

Volume 17, Number 22, October 26, 1998

© Copyright 1998 American Chemical Society

Communications

Dicyclometalated Mononuclear Bis(carbene)platinum(IV) Complexes

Shi-Wei Zhang and Shigetoshi Takahashi*

The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan

Received June 19, 1998

Summary: The consecutive reaction of bis(arylisocyanide)platinum(II) complex **1** with a primary amine and then chloroform gave novel dicyclometalated mononuclear bis(carbene)platinum(IV) complex **2** having an octahedral structure, which may be formed via monocyclometalated bis(carbene)platinum(II) complex **3** and dicyclometalated bis(carbene)platinum(IV) complex **4**.

Mononuclear platinum-carbene complexes are dominated by zero- and divalent platinum complexes.¹ The vast majority of them contain at least one heteroatom attached to the carbenoid carbon, that is, the so-called Fischer-type carbene complexes. One of preparative methods available for the Fischer-type carbene complexes is the nucleophilic attack of alcohols, amines, or thiols on isocyanide complexes.² In contrast to platinum(II)-carbene complexes, very few platinum(IV)carbene complexes are known,³ although many alkylplatinum(IV) derivatives⁴ have appeared and their chemistry has been investigated in detail. Clark reported the first platinum(IV)-alkoxy-carbene complex,^{3a} and Muir and Chatt showed the first molecular structure of a cationic platinum(IV)–carbene complex by X-ray crystallographic studies.^{3e,f} On the other hand, metalation on aromatic groups in transition metal complexes is generally induced by reduction or oxidation. Although the intramolecular ortho-metalation on an aromatic group is well-known for transition metal

^{(1) (}a) For pre-1982 references, see: Hartley, F. R. Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: New York, 1982, Vol. 6, p 502. (b) Barefield, E. K.; Carrier, A. M.; Sepelak, D. J.; Van Derveer, D. C. Organometallics **1982**, *1*, 103. (c) Lappert, M. F. J. Organomet. Chem. **1988**, *358*, 185, and references therein. (d) Gaber, B.; Krueger, C.; Marczinke, B.; Mynott, R.; Wilke, G. Angew. Chem., Int. Ed. Engl. **1991**, *30*, 1666. (e) Fehlhammer, W. P.; Bliss, T.; Fucho, J.; Holzmann, G. Z. Naturforsch. B **1992**, *47*, 79. (f) Michelin, R. A.; Bertani, R.; Mozzon, M.; Bombieri, G.; Benetollo, F.; Silva, M. F. C. G.; Pombeiro, A. J. L. Organometallics **1993**, *12*, 2372. (g) Ardvengo, A. J.; Gamper, S. F.; Calabrese, J. C.; Davidson, F. J. Am. Chem. Soc. **1994**, *116*, 4391.

⁽²⁾ For example: (a) Badley, M. E. M.; Chatt. J.; Richards, R. L.;
Sim, G. A. Chem. Commun. 1969, 1322. (b) Larkin, G. A.; Scott, R. P.;
Wallbridge, M. G. H. J. Organomet. Chem. 1972, 37, C21. (c) Miller, J. S.; Balch, A. L. Inorg. Chem. 1972, 11, 2069. (d) Rouschias, G.; Shaw,
B. L. J. Chem. Soc. A 1971, 2097. (e) Burke, A.; Balch, A. L.; Enemark,
J. H. J. Am. Chem. Soc. 1970, 92, 2555. (f) Michelin, R. A.; Zanotto,
L.; Braga, D.; Sabatino, P.; Angelici, R. J. Inorg. Chem. 1988, 27, 85.
(g) Fehlhammer, W. P.; Metzner, R.; Luger, T.; Hahn, F. E.; Fehlhammer, W. P. J. Organomet. Chem. 1997, 541, 51.

^{(3) (}a) Chisholm, M. H.; Clark, H. C. J. Chem. Soc., Chem. Commun.
(3) (a) Chisholm, M. H.; Clark, H. C. J. Chem. Soc., Chem. Commun.
1971, 1484. (b) Cetinkaya, B.; Lappert, M. F.; Turner, K. J. Chem. Soc., Chem. Commun. 1972, 851. (c) Balch, A. L. J. Organomet. Chem.
1972, 37, C19. (d) Clark, H. C.; Manzer, L. E. Inorg. Chem. 1973, 1972, 362. (e) Muir, K. W.; Walker, R.; Chatt, J.; Richards, R. L.; Royston, G. H. D. J. Organomet. Chem. 1973, 56, C30. (f) Walker, R.; Muir, K. W. J. Chem. Soc., Dalton Trans. 1975, 272. (g) Hartshorn, A. J.; Lappert, M. F.; Turner, K. J. Chem. Soc., Dalton Trans. 1978, 348. (h) Rendina, L. M.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1995, 14, 1030.

