Synthesis and Characterization of Bimetallic Ruthenium Complexes Bridged with Linear C₄H₄ and C₆H₄O₂ Ligands

Hai Ping Xia, Richard C. Y. Yeung, and Guochen Jia*

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received June 15, 1998

Reaction of Me₃SiC=CC=CSiMe₃ with RuHCl(CO)(PPh₃)₃ in CH₂Cl₂ produced RuCl(η^{1} -C(C=CSiMe₃)=CHSiMe₃)(CO)(PPh₃)₂, which on treatment with dppe gave RuCl(η^{1} -C-(C=CSiMe₃)=CHSiMe₃)(CO)(PPh₃)(dppe). Reaction of RuHCl(CO)(PPh₃)₃ with HC=CC=CH generated in situ from the reaction of Me₃SiC=CC=CSiMe₃ with *n*-Bu₄NF/NH₄F/H₂O produced [RuCl(CO)(NH₃)(PPh₃)₂]₂(μ -CH=CHCH=CH), whereas the same reaction without the NH₄F afforded [RuCl(CO)(PPh₃)₂]₂(μ -CH=CHCH=CH). Complex [RuCl(CO)(NH₃)-(PPh₃)₂]₂(μ -CH=CHCH=CH) reacted with excess PEt₃ and *t*-BuNC to give [RuCl(CO)(PEt₃)₃]₂-(μ -CH=CHCH=CHCH=CHO) COCH=CHCH=CHCO) Cl₂, respectively. The structure of [RuCl(CO)(PEt₃)₃]₂(μ -CH=CHCH=CH) has been confirmed by X-ray diffraction.

Introduction

The synthesis and characterization of bimetallic and polymeric organometallic compounds with π -conjugated bridges are attracting considerable interest.^{1,2} During the past decades, a large number of conjugated organometallic bimetallic complexes with hydrocarbon chains serving as σ , σ , σ , π -, or π , π -bound bridging ligands have been reported. Most of the conjugated organometallic bimetallic complexes with σ , σ -bridging hydrocarbon chains are those with metal–C(sp) linkages, for example, C_x -bridged,^{3,4} bis(acetylide),⁵ bis(carbyne),⁶ bis-(vinylidene),⁷ and bis(allenylidene) complexes.⁸

Bimetallic complexes with carbon chains containing only sp²-hybridized carbons are interesting because many conjugated organic materials (for example, polyacetylenes, push/pull stilbenes, and polyenes) have only sp² carbons in their backbones.⁹ Only a few complexes with linear C_nH_n ($n = 2, ^{10,11}$ 4, ^{12,13} 5, ¹⁴ 6¹⁵) bridges have

⁽¹⁾ See for example: (a) Long, N. J. Angew. Chem., Int. Ed. Engl. **1995**, 34, 21, and references therein. (b) Laine, R. M.; Viney, C. In Inorganic and Organometallic Polymers with Special Properties, Laine, R. M., Ed.; Kluwer Academic Publishers: Dordrecht, 1991; p 413.

R. M., Ed.; Kluwer Academic Publishers: Dordrecht, 1991; p 413.
 (2) (a) Bunz, U. H. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 969.
 (b) Lotz, S.; Van Rooyen, P. H.; Meyer, R. Adv. Organomet. Chem. 1995, 37, 219.
 (c) Ward, M. D. Chem. Soc. Rev. 1995, 121.
 (d) Lang, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 547.
 (e) Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1994, 139, 547.
 (e) Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1994, 1993, 32, 923.
 (f) Holton, J.; Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. Chem. Rev. 1983, 335.
 (a) Bradw. M.; Wang, W.; Zhang, Y.; Saylor, J. W. Amagara, A. J.

<sup>M. F., Fearce, K., Tailow, F. I. W. Chen. Rev. 1960, 85, 183.
(3) (a) Brady, M.; Weng, W.; Zhou, Y.; Seyler, J. W.; Amoroso, A. J.;
Arif, A. M.; Böhme, M.; Frenking, G.; Gladysz, J. A. J. Am. Chem. Soc. 1997, 119, 775. (b) Falloon, S. B.; Weng, W.; Arif, A. M.; Gladysz, J. A. Organometallics 1997, 16, 2008. (c) Bartik, T.; Bartik, B.; Brady, M.;
Dembinski, R.; Gladysz, J. A. Angew. Chem., Int. Ed. Engl. 1996, 35, 414. (d) Weng, W.; Bartik, T.; Brady, M.; Bartik, B.; Ramsden, J. A.;
Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1995, 117, 11922. (e) Weng, W.; Bartik, T.; Gladysz, J. A. Angew. Chem., Int. Ed. Engl. 1994, 33, 2199. (f) Brady, M.; Weng, W.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1994, 2655. (g) Zhou, Y.; Seyler, J. W.; Weng, W.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1993, 115, 8509. (h) Seyler, J. W.; Weng, W.; Gladysz, J. A. Organometallics 1993, 12, 3802.
(i) Weng, W.; Ramsden, J. A.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1993, 115, 3824.</sup>

⁽⁴⁾ See for example: (a) Gil-Rubio, J.; Laubender, M.; Werner, H. Organometallics 1998, 17, 1202. (b) Guillemot, M.; Toupet, L.; Lapinte, C. Organometallics 1998, 17, 1928. (c) Coat, F.; Guillevic, M. A.; Toupet, L.; Paul, F.; Lapinte, C. Organometallics 1997, 16, 5988. (d) Werner, H.; Lass, R. W.; Wolf, J. Organometallics 1997, 16, 5988. (d) Werner, H.; Lass, R. W.; Wolf, J. Organometallics 1997, 16, 4077. (e) Woodworth, B. E.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1997, 119, 828. (f) Akita, M.; Chung, M. C.; Sakurai, A.; Sugimoto, S.; Terada, M.; Tanaka, M.; Moro-oka, Y. Organometallics 1997, 16, 4882. (g) Yam, V. W. W.; Lau, V. C. Y.; Cheung, K. K. Organometallics 1996, 15, 1740. (h) Coat, F.; Lapinte, C. Organometallics 1996, 15, 477. (i) Le Narvor, N.; Toupet, L.; Lapinte, C. J. Am. Chem. Soc. 1995, 117, 7129. (k) Bruce, M. I.; Hinterding, P.; Tiekink, E. R. T.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 1993, 450, 209. (l) Caulton, K. G.; Cayton, R. H.; Chishlom, M. H.; Huffman, J. C.; Lobkovsky, E. B.; Xue, Z. Organometallics 1992, 11, 321. (m) Rapert, T.; Nurnberg, O.; Werner, H. Organometallics 1992, 11, 4301. (o) Stang, P. J.; Tykwinski, R. R. J. Am. Chem. Soc. 1992, 114, 4411. (p) Fyfe, H. B.; Mlekuz, M.; Zargarian, D.; Taylor, N. J.; Marder, T. B. J. Chem. Soc., Chem. Commun. 1991, 188. (q) Koutsantonis, G. A.; Selegue, J. P. J. Am. Chem. Soc. 1991, 113, 2316.

