem.* **1977**, *134*, 237. (e) Ohtani, Y.; Yamagishi, A.; Fujimoto, M. *Bull. Chem. Soc. Jpn.* **1979**, *52*, 2149.

its reactivity with $RhCl(PPh_3)_3$ toward 1,3-diene formation. Heating of a benzene solution of **2** for 7 h at 50 °C led to the formation of **¹** in a low NMR yield (<7%) and a negligible amount of 2-phenyl-1,3-butadiene. The reaction of **2** with 2-phenyl-1-methylenecyclopropane (1:5 molar ratio) at 50 °C gave **1** (10%) and 2-phenyl-1,3-butadiene (14%/Rh) after 6 h. Equimolar reaction of 2 and RhCl(PPh₃)₃ under similar conditions led to formation of **1** in less than 5% of **2**.

The above results provide the relative rates of the possible reactions involved in forming 2-phenyl-1,3 butadiene or its Rh complex, as summarized in Scheme 3. The reaction of 2-phenyl-1-methylenecyclopropane with RhCl(PPh3)3 to give 2-phenyl-1,3-butadiene or **1** (i) occurs more rapidly than its reaction with **2** (ii). The intramolecular C-C bond cleavage of the 2-phenyl-1methylenecyclopropane ligand of **2** (iii) is slower than the above two reactions and is not operative in its ringopening isomerization promoted by $RhCl(PPh₃)₃$ at 50 \overline{C} .

The present study has demonstrated the reaction of 2-phenyl-1-methylenecyclopropane with $RhCl(PPh₃)₃$ to give the ring-opening isomerization product and the complex having the substrate as the η^2 -bonded ligand. The latter product undergoes intramolecular C-C bond activation of the ligand to a limited extent in the absence and presence of 2-phenyl-1-methylenecyclopropane.¹⁴ This contrasts with the previously reported ring-opening reactions of 2,2-dimethylcyclopropene and allenylcyclopropane promoted by Co or Ir complexes *via* an initial coordination of a $C=C$ double bond followed by an intramolecular C-C bond cleavage.15

Acknowledgment. This work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

Supporting Information Available: Experimental procedure and spectroscopic and crystallographic data of the complexes and related reactions of 2-aryl-1-methylenecyclopropane with $RhCl(PPh_3)_3$ (12 pages). Ordering information is given on any current masthead page.

OM980142Q

⁽¹⁴⁾ Reaction ii in Scheme 3 involves oxidative addition of 2-phenyl-1-methylenecyclopropane to the Rh center of **2**. More rapid exchange between coordinated and uncoordinated 2-phenyl-1-methylenecyclopropane occurs at room temperature *via* an associative pathway since addition of 2-(4-fluorophenyl)-1-methylenecyclopropane to a solution

of **2** causes its conversion into RhCl(η ²-CH₂=CCH₂CHC₆H₄F-*p*)(PPh₃)₂ (**3**). Complexes **2** and **3** are equilibrated in the presence of 2-phenyl-1-methylenecyclopropane and 2-(4-fluorophenyl)-1-methylenecyclopropane with the thermodynamic parameters ∆*H*° = −10.3 kJ mol⁻¹ and
∆*S*° = −32 J mol⁻¹ deg⁻¹.
(15) (a) Foerstner, J.; Kakoschke, A.; Stellfeldt, D.; Butenschön, H.;

Wartchow, R. *Organometallics* **1998**, *17*, 893. (b) Murakami, M.; Itami, K.; Ubukata, M.; Tsuji, I.; Ito, Y. *J. Org. Chem.* **1998**, *63*, 4.