^{(4) (}a) Thayer, J. S. Organomet. Chem. Rev. **1970**, *5*, 53. (b) Abel, E. W.; Orrell, K. G.; Stephenson, D. J. Organomet. Chem. **1989**, *373*, 401, and references therein. (c) Abel, E. W.; Orrell, E. W.; Scanlan, S. P.; Stephenson, D.; Keminitt, T.; Levason, W. J. Chem. Soc., Dalton Trans. **1991**, 591, and references therein. (d) Abel, E. W.; Beckett, M. A.; Bates, P. A.; Hurshouse, M. B. Polyhedron **1988**, *7*, 1855. (e) Chaudhury, S.; Jain, V. K.; Jakkal, V. S.; Venkatasubramanian, K. J. Organomet. Chem. **1992**, *424*, 115, and references therein. (f) Hill, G. S.; Vittal, J. J.; Puddephatt, R. J. Organometallics **1997**, *16*, 1209, and references therein.

complexes with N-5 and P-donor6 ligands, there have been few examples of ortho-metalation occurring in carbene complexes to give metalated carbene complexes.7,8

We now report the formation of a novel dicyclometalated mononuclear bis(carbene)platinum(IV) complex from the reaction of trans-diiodobis(3,5-dimethoxyphenylisocyanide)platinum(II) (1) with a primary amine in chloroform (eq 1). This new complex is the first doubly metalated bis(carbene)metal complex.

To a solution of $PtI_2\{CNC_6H_3(OMe)_2\}$ (1) (0.228 g, 0.3 mmol) in chloroform (35 mL) was added propylamine (0.32 mL, 3.0 mmol). After stirring for 48 h at room temperature, precipitates formed were separated from the reaction mixture by filtration and recrystallized from chloroform-acetone to give complex 2 as pale yellow crystals (0.112 g, 42% yield) (eq 1). Both of the isocyanide ligands coordinated to Pt(II) underwent 1,2addition of the amine to the N=C bond with transformation to a carbenoid bond, and simultaneously intramolecular metalation occurred at phenyl rings on both the carbene ligands to give a unique dicyclometalated bis(carbene) complex of tetravalent platinum. Based on spectral and elemental analyses, novel platinum(IV)-carbene complex 2 was identified.⁹ In the IR

Figure 1. ORTEP drawing of complex 2. Selected bond distances (Å) and angles (deg): Pt(1)-C(1), 2.050(7); Pt-(1)-C(2), 2.057(7); Pt(1)-C(3), 2.039(6); Pt(1)-C(4), 2.037-(6); Pt(1)-I(1), 2.7417(5); Pt(1)-I(2), 2.7514(6); I(1)-Pt(1)-I(2)I(2), 91.56(2); C(1)-Pt(1)-C(2), 174.8(3); C(3)-Pt(1)-C(4), 89.5(2).

spectra of **2**, absorptions due to ν (N–H) and ν (N=C) are observed at 3304 and 3270, and 1541 cm⁻¹, respectively, and the absorption due to $\nu(N=C)$ at 2202 cm⁻¹ in **1** disappears. The ¹H NMR spectrum of **2** in acetone- d_6 shows a very simple pattern, suggesting that the complex may have a symmetrical structure. In the ¹³C-{¹H} NMR spectrum, the carbene carbon atom appears at δ 185 ppm with attendant ¹⁹⁵Pt satellite signals ($J_{\text{Pt}=}$ $_{\rm C}$ = 733 Hz), the ¹³C shielding of which is similar to that of cationic Pt(IV)-carbene complexes such as [PtClMe2-(CHNMe₂)(^tBu₂bpy)]Cl (δ 185 in CD₂Cl₂)^{4f} and is significantly higher than that observed for typical Fischertype carbene complexes (δ 190–210 ppm).^{8,10} The metalated carbon atom of the phenyl group is observed at δ 106 ppm and flanked by ¹⁹⁵Pt satellite signals (J_{Pt-C} = 850 Hz). The ¹⁹⁵Pt NMR spectrum of **2** shows a single peak at -1935 ppm (versus an external K₂PtCl₄ reference), which is in a lower field than that of the divalent platinum complex 1 (δ -3808 ppm), suggesting the Pt atom in 2 to be in a higher oxidation state.

The structure of **2** has been finally confirmed by an X-ray crystallographic study.¹¹ Figure 1 depicts the ORTEP drawing, which reveals that 2 adopts an octahedral configuration of a central tetravalent platinum coordinated by two cis iodine atoms, two cis metalated carbons on the aromatic rings, and two trans (diamino)carbene ligands. The Pt=C bond distances (2.050(7) and 2.057(7) Å) are considerably longer than generally expected M=C double bonds but normal for a trans Pt=

^{(5) (}a) Dehand, J.; Pfeffer, M. Coord. Chem. Rev. 1976, 18, 327. (b) Omae, I. Organometallic Intramolecular-Coordination Compounds; Elsevier: Amsterdam, The Netherlands, 1986. (c) Omae, I. Coord. Chem. Rev. 1988, 83, 137. (d) Vicente, J.; Saura-Llamas, I.; Palin, M. G.; Jones, P. G.; Arellano, M. C. R. Organometallics 1997, 16, 826.