⁽⁵⁾ Sole.
(5) Sole.
(5) Sole for example: (a) Weyland, T.; Lapinte, C.; Frapper, G.; Calhorda, M. J.; Halet, J. F.; Toupet, L. Organometallics 1997, 16, 2024. (b) Lavastre, O.; Plass, J.; Bachmann, P.; Guesmi, S.; Moinet, C.; Dixneuf, P. H. Organometallics 1997, 16, 184, and references therein. (c) Cianfriglia, P.; Narducci, V.; Lo Sterzo, C.; Viola, E.; Bocelli, G.; Kodenkandath, T. A. Organometallics 1996, 15, 5220. (d) Lavastre, O.; Even, M.; Dixneuf, P. H.; Pacreau, A.; Vairon, J. P. Organometallics 1996, 15, 1530. (e) Khan, M. S.; Kakker, A. K.; Ingham, S. L.; Raithby, P. R.; Lewis, J.; Spencer, B.; Wittmann, F.; Friend, R. H. J. Organomet. Chem. 1994, 472, 247, and references therein. (f) Tykwinski, R. R.; Stang, P. J. Organometallics 1994, 13, 3203. (g) Xia, H. P.; Wu, W. F.; Ng, W. S.; Williams, I. D.; Jia, G. Organometallics 1997, 16, 2940.

<sup>Chem. 1994, 472, 247, and references therein. (f) Tykwinski, R. R.;
Stang, P. J. Organometallics 1994, 13, 3203. (g) Xia, H. P.; Wu, W. F.;
Ng, W. S.; Williams, I. D.; Jia, G. Organometallics 1997, 16, 2940.
(6) (a) Shih, K. Y.; Schrock, R. R.; Kempe, R. J. Am. Chem. Soc.
1994, 116, 8804. (b) Krouse, S. A.; Schrock, R. R. J. Organomet. Chem.
1988, 355, 257. (c) Ustynyuk, N. A.; Vinogradova, V. N.; Andrianov,
V. G.; Struchkov, Yu. T. J. Organomet. Chem. 1984, 268, 73.</sup>

been reported. Other reported bimetallics with metal– C(sp²) linkages include complexes with C₂R₂ bridges,^{16,17}a μ -1,4-PhC=CH–CH=CPh bridge,¹⁸ CH=CHArCH=CH bridges,¹⁹ aryl bridges,²⁰ and 1,3-bimetalated cyclobutenylidene (C₄R₃) bridges.²¹ Very recently, the C₅H₅Nbridged complex (*t*-Bu₃SiO)₃Nb=CH–CH=CH–CH= CH–N=Nb(OSi-*t*-Bu)₃ was reported.²²

In principle, insertion reactions of diacetylenes with metal hydride complexes could provide an entry to bimetallic complexes with metal vinyl linkages. However, such reactions have only been sparsely explored for such purposes.^{14,19} In this report, we present the synthesis and characterization of conjugated bimetallic complexes derived from the insertion reactions of RuHCl(CO)(PPh₃)₃ with HC=CC=CH.

Results and Discussion

Reaction of Me₃SiC=CC=CSiMe₃ with RuHCl-(**CO**)(**PPh**₃)₃, **Preparation of RuCl**(η^{1} -**C**(**C**=**CSiMe**₃)= **CHSiMe**₃)(**CO**)(**PPh**₃)₂. Insertion reactions of RC= CR' with RuHCl(CO)(PPh₃)₃ at room temperature to give the five-coordinated vinyl complexes RuCl(CR= CHR')(CO)(PPh₃)₂ have been reported by several groups.^{23–25} In principle, the hydride complex RuHCl-(CO)(PPh₃)₃ (1) may react with 0.5 equiv of commercially available Me₃SiC=CC=CSiMe₃ to give bisinsertion products [RuCl(CO)(PPh₃)₂]₂(μ -C4H₂(SiMe₃)₂),

(10) Rajapakse, N.; James, B. R.; Dolphin, D. Can. J. Chem. 1990, 68, 2274.

(11) (a) Bullock, R. M.; Lemke, F. R.; Szalda, D. J. J. Am. Chem. Soc. 1990, 112, 3244. (b) Lemke, F. R.; Szalda, D. J.; Bullock, R. M. J. Am. Chem. Soc. 1991, 113, 8466.

(12) (a) Sanders, A.; Giering, W. P. J. Organomet. Chem. **1976**, 104, 67, and references therein. (b) Churchill, M. R.; Wormald, J. W. Inorg. Chem. **1969**, *8*, 1236.

(13) (a) Sponsler, M. B. Organometallics **1995**, *14*, 1920, and references therein. (b) Etzenhouser, B. A.; Chen, Q.; Sponsler, M. B. Organometallics **1994**, *13*, 4176. (c) Etzenhouser, B. A.; Cavanaugh, M. D.; Spurgeon, H. N.; Sponsler, M. B. J. Am. Chem. Soc. **1994**, *116*, 2221.

(14) (a) Xia, H. P.; Jia, G. Organometallics 1997, 16, 1. (b) Xia, H.
P.; Yeung, R. C. Y.; Jia, G. Organometallics 1997, 16, 3557.
(15) Fox, H. H.; Lee, J. K.; Park, L. Y.; Schrock, R. R. Organome-

(15) Fox, H. H.; Lee, J. K.; Park, L. Y.; Schrock, R. R. Organometallics **1993**, *12*, 759.

(16) (a) Breimair, J.; Steimann, M.; Wagner, B.; Beck, W. Chem. Ber. **1990**, *123*, 7. (b) Erker, G.; Frömberg, W.; Angermund, K.; Schlund, R.; Krüger, C. J. Chem. Soc., Chem. Commun. **1986**, 372. (c) Grande, K. D.; Kunin, A. J.; Stuhl, L. S.; Foxman, B. M. Inorg. Chem. **1983**, *22*, 1791. (d) Fisher, E. O.; Wittmann, D.; Himmelreich, D.; Neugebauer, D. Angew. Chem., Int. Ed. Engl. **1982**, *21*, 444.

(17) (a) Mitchel, Č. M.; Stone, F. G. A. J. Chem. Soc., Dalton Trans.
1972, 102, and references therein. (b) Jarvis, J. A. J.; Johnson, A.; Puddephatt, R. J. J. Chem. Soc., Chem. Commun. 1973, 373. (c) Johnson, A.; Puddephant, R. J. J. Chem. Soc., Dalton Trans. 1978, 980.

(18) Lawrie, C. J.; Dankosh, H. E.; Carpenter, B. K. J. Organomet. Chem. 1991, 411, C7.

(19) (a) Santos, A.; López, J.; Montoya, J.; Noheda, P.; Romero, A.; Echavarren, A. M. *Organometallics* **1994**, *13*, 3605. (b) Myers, L. K.; Ho, D. M.; Thompson, M. E.; Langhoff, C. *Polyhedron* **1995**, *14*, 57.

Scheme 1

which could then be desilylated to give $[RuCl(CO)-(PPh_3)_2]_2(\mu-C_4H_4)$. Thus, the reaction of $Me_3SiC \equiv CC \equiv CSiMe_3$ with $RuHCl(CO)(PPh_3)_3$ was investigated.