^{(6) (}a) Cheney, A. J.; Mann, B. E.; Shaw, B. L.; Slade, R. M. J. Chem. Soc. A **1971**, 3833. (b) Clerici, M. G.; Shaw, B. L.; Weeks, B. J. Chem. Soc., Chem. Commun. **1973**, 516. (c) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. **1985**, 107, 620. (d) Roper, W. R. J. Organomet. Chem. **1986**, 300, 167. (e) Darensboug, D. J.; Kudaroski, R.; Delord, T. Organometallics 1985, 4, 1094. (f) Herrmann, W. A.; Brossmer, C.; Öfele, K.; Reisinger, C.-P.; Priermeier, T.; Beller, M.; Fischer, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 1844.

^{(7) (}a) References 3e and 3f. (b) Christian, D. F.; Clarke, D. A.; Clark,

H. C.; Farrar, D. H.; Payne, N. C. Can. J. Chem. 1978, 56, 2516.
 (8) (a) Zhang, S.-W.; Kaharu, T.; Pirio, N.; Ishii, R.; Uno, M.; Takahashi, S. J. Organomet. Chem. 1995, 489, C62. (b) Zhang, S.-W.; Ishii, R.; Motoori, F.; Tanaka, T.; Takai, Y.; Sawada, M.; Takahashi, S. Inorg. Chim. Acta **1997**, 265, 75. (9) **2**: 42% yield, mp 270 °C (decomp); IR (KBr) 3304, 3270 ($\nu_{\rm N-H}$),

^{1575 (} ν_{C-N}) cm⁻¹; ¹H NMR (600 MHz, acetone d_6) $\delta = 9.72$ (satellite, $J_{Pt-H} = 53$ Hz, 2H, H1, and H2), 8.19 (br s, 2H, H3, and H4), 6.21 (s, 2H, H5, and H6), 5.75 (s, 2H, H7, and H8), 3.62 (s, 6H, OMe × 2), 3.58 $(NCH_2CH_2CH_3)$, 22.5 $(NCH_2CH_2CH_3)$, 11.8 $(NCH_2CH_2CH_3)$. Mass (FAB^+) : 892 (M), 765 [M-127(I)]. Anal. Calcd for $C_{24}H_{34}N_4O_4I_2Pt$: C, 32.34; H, 3.84; N, 6.28; I, 28.47. Found: C, 32.26; H, 4.06; N, 6.27; I, 28.41

^{(10) (}a) Cotton, F. A.; Lukehart, C. M. Prog. Inorg. Chem. 1972, 16, 487. (b) Cardin, D. J.; Cetinkaya, B.; Lappert, M. F. Chem. Rev. 1972, 72, 545, and references therein.

⁽¹¹⁾ Crystal data for 2·2CHCl₃: $C_{26}H_{36}N_4O_4Cl_6I_2Pt_1$; pale yellow crystals (0.45 × 0.18 × 0.13 mm), triclinic, space group *P*1 (no. 2); *a* = 12.494(2) Å, b = 13.917(3) Å, c = 12.251(3) Å; $\alpha = 97.69(2)^{\circ}$, $\beta = 99.25$ (2)°, $\gamma = 115.49(1)^\circ$, V = 1847.9(7)Å³, Z = 2, $D_c = 2.031$ g cm⁻³, F(000) = 1076.0, μ (Mo K α) = 59.22 cm⁻¹. The data were collected on a Rigaku AFC5R diffractometer at -78 °C. The structure was solved by heavyatom Patterson methods and expanded using Fourier techniques. The final cycle of full-matrix least-squares refinement was based on 6825 observed reflections $(I > 3.00\sigma(I))$ and converged with unweighted and weighted agreement factors of R = 0.041, $R_w = 0.042$.

C bond, ^{2a,8,10b,12} of which the longer Pt–C carbene bond is due to the delocalization of π -electrons over Pt==C==-(N<)₂ bonds, as frequently observed for the Fischer-type carbene complexes. The shorter bond distances (C(1)– N(1), 1.336 Å; C(1)–N(3), 1.315 Å) than normal C–N bond ones (ca. 1.45 Å) in **2** also support the π -electron delocalization. On the other hand, two five-membered metallacycles share approximately the same planes with aromatic rings, and the dihedral angle is 88.5°. By a close inspection of the structure, it seems like a metallaspiro compound.