Addition of excess of Me₃SiC=CC=CSiMe₃ to a suspension of RuHCl(CO)(PPh₃)₃ in CH₂Cl₂ produced an orange-brown solution from which the mono-insertion complex 2 was easily isolated as an orange-yellow solid (Scheme 1). The presence of the $C(C \equiv CSiMe_3) =$ CHSiMe₃ group in complex 2 is indicated by the ¹H and ¹³C NMR spectra. In particular, the ¹H NMR spectrum (in CDCl₃) showed the vinyl signal at 5.23 ppm and the SiMe₃ signals at 0.15 and 0.22 ppm; the ¹³C NMR spectrum (in CDCl₃) showed the SiMe₃ signals at -1.1and 0.8 ppm and the C₃CH signals at 98.8 (s, \equiv CSiMe₃), 114.5 (s, ≡C), 143.1 (s, =CH), and 152.6 ppm (t, *J*(PC) = 8.4 Hz, Ru-C=). Reported complexes related to complex **2** are RuCl(η^1 -C(C=CR)=CHR)(CO)(PPh_3)₂ (R = t-Bu, n-Bu, CMe₂OH, Ph, Cy, p-MeC₆H₄).^{25a,26-28} In these complexes, C(C=CR)=CHR has been proposed to be an η^1 ligand, and this bonding mode in RuCl(η^1 -C(C= C-t-Bu)=CH-t-Bu)(CO)(PPh₃)₂ has been confirmed by X-ray diffraction.²⁸ Complex 2 has a color and ³¹P NMR

(20) See for example: (a) Lagunas, M. C.; Gossage, R. A.; Spek, A. L.; van Koten, G. Organometallics **1998**, *17*, 731, and references therein. (b) Manna, J.; Kuehl, C. J.; Whiteford, J. A.; Stang, P. J. Organometallics **1997**, *16*, 1897, and references therein. (c) Struge, K. C.; Hunter, A. D.; McDonald, R.; Santarsiero, B. D. Organometallics **1992**, *11*, 3056. (d) McDonald, R.; Sturge, K. C.; Hunter, A. D.; Shilliday, L. Organometallics **1992**, *11*, 893. (e) Kotani, S.; Shina, K.; Sonogashira, K. J. Organomet. Chem. **1992**, *429*, 403.

(21) See for example: (a) Fisher, H.; Leroux, F.; Roth, G.; Stumpf, R. Organometallics 1996, 15, 3723, and references therein. (b) Weng, W.; Bartik, T.; Johnson, M. T.; Arif, A. M.; Gladysz, J. A. Organometallics 1995, 14, 889. (c) Bullock, R. M. J. Am. Chem. Soc. 1987, 109, 8087. (d) Davison, A.; Solar, J. P. J. Organomet. Chem. 1978, 155, C8. (e) Kolobova, N. Ye.; Skripkin, V. V.; Alexandrov, G. G.; Struchkov, Yu. T. J. Organomet. [978, 169, 293.]

Yu. T. J. Organomet. Chem. 1979, 169, 293.
 (22) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky,
 E. B. J. Am. Chem. Soc. 1997, 119, 247.

(23) (a) Torres, M. R.; Vegas, A.; Santos, A.; Ros, J. J. Organomet. Chem. 1986, 309, 169. (b) Torres, M. R.; Vegas, A.; Santos, A.; Ros, J. J. Organomet. Chem. 1987, 326, 413. (c) Castaño, A. M.; Echavarren, A. M.; López, J.; Santos, A. J. Organomet. Chem. 1989, 379, 171. (d) Torres, R. M.; Santos, A.; Ros, J.; Solans, X. Organometallics 1987, 6, 1091.

(24) (a) Maruyama, Y.; Yamamura, K.; Nakayama, I.; Yoshiuchi, K.; Ozawa, F. *J. Am. Chem. Soc.* **1998**, *120*, 1421. (b) Wakatsuki, Y.; Yamazaki, H.; Maruyama, Y.; Shimizu, I. *J. Organomet. Chem.* **1992**, *430*, C60.

(25) (a) Hill, A. F.; Melling, R. P. J. Organomet. Chem. 1990, 396,
C22. (b) Cartwright, J.; Hill, A. F. J. Organomet. Chem. 1992, 429,
229.

(26) Santos, A.; López, J.; Matas, L.; Ros, J.; Galán, A.; Echavarren, A. M. *Organometallics* **1993**, *12*, 4215.

(27) Hill, A. F.; Harris, M. C. J.; Melling, R. P. Polyhedon 1992, 11, 781.

(28) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J. Am. Chem. Soc. 1991, 113, 9604.

^{(7) (}a) Antiñolo, A.; Otero, A.; Fajardo, M.; Garcîa-Yebra, C.; López-Mardomingo, C.; Martîn, A.; Gómez-Sal, P. Organometallics **1997**, *16*, 2601. (b) Antiñolo, A.; Otero, A.; Fajardo, M.; Garcîa-Yebra, C.; Gil Sanz, R.; López-Mardomingo, C.; Martîn, A.; Gómez-Sal, P. Organometallics **1994**, *13*, 4679. (c) Beddoes, R. L.; Bitcon, C.; Ricalton, A.; Whiteley, M. W. J. Organomet. Chem. **1989**, *367*, C21. (d) Iyer, R. S.; Selegue, J. P. J. Am. Chem. Soc. **1987**, *109*, 910. (e) Bruce, M. I.; Koutsantonis, G. A.; Liddell, M. J.; Tiekink, R. T. J. Organomet. Chem. **1991**, *420*, 253.

⁽⁸⁾ Guesmi, S.; Touchard, D.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1996, 2773.

⁽⁹⁾ See for example: (a) Kanis, D. R.; Ratner, M. A.; Marks, T. J. *Chem. Rev.* **1994**, *94*, 195, and references therein. (b) Brédas, J. L.; Adant, C.; Tackx, P.; Persoons, A. *Chem. Rev.* **1994**, *94*, 243. (c) *Handbook of Conducting Polymers*; Skotheim, T. A., Elsenbaumer, R. L., Reynolds J. R., Eds.; Marcel Dekker: New York, 1998.

data similar to those of the reported five-coordinated complexes $\operatorname{RuCl}(\eta^{1}-C(C \equiv CR) = CHR)(CO)(PPh_{3})_{2}^{25a,26,27}$ and thus most likely has C(C=CSiMe₃)=CHSiMe₃ in an η^1 manner. The possibility of η^3 bonding for C(C= CSiMe₃)=CHSiMe₃ in **2** cannot be excluded completely in view of the fact that a number of complexes with η^3 -C(C=CR)=CHR or η^3 -C(C=CR)=CHR' ligands have been reported.²⁹ In addition, reaction of Me₃SiC= CCH=CHSiMe₃ with RuHCl(CO)(PPh₃)₃ is reported to give RuCl(CO)(C(CH=CHSiMe₃)=CHSiMe₃)(PPh₃)₂, in which one of the olefin double bonds interacts with the Ru center very weakly, as indicated by X-ray diffraction study.24

To clarify the structure, we have converted complex **2** into the air-stable complex $RuCl(\eta^1-C(C \equiv CSiMe_3) =$ $CHSiMe_3)(CO)(PPh_3)(dppe)$ (3) by treatment with dppe (Scheme 1). The geometry of complex 3 can be readily assigned based on ³¹P NMR and ¹³C NMR spectroscopic data. The PPh₃ is trans to one of the PPh₂ groups of dppe, as indicated by the large $J(PPh_3-PPh_2)$ coupling constant (307.7 Hz). The vinyl group is trans to the other PPh₂ group of the dppe ligand, as indicated by the large ${}^{2}J(PPh_{2}-C)$ coupling constant (60.9 Hz). The geometry around ruthenium in complex 3 is similar to those of recently reported mononuclear complexes RuCl- $(CH=CHR)(CO)(PPh_3)(PP)$ (PP = dppm, dppe, and dppp).^{19a} The ¹³C signals of the C=C triple bond in **3** is very similar to those found with 2, suggesting at most a weak interaction with the ruthenium center in 2.

It is probably not surprising that complex **2** is produced instead of RuCl(Me₃SiC=CHC=CSiMe₃)(CO)- $(PPh_3)_2$. Reactions of HC=CR and PhC=CC=CPh with $RuHCl(CO)(PPh_3)_3$ have been reported previously to give RuCl(CH=CHR)(CO)(PPh₃)₂ and RuCl(C(C=CPh)= CHPh)(CO)(PPh₃)₂, respectively.^{23–25} It is likely that the regiochemistry for the insertion reaction of RuHCl-(CO)(PPh₃)₃ with RC≡CR' is determined by steric effects in that the larger group in the products tends to be as far away as possible from the ruthenium center.

Complex 2 does not undergo further insertion reaction with RuHCl(CO)(PPh₃)₃, as demonstrated by the reaction of RuHCl(CO)(PPh₃)₃ with less than 1 equiv of Me₃-SiC=CC=CSiMe₃ or the reaction of isolated **2** with $RuHCl(CO)(PPh_3)_3$. Similarly complex **3** also failed to undergo an insertion reaction with $RuHCl(CO)(PPh_3)_3$. Steric effects are the likely reason for the low reactivity of the C=C functional group in 2 and 3 toward insertion reactions with RuHCl(CO)(PPh₃)₃. It was thought that removal of the bulky SiMe₃ group from **2** and **3** may increase the reactivity of the C=C functional group toward insertion reactions. Unfortunately, **2** and **3** did not react with the desilvlating agents NH₄F or *n*-Bu₄-NF at room temperature and decomposed to an undefined mixture in refluxing THF in the presence of NH₄F or *n*-Bu₄NF.

Preparation of [RuCl(CO)(NH₃)(PPh₃)₂]₂(µ-CH= CHCH=CH) and [RuCl(CO)(PPh₃)₂]₂(*u*-CH=CHCH= CH). Since reactions of HC≡CR with RuHCl(CO)-(PPh₃)₃ usually give RuCl(CH=CHR)(CO)(PPh₃)₂, it was anticipated that reaction of RuHCl(CO)(PPh₃)₃ with

 $HC \equiv CC \equiv CH$ might lead to the linear C_4H_4 -bridged bimetallic complex [RuCl(CO)(PPh₃)₂]₂(µ-CH=CH-CH= CH). Since terminal acetylenes RC≡CH can be generated from the reactions of RC=CSiMe₃ with base/ROH or F⁻ agents,³⁰ we attempted to generate HC=CC=CH from commercially available Me₃SiC≡CC≡CSiMe₃. Initially one-pot reactions of RuHCl(CO)(PPh₃)₃ with Me₃-SiC=CC=CSiMe₃ in CH_2Cl_2 in the presence of desilylating reagents such as K₂CO₃/MeOH, KOH/MeOH, NH₄F, and *n*-Bu₄NF were attempted, with a hope that $HC \equiv CC \equiv CH$ would be generated in situ and then react to give the insertion product. Reactions of RuHCl(CO)- $(PPh_3)_3$ with $Me_3SiC \equiv CC \equiv CSiMe_3$ in CH_2Cl_2 in the presence of NH₄F led to the formation of RuHCl(CO)- $(NH_3)(PPh_3)_2$ (4) as the predominant product. The same compound can be obtained from the reactions of RuHCl-(CO)(PPh₃)₃ with NH₄F or aqueous NH₃. Reaction of RuHCl(CO)(PPh₃)₃ with Me₃SiC≡CC≡CSiMe₃ in CH₂-Cl₂ in the presence of other desilylating reagents led to uncharacterized mixtures.

It was found that the six-coordinated C₄H₄-bridged bimetallic complex 5 could be prepared by bubbling the vapor (presumably a mixture of HC=CC=CH, NH₃, THF) from a mixture of Me₃SiC≡CC≡CSiMe₃, NH₄F, n-Bu₄NF on silica gel, and H₂O in THF, with gentle heating, through a suspension of RuHCl(CO)(PPh₃)₃ in CH_2Cl_2 (Scheme 2). In this reaction, the C_4H_4 -bridged complex 5 was produced along with some uncharacterized species. The amount of complex 5 formed appears to be dependent on the reaction time and the rate of bubbling. Pure samples of 5 could be obtained by washing the crude product with a small amount of CH₂-Cl₂. Complex 5 is likely produced from the reaction of the complex $[RuCl(CO)(PPh_3)_2]_2(\mu-C_4H_4)$ (6) with NH₃. Several closely related mononuclear complexes Ru-(CH=CHR)Cl(L)(CO)(PPh₃)₂ have been reported recently from the reactions of HC≡CR with RuHCl(L)- $(CO)(PPh_3)_2$ (L is a 2e nitrogen donor ligand).³¹ In the latter reactions, five-coordinate intermediate Ru(CH= CHR)Cl(CO)(PPh₃)₂ has been proposed. Both NH₄F and Bu₄NF appear to be important for the formation of complex 5. If only NH₄F was used, the hydride complex 4 along with some uncharacterized species were produced. A black material and a small amount of complex $[RuCl(CO)(PPh_3)_2]_2(\mu-C_4H_4)$ (6) were formed if only n-Bu₄NF was used. Apparently, n-Bu₄NF helps to generate HC≡CC≡CH.

The yield for complex **6** could be improved if $HC \equiv$ CC≡CH was generated slowly by dropping a THF

⁽²⁹⁾ See for example: (a) Yang, S. M.; Chan, M. C. W.; Cheung, K. K.; Che, C. M.; Peng, S. M. *Organometallics* **1997**, *16*, 2819, and references therein. (b) Bianchini, C.; Innocenti, P.; Peruzzini, M.; Romerosa, A.; Zanobini, F. Organometallics 1996, 15, 272, and references therein.

⁽³⁰⁾ Colvin, E. W. Silicon Reagents in Organic Synthesis; Academic

⁽³¹⁾ Santos, A.; López, J.; Galán, A.; González, J. J.; Tinoco, P.;
Echavarren, A. M. Organometallics 1997, 16, 3482.

solution of *n*-Bu₄NF into a prewarmed THF solution of $Me_3SiC \equiv CC \equiv CSiMe_3$. In this way, complex **6** was obtained along with uncharacterized species as a reddish-brown suspension in CH₂Cl₂. A slow dropping rate of n-Bu₄NF results in a better yield of complex **6**. As the solubility of complex 6 in organic solvents is poor, pure samples of 6 could be obtained by washing the crude product with acetone, chloroform, or CH₂Cl₂.