The stoichiometry of reaction 1 (eq 1) indicates that the formation of dicyclometalated bis(carbene)platinum **2** from complex **1** must require acceptors for two protons coming from phenyl rings to be metalated. During the course of our study on the mesogenic carbene compounds,¹³ we found that an ortho-metalation reaction occurred to give a neutral ortho-metalated bis(diaminocarbene)platinum(II) complex when bis(arylisocyanide)platinum(II) was reacted with a primary amine.⁸ Similarly, when complex **1** was reacted with propylamine in CH₂Cl₂, monometalated bis(carbene)platinum(II) **3** and H₂NPr·HI were formed in 90% yield (eq 2).

In this reaction a proton acceptor is an iodide anion coordinated on the platinum atom in **1**, and the resulting HI was captured by the amine to form the ammonium iodide. On treatment of isolated **3** again with $H_2NPr\cdot HI$ in CH_2Cl_2 no reaction was observed, but in $CHCl_3$ complex **2** was obtained in 38% yield (eq 3),

 $3 + H_2 NPr \cdot HI + CHCl_3 \longrightarrow 2 + H_2 NPr \cdot HCl + CH_2Cl_2$ (3)

suggesting that monometalated bis(carbene)platinum $\mathbf{3}$ may be one of intermediates leading to $\mathbf{2}$ and that

chloroform participates in the reaction. When **1** was reacted with propylamine in chloroform, $H_2NPr\cdot HCl$ was obtained as white powders from the reaction residue after isolation of **2**. To clarify the participation of chloroform, we traced the reaction of **1** with propylamine in CDCl₃ by ¹H NMR spectroscopy and found the formation of CDHCl₂ accompanied with formation of **2** and $H_2NPr\cdot HCl$.

On the other hand, complex **3** reacted with CHCl₃ to give (chloro)(iodo)dicyclometalated bis(carbene)platinum 4^{14} (29% yield, eq 4), which was converted to **2** quantitatively on treatment with H₂NPr·HI in acetone (eq 5).

Unfortunately the formation of complexes 2 and 4 in eqs 1, 3, and 4 was always accompanied by unidentified complexes. This may be one of the causes for the somewhat low yields of 2 and 4. The reaction mechanism of eq 1 seems to be rather complicated, but the above experimental evidence suggests that the reaction proceeds stepwise through intermediates 3 and 4, and the proton acceptors may be iodine and dichloromethyl species. The reaction of eq 4 did not occur in the dark, implying that a radical process may be involved in the step affording 2 from 3 with chloroform. A detailed study on the mechanism is now in progress.

Acknowledgment. This work is partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

Supporting Information Available: Tables of crystal data and details of the structure solution, positional and displacement parameters, and bond distances and angles (22 pages). Ordering information is given on any current masthead page.

OM9805077

^{(12) (}a) Keeton, M.; Mason, R.; Russell, D. R. J. Organomet. Chem. 1971, 33, 259. (b) Cardin, D. J.; Cetinkaya, B.; Lappert, M. F. Int. Conf. Organomet. Chem. Proc. 5th, Moscow 1971, 2, 517. (c) Struchkov, Y. T.; Aleksandrov, G. G.; Sushchinskaya, S. P.; Voronkov, M. G. J. Organomet. Chem. 1979, 172, 269.

^{(13) (}a) Zhang, S.-W.; Ishii, R.; Takahashi, S. Organometallics **1997**, *16*, 20. (b) Ishii, R.; Kaharu, T.; Pirio, N.; Zhang, S.-W.; Takahashi, S. J. Chem. Soc., Chem. Commun. **1995**, 1215.

⁽¹⁴⁾ **4**: 29% yield, mp 282 °C (decomp); IR (KBr) 3245, 3199 (ν_{N-H}), 1581 ($\nu_{C=N}$) cm⁻¹; ¹H NMR (600 MHz, acetone- d_0) $\delta = 9.74$ (satellite, $J_{Pt-H} = 53$ Hz, 2H, H1', and H2'), 8.19 (br s, 2H, H3', and H4'), 6.21 (s, 2H, H5', and H6'), 5.75 (s, 2H, H7', and H8'), 3.62 (s, 6H, OMe × 2), 3.58 (m, 4H, NCH₂CH₂CH₃ × 2), 3.54 (s, 6H, OMe × 2), 1.79 (m, 4H, NCH₂CH₂CH₃ × 2), 1.11 (t, J = 7.25 Hz, 6H, NCH₂CH₂CH₃ × 2), Mass (FAB⁺): 801 (M), 765 [M - 35.5(Cl)], 674 [M - 127(I)]. Anal. Calcd for C₂₄H₃₄N₄O₄IClPt: C, 36.03; H, 4.28; N, 7.00; I + Cl, 20.29. Found: C, 36.31; H, 4.07; N, 6.94; I + Cl, 20.24.