Compound 5 was characterized by ³¹P and ¹H NMR, IR spectroscopy, and elemental analysis. The presence of NH₃ in **5** is indicated by the observation of the ¹H signal at 0.86 ppm assignable to NH₃ (in CDCl₃) and an IR band at 3374 cm⁻¹ assignable to ν (N–H). The ¹H chemical shift for NH_3 in **5** is within the range reported for other NH₃ complexes, for example, 0.09 ppm with $[Ru(C \equiv CPh)(NH_3)(dppe)_2]PF_6^{32}$ and 2.28 ppm with $[Ru(C \equiv CPh)(NH_3)(PMe_3)_4]PF_6$.³³ The presence of the C₄H₄ bridge is indicated by the ¹H NMR spectrum which showed AA'BB'XX' ($X = PPh_3$) vinyl signals at 4.63 and 5.89 ppm (Ru–CH). The C_4H_4 unit is assigned a trans geometry because the ${}^{3}J(H-H)$ coupling constants are very similar to those reported for (1E, 3E)-Me₃SnCH=CH-CH=CHSnMe₃.³⁴ The geometry around ruthenium in complex 5 is assigned by analogy to those of mononuclear complexes RuHCl(CH=CHR)(L)(CO)-(PPh₃)₂, where L is a two-electron nitrogen donor ligand.³¹ Unfortunately, **5** is not soluble enough in common organic solvents to get a good ¹³C NMR spectrum. Compound 6 has also been characterized by ³¹P and ¹H NMR, IR spectroscopy, and elemental analysis. Again poor solubility in common organic solvents precluded a good ¹³C NMR spectrum.

Previously reported C₄H₄-bridged bimetallic complexes are limited to [CpFe(LL')]₂(µ-CH=CHCH=CH) $(LL' = (CO)_2, dppm, (CO)(PPh_3), (CO)(PMe_3)).^{12,13}$ The complex $[CpFe(CO)_2]_2(\mu$ -CH=CHCH=CH) was prepared from the reaction of [CpFe(CO)₂]⁻ with *cis*-dichlorocyclobutene,¹² and [CpFe(LL')]₂(µ-CH=CHCH=CH) (LL' = dppm, (CO)(PPh₃), (CO)(PMe₃)) were prepared from the photochemical reactions of [CpFe(CO)₂]₂(u-CH= CHCH=CH) with dppm, PPh₃, and PMe₃, respectively.¹³ The route reported here provides an alternative and probably more versatile route to C₄H₄-bridged bimetallic complexes.35

Reactions of [RuCl(CO)(NH₃)(PPh₃)₂]₂(µ-CH= CHCH=CH) and [RuCl(CO)(PPh₃)₂]₂(µ-CH=CHCH= CH) with PEt₃ and *t*-BuNC. To obtain more soluble C₄H₄-bridged bimetallic complexes, we have tried to replace the PPh₃ and NH₃ ligands in complexes 5 and 6 with PEt₃ or *t*-BuNC (Scheme 3). As expected, both

Scheme 3

5 and 6 reacted with PEt₃ to give $[RuCl(CO)(PEt_3)_3]_2$ - $(\mu$ -CH=CHCH=CH) (7). The PEt₃ ligands in complex 7 are meridional, as indicated by the AM_2 pattern ³¹P NMR spectrum. The presence of the C₄H₄ bridge is indicated by the ¹H NMR spectrum (in CD₂Cl₂), which showed the vinyl proton signals at 6.22 ppm (Ru-CH= CH) and 6.64 ppm (Ru-CH=CH), and the ¹³C NMR spectrum (in CD_2Cl_2), which showed the vinyl signals at 144.7 ppm for β -CH and 151.6 ppm for α -CH. The vinyl group is trans to the unique PEt₃ ligand, as indicated by the large ${}^{2}J(C-PEt_{3})$ coupling constant (74.4 Hz). The structure has been confirmed by an X-ray diffraction study (see below).

Complex 5 reacted with *t*-BuNC to give the diacylbridged complex $\{[Ru(t-BuNC)_3(PPh_3)_2]_2(\mu-COCH=$ CHCH=CHCO) {Cl₂ (8A). Similar mononuclear ruthenium complexes such as [Ru(COR)(t-BuNC)₃(PPh₃)₂]⁺ and [Ru(COR)(t-BuNC)₂(CO)(PMe₂Ph)₂]⁺ are known.^{36,37} Interestingly, although RuCl(CH=CHR)(CO)(R'NC)-(PPh₃)₂ can be prepared from the reaction of RuCl(CH= CHR)(CO)(PPh₃)₂ with R'NC,³⁶ our attempts to prepare the neutral isocyanide adduct [RuCl(CO)(t-BuNC)- $(PPh_3)_2]_2(\mu$ -CH=CHCH=CH) were unsuccessful. The presence of the linear $C_6H_4O_2$ group in complex **8A** is supported by the ${}^{13}C$ NMR spectrum (in CD_2Cl_2), which showed an Ru-acyl signal at 256.6 ppm, a COCH signal at 147.3 ppm, and the other CH signal at 124.3 ppm. For comparison, the ¹³C signals for the acyl carbon signal was observed at 260.5 ppm³⁷ for [Ru(COPh)(t-BuNC)₂(CO)(PMe₂Ph)₂]⁺ and at 258.1 ppm³⁶ for [Ru- $(COCH=CHCMe_3)(t-BuNC)_3(PPh_3)_2]^+$. Complex **8A** is air stable, and the counteranion Cl⁻ can be readily replaced with BPh_4^- to give complex **8B**. Complex **8** is a rare example of a conjugated diacyl bimetallic complex. $[CpFe(CO)_2]_2(\mu$ -OCArCO) is an example of a reported diacyl-bridged complex, prepared by the reaction of $[CpFe(CO)_2]^-$ with ClOCArCOCl.³⁸

Description of the Structure of [RuCl(CO)-(PEt₃)₃]₂(*u*-CH=CHCH=CH) (7). The molecular structure of complex 7 is shown in Figure 1. The crystallo-

⁽³²⁾ Touchard, D.; Haquette, P.; Guesmi, S.; Le Pichon, L.; Daridor, A.; Toupet, L.; Dixneuf, P. H. Organometallics 1997, 16, 3640

⁽³³⁾ Rappert, T.; Yamamoto, A. Organometallics 1994, 13, 4984. (34) Ashe, A. J., III; Mahmoud, S. Organometallics 1988, 7, 1878. (35) For recent work on insertion reactions of alkynes into M-H bonds, see for example: (a) Bohanna, C.; Callejas, B.; Edwards, A. J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N.; Valero, C. Organometallics 1998, 17, 373. (b) Bassetti, M.; Casellato, P.; Gamasa, M. P.; Gimeno, J.; González-Bernardo, C.; Martín-Vaca, B. Organo-metallics **1997**, *16*, 5470. (c) Wilhelm, T. E.; Belderrain, T. R.; Brown, S. N.; Grubbs, R. H. Organometallics **1997**, *16*, 3867. (d) Antiñolo, A.; Carroillo-Hermosillia, F.; Fajardo, M.; García-Yuste, S.; Lanfranchi, M.; Otero, A.; Pellinghelli, M. A.; Prashar, S.; Villaseñor, E. Organometallics 1996, 15, 5507, and references therein. (e) Chin, C. S.; Lee, H.; Oh, M. Organometallics 1997, 16, 816. (f) Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Rodrîguez, L. Organometallics 1996, 15, 3670. (g) Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Zeier, B. Organometallics 1994, 13, 4258. (h) Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Zeier, B. Organometallics 1994, 13, 1662.

⁽³⁶⁾ Montoya, J.; Santo, A.; Lòpez, J.; Echavarren, A. M.; Ros, J.;

Romero, A. J. Organomet. Chem. **1992**, 426, 383. (37) Dauter, Z.; Mawby, R. J.; Reynolds, C. D.; Saunders: D. R.; Hansen, L. K. J. Chem. Soc., Dalton Trans. **1987**, 27.

⁽³⁸⁾ Hunter, A. D.; Ristic-Petrovic, D.; McLernon, J. L. Organometallics 1992, 11, 864.

Figure 1. Molecular structure for [RuCl(CO)(PEt₃)₃]₂(u-CH=CHCH=CH). Hydrogen atoms are omitted for clarity.

Table 1. Crystal Data and Refinement Details for $[RuCl(CO)(PEt_3)_3]_2(\mu$ -CH=CHCH=CH)

formula		$C_{49}H_{94}Cl_2O_2P_6Ru_2$		
fw		1096.09		
color and ha	bit	yellow rectangle		
crys syst		monoclinic		
space group		$P2_1/a$		
<i>a</i> , Å		14.293(6)		
<i>b</i> , Å		12.576(3)		
<i>c</i> , Å		15.257(3)		
α, deg		90.00(2)		
β , deg		99.19(3)		
γ, deg		90.00(3)		
V, Å ³		2707.3(1)		
Ζ		2		
$d_{\rm calc}$, g cm ⁻³		1.337		
abs coeff, mi	m^{-1}	17.001		
F(000)		2152		
radiation (M	lo Kα), Å	$\lambda = 0.071\ 073$		
2θ range, de	g	2.7 - 50.0		
scan type	0	$\omega - 2\theta$		
index range		$0 \le h \le 17$		
0		$0 \leq k \leq 14$		
		$-18 \leq l \leq 18$		
reflns collect	ted	5189		
ind reflns		4996 ($R_{\rm int} = 0.017$)		
obsd reflns		2823 $(F \ge 3\sigma(F))$		
abs correction	n	semiempirical		
max. and mi	n. transmission	0.9989 and 0.9046		
quantity mir	nimized	3529 ($F \ge 4\sigma(F)$)		
final <i>R</i> indic	es (obs data)	R = 5.3%		
		$R_{\rm w} = 6.4\%$		
R indices (al	l data)	R = 6.1%		
		$R_{\rm w} = 6.7\%$		
goodness of t	fit	1.201		
data-to-para	meter ratio	15.668:1		
largest diff r	oeak, e Å ⁻³	0.573		
largest diff h	nole, e Å ⁻³	-0.071		
0				

graphic details and selected bond distances and angles are given in Tables 1 and 2, respectively. The geometry around ruthenium can be described as a distorted octahedron with three meridionally bound PEt₃ ligands and the vinyl group trans to the unique PEt₃ ligands, as indicated by the solution NMR spectroscopic data. The distortion could be attributed to the steric interaction of the PEt₃ ligands as reflected in the P(2)-Ru-P(1) (99.96(9)°) and P(2)-Ru-P(3) (97.9(1)°) angles. The unique Ru–P bond (2.440(3) Å) is slightly longer than those of the mutually trans Ru-P bonds (2.400(2) and 2.397(3) Å), probably due to the strong trans influence of the vinyl ligand in complex 7. For comparison, the mutually trans Ru-P bonds are also shorter than the Ru–P bond trans to a hydride in $[RuH(PMe_2Ph)_5]^{+39}$

and shorter than the Ru-P bond trans to a vinyl ligand in RuH(CH=CMeCO₂Bu)(CO)(PPh₃)₃.⁴⁰ It is noted that many meridional tris(phosphines)ruthenium complexes (for example, RuH(OAc)(PPh₃)₃,^{41a} RuCl₂(PPh₃)₃^{41b}) have mutually trans Ru-P bonds longer than the unique Ru-P bond.

The two ruthenium centers are bridged symmetrically by a C_4H_4 ligand. The C_4H_4 ligand showed a single (1.44(1) Å)/double (1.34(2) Å) carbon-carbon bond alternation. The vinyl ligand has a trans configuration. The Ru-C(vinyl) bond distance of 2.088(8) Å is within the range reported for ruthenium vinyl complexes, for example, $RuCl(CH=CH-R)(CO)(Me_2Hpz)(PPh_3)_2$ (R = $C_{3}H_{7}$, (2.05(1) Å;⁴² R = CMe₃, 2.063(7) Å;⁴³ Me₂Hpz = 3,5-dimethylpyrazole), [Ru(Me₂OCC=CHCO₂Me)(CO)- $(CH_3CN)_2(PPh_3)_2]^+$ (2.12(5) Å),⁴⁴ TpRu(C(C=CPh)= CHPh)(CO)(PPh₃) (2.090(12) Å),⁴⁵ and RuCl(PhC=CH-Ph)(CO)(PPh₃)₂ (2.03 (1) Å).^{23a} The C-C bond distances of the C₄H₄ unit are very similar to that of [CpFe(CO)₂]₂-(*µ*-CH=CHCH=CH).^{12b}

In summary, reaction of Me₃SiC≡CC≡CSiMe₃ with RuHCl(CO)(PPh₃)₃ gives the mononuclear complex RuCl- $(\eta^1-C(C \equiv CSiMe_3) = CHSiMe_3)(CO)(PPh_3)_2$. In contrast, reaction of HC=CC=CH with RuHCl(CO)(PPh₃)₃ afforded a bimetallic complex with a linear C₄H₄ bridge that can be converted into a diacyl bridge (COC₄H₄CO) by CO insertion.

Experimental Section

Microanalyses were performed by M-H-W Laboratories (Phoenix, AZ). $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR chemical shifts are relative to TMS, and ^{31}P NMR chemical shifts are relative to 85% $H_3\text{-}$ PO₄.

All manipulations were carried out at room temperature under a nitrogen atmosphere using standard Schlenk techniques, unless otherwise stated. Solvents were distilled under nitrogen from sodium benzophenone (hexane, diethyl ether, THF, benzene) or calcium hydride (dichloromethane, CHCl₃). The compound RuHCl(CO)(PPh₃)₃⁴⁶ was prepared according to a literature method. All other reagents were used as purchased from Aldrich or Strem, USA.

 $RuCl(\eta^1-C(C \equiv CSiMe_3) = CHSiMe_3)(CO)(PPh_3)_2$ (2). To a suspension of RuHCl(CO)(PPh₃)₃ (0.50 g, 0.53 mmol) in 50 mL of CH₂Cl₂ was added Me₃SiC=CC=CSiMe₃ (1.02 g, 5.25 mmol). The reaction mixture was stirred overnight to give an orangebrown solution. The volume of the reaction mixture was then reduced to ca. 5 mL under vacuum. Addition of hexane (100 mL) to the reaction mixture produced a yellow solid, which was collected by filtration, washed with hexane (30 mL), and then dried under vacuum. Yield: 0.41 g, 88%. ³¹P{¹H} NMR (CDCl₃, 121.5 MHz): δ 33.3 (s). ¹H NMR (CDCl₃, 300.13 MHz): δ 0.15 (s, 9 H, SiMe₃), 0.22 (s, 9 H, SiMe₃), 5.23 (s, 1 H, =CH), 7.39-7.73 (m, 30 H, 2 PPh₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz): $\delta - 1.1$ (s, SiMe₃), 0.8 (s, SiMe₃), 98.8 (s, $\equiv CSiMe_3$), 114.5 (s, ≡C), 127.8 (t, J(PC) = 4.9 Hz, *m*-Ph), 129.8 (s, *p*-Ph), 131.9 (t, J(PC) = 22.2 Hz, ipso-Ph), 134.6 (t, J(PH) = 5.7 Hz, o-Ph), 143.1 (s, =CH), 152.6 (t, J(PC) = 8.4 Hz, Ru-C=), 207.6

⁽³⁹⁾ Ashworth, T. V.; Nolte, M. J.; Singleton, E. J. Chem. Soc., Dalton Trans. 1977, 1916.

⁽⁴⁰⁾ Komiya, S.; Ito, T.; Cowie, M.; Yamamoto, A.; Ibers, J. A. J. Am. Chem. Soc. 1976, 98, 3874.

^{(41) (}a) Skapski, A. C.; Stephens, F. A. J. Chem. Soc., Dalton Trans. **1974**, 390. (b) La Placa, S. J.; Ibers, J. A. *Inorg. Chem.* **1965**, *4*, 778. (42) Torres, M. R.; Santos, A.; Perales, A.; Ros, J. *J. Organomet.*

Chem. 1988, 353, 221.

⁽⁴³⁾ Remero, A.; Santos, A.; Vegas, A. Organometallics 1988, 7, 1988.
(44) López, J.; Romero, A.; Santos, A.; Vegas, A.; Echavarren, A.
M.; Noheda, P. J. Organomet. Chem. 1989, 373, 249.
(45) Alcock, N. W.; Hill, A. F.; Melling, R. P. Organometallics 1991,

^{10. 3898.}

Table 2. Selected Bond Lengths (Å) and Angles (deg) for [RuCl(CO)(PEt₃)₃]₂(µ-CH=CHCH=CH)

Bond Lengths (Å)							
Ru-Cl	2.484(2)	Ru–P(1)	2.400(2)	Ru-P(2)	2.440(3)		
Ru-P(3)	2.397(3)	Ru-C(1)	2.088(8)	Ru-C(3)	1.834(9)		
C(3)-O	1.13(1)	C(1)-C(2)	1.34(2)	C(2)-C'(2)	1.44(1)		
		Bond Angle	s (deg)				
Cl-Ru-P(1)	87.52(9)	Cl-Ru-P(2)	91.74(8)	Cl-Ru-P(3)	86.4(1)		
Cl-Ru-C(1)	88.8(2)	Cl-Ru-C(3)	178.9(2)	P(1) - Ru - P(2)	99.96(9)		
P(1) - Ru - P(3)	161.26(9)	P(1)-Ru-C(1)	81.0(2)	P(1)-Ru-C(3)	93.1(3)		
P(2) - Ru - P(3)	97.9(1)	P(2)-Ru-C(1)	178.9(2)	P(2)-Ru-C(3)	89.6(2)		
P(3) - Ru - C(1)	81.2(2)	P(3)-Ru-C(3)	92.6(2)	C(1)-Ru-C(3)	89.9(3)		
Ru - C(1) - C(2)	132.0(6)	C(1)-C(2)-C'(2)	126(1)				

(t, *J*(PC) = 16.0 Hz, Ru−CO). IR (KBr, cm⁻¹): ν (C≡C) 2094 (w), ν (CO) 1924 (s). Anal. Calcd for C₄₇H₄₉ClOP₂Si₂Ru: C, 63.82; H, 5.58. Found: C, 63.52; H, 5.57.

 $RuCl(\eta^{1}-C(C \equiv CSiMe_{3}) = CHSiMe_{3})(CO)(PPh_{3})(dppe)$ (3). To a solution of complex 2 (0.20 g, 0.23 mmol) in 10 mL of dichloromethane was added dppe (0.090 g, 0.23 mmol). The reaction mixture was stirred at room temperature for 20 min to give a pale green solution. The volume of the reaction mixture was then reduced to ca. 2 mL under vacuum. Addition of hexane (30 mL) to the reaction mixture produced a white solid. The solid was collected by filtration, washed with hexane, and dried under vacuum. Yield: 0.21 g, 91%. ³¹P-{¹H} NMR (CDCl₃, 121.5 MHz): δ 45.5 (d, *J*(PP) = 307.7 Hz, PPh₂), 32.4 (d, *J*(PP) = 16.5 Hz, PPh₂), 30.2 (dd, *J*(PP) = 307.7, 16.5 Hz, PPh₃). ¹H NMR (CDCl₃, 300.13 MHz): δ 0.22 (s, 9 H, SiMe₃), 0.89 (s, 9 H, SiMe₃), 2.0-3.0 (m, 4 H, CH₂), 6.10 (d, J(PH) = 1.1 Hz, 1 H, =CH), 7.0-8.0 (m, 35 H, Ph). ¹³C{¹H} NMR (CD₂Cl₂, 75.5 MHz): δ -1.0 (s, SiMe₃), -0.2 (s, SiMe₃), 26.8 (dd, J(PC) = 28.1, 15.3 Hz, PCH₂), 30.8 (m, PCH₂), 99.5 $(s, \equiv CSiMe_3)$, 118.2 (s, C \equiv), 126.7–136.3 (m, Ph), 152.7 (dm, $J(PC) = 60.9 \text{ Hz}, \text{Ru} - C = C), 153.0 \text{ (s, } = C \text{HSiMe}_3), 202.3 \text{ (td, } C = C \text{HSIMe}_3), 202.3 \text{ (td, }$ J(PC) = 12.7, 9.1 Hz, Ru-CO). IR (KBr, cm⁻¹): $\nu(C=C)$ 2111 (m), v(CO) 1930 (s). Anal. Calcd for C₅₅H₅₈ClOP₃Si₂Ru: C, 64.72; H, 5.73. Found: C, 64.46; H, 5.85.

RuHCl(CO)(NH₃)(PPh₃)₂ (4). To a suspension of RuHCl-(CO)(PPh₃)₃ (0.20 g, 0.21 mmol) in 30 mL of THF was added NH₄F (0.10 g, 2.70 mmol). The reaction mixture was stirred overnight at room temperature to give a pale green solution. The volume of the reaction mixture was then reduced to ca. 2 mL under vacuum. Addition of ether (30 mL) to the reaction mixture produced a white solid, which was collected by filtration, washed with methanol (10 mL), hexane (10 mL), and ether (10 mL), and then dried under vacuum. Yield: 0.12 g, 81%. ³¹P{¹H} NMR (CDCl₃, 121.5 MHz): δ 46.6 (s). ¹H NMR (CDCl₃, 300.13 MHz): δ -14.50 (t, *J*(PH) = 18.0 Hz, 1 H, Ru-H), 0.78 (s, 3 H, NH₃), 7.41-7.82 (m, 30 H, 2 PPh₃). Anal. Calcd for C₃₇H₃₄ClNOP₂Ru·2H₂O·0.5NH₃: C, 59.12; H, 5.30; N, 2.80. Found: C, 59.20; H, 5.20; N, 2.70.

 $[RuCl(CO)(NH_3)(PPh_3)_2]_2(\mu$ -CH=CHCH=CH) (5). A Schlenk flask containing RuHCl(CO)(PPh₃)₃ (3.00 g, 3.15 mmol) suspended in 50 mL of CH₂Cl₂ was connected to another Schlenk flask containing Me₃SiC=CC=CSiMe₃ (1.0 g, 5.1 mmol), NH₄F (1.0 g, 27 mmol), n-Bu₄NF on silica gel (1.0 g, 1.1 mmol F⁻), H₂O (0.5 mL), and THF (10 mL). The volatile contents (presumably, HC≡CC≡CH, THF, NH₃) in the second flask were then introduced, in the form of vapor generated by heating (at ca. 70 °C), to the flask containing RuHCl(CO)-(PPh₃)₃. The suspension of RuHCl(CO)(PPh₃)₃ in CH₂Cl₂ changed into a clear vellow solution when most of the THF was evaporated (ca. 2 h). The volume of the yellow solution was then reduced to ca. 10 mL under vacuum, and 200 mL of ether was added to give a yellow solid. The solid was collected by filtration, washed with ether (30 mL) and small amount of CH₂Cl₂, and then dried under vacuum. Yield: 1.2 g, 52%. ³¹P-{¹H} NMR (CDCl₃, 121.5 MHz): δ 37.8 (s). ¹H NMR (CDCl₃, 300.13 MHz): δ 0.86 (s, 6 H, 2 NH₃), 7.21-7.73 (m, 60 H, 4 PPh_3). The C_4H_4 unit showed an AA'BB'XX' (X = PPh_3) pattern with $\delta A = 4.63$ (Ru–CH=*CH*), $\delta B = 5.89$ ppm (Ru–

CH) and J(AB) = 15.3, J(AA') = 10.0, and J((BX) = 2 Hz. IR (KBr, cm⁻¹): ν (N–H) 3374 (m), ν (CO) 1914 (s). Anal. Calcd for C₇₈H₇₀Cl₂N₂O₂P₄Ru₂: C, 63.98; H, 4.82; N, 1.91. Found: C, 63.71; H, 4.98; N, 1.88.

[RuCl(CO)(PPh₃)₂]₂(µ-CH=CHCH=CH) (6). A Schlenk flask containing RuHCl(CO)(PPh₃)₃ (2.00 g, 2.10 mmol) suspended in 20 mL of CH₂Cl₂ was connected to another Schlenk flask containing Me₃SiC=CC=CSiMe₃ (1.0 g, 5.1 mmol), H₂O (0.5 mL), and THF (10 mL). The latter flask was heated to ca. 70 °C, followed by slow addition of *n*-Bu₄NF solution (1.0 mmol in 20 mL of THF) from a dropping funnel with a dropping rate of ca. 1 mL/min. The volatile contents (presumably, HC≡CC≡CH, THF) in the second flask were introduced, in the form of vapor generated by heating, to the flask containing RuHCl(CO)(PPh₃)₃. The suspension of RuH-Cl(CO)(PPh₃)₃ in CH₂Cl₂ changed to a reddish-brown suspension when most of the THF was evaporated. The volume of the yellow solution was then reduced to ca. 10 mL under vacuum. The solid was collected by filtration, washed with ether (20 mL) and acetone (30 mL), and then dried under vacuum. Yield: 1.1 g, 71%. ³¹P{¹H} NMR (CDCl₃, 121.5 MHz): δ 28.3 (s). ¹H NMR (CDCl₃, 300.13 MHz): δ 5.20 (d, J(HH) = 11.0 Hz, 2 H, β -CH), 6.94–7.73 (m, 62 H, 2 Ru–CH, 4 PPh₃). IR (KBr, cm⁻¹): ν (CO) 1926 (s). Anal. Calcd for C₇₈H₆₄Cl₂O₂P₄Ru₂: C, 65.50; H, 4.51. Found: C, 65.06; H, 4.79.

 $[RuCl(CO)(PEt_3)_3]_2(\mu$ -CH=CHCH=CH) (7). To a suspension of complex 4 (0.300 g, 0.205 mmol) in 5 mL of CH₂Cl₂ was added 2.5 mL of a THF solution of PEt₃ (1.0 M, 2.5 mmol). The reaction mixture was stirred for 30 min to give a colorless solution. Addition of 50 mL of Et₂O to the reaction mixture produced a white solid. The solid was collected by filtration, washed with ether, and dried under vacuum. Yield: 0.18 g, 81%. ³¹P{¹H} NMR (CDCl₃, 121.5 MHz, -20 °C): δ 0.6 (t, J(PP) = 19.3 Hz), 5.8 (d, J(PP) = 19.3 Hz). ¹H NMR (CD₂Cl₂, 300.13 MHz, -20 °C): δ 1.00-1.15 (m, 54 H, CH₃), 1.79-1.88 (m, 36 H, CH₂), 6.22 (m, 2 H, Ru-CH=CH), 6.64 (m, 2 H, Ru-CH=CH). The ³¹P and ¹H NMR spectra were recorded at -20 °C because the ³¹P and ¹H signals are somewhat broad at room temperature. ${}^{13}C{}^{1}H{} NMR (CD_2Cl_2, 75.5 MHz): 7.6 (s, CH_3),$ 8.23 (d, J(PC) = 2.7 Hz, CH₃), 17.1 (t, J(PC) = 12.7 Hz, CH₂), 19.2 (d, J(PC) = 15.1 Hz, CH₂), 144.7 (s, Ru-CH=CH), 151.6 (brd, J(PC) = 74.4 Hz, Ru-CH), 204.1 (q, J(PC) = 13.4 Hz, CO). IR (KBr, cm⁻¹): ν (CO) 1904 (s). Anal. Calcd for C₄₂H₉₄-Cl₂O₂P₆Ru₂: C, 46.28; H, 8.69; Cl, 6.50. Found, 45.99; H, 8.43; Cl, 6.66.

{[**Ru**(*t*-**BuNC**)₃(**PPh**₃)₂]₂(μ -**COCH=CHCH=CHCO**)}Cl₂ (**8A**). To a suspension of complex **4** (0.200 g, 0.137 mmol) in 20 mL of dichloromethane was added *t*-BuNC (0.20 mL, 1.8 mmol). The reaction mixture was stirred at room temperature overnight to give an orange-red solution. The volume of the reaction mixture was then reduced to ca. 2 mL under vacuum. Addition of 30 mL of hexane to the reaction mixture produced a red solid. The solid was collected by filtration, washed with hexane, and dried under vacuum. Yield: 0.22 g, 83%. ³¹P-{¹H} NMR (CDCl₃, 121.5 MHz): δ 36.1 (s). ¹H NMR (CDCl₃, 300.13 MHz): δ 1.02 (s, 4 *t*-BuNC), 1.06 (s, 2 *t*-BuNC), 7.36– 7.51 (m, Ph). The C₄H₄ unit showed an AA'BB' pattern with δ A = 4.93, δ B = 6.04 (CO-*CH*) ppm and *J*(AB) = 13.8, *J*(AA') = 12.0 Hz. ¹³C{¹H} NMR (CD₂Cl₂, 75.5 MHz): δ 29.2 (s, CMe₃), 29.3 (s, CMe₃), 57.6 (s, CMe₃), 57.7 (s, CMe₃), 124.3 (s, COCH=CH), 128.1 (t, J(PC) = 4.7 Hz, m-Ph), 130.2 (s, p-Ph), 133.6 (t, J(PC) = 5.3 Hz, o-Ph), 134.0 (t, J(PC) = 22.3 Hz, *ipso*-Ph), 146.4 (br, Ru-CN), 147.3 (s, CO-CH=CH), 148.3 (brt, J(PC) = 13.2 Hz, Ru-CN), 256.6 (t, J(PC) = 9.4 Hz, Ru-CO). IR (KBr, cm⁻¹): ν (C=N) 2140 (s), ν (C=O) 1630 (br, m). Anal. Calcd for C₁₀₈H₁₁₈Cl₂O₂N₆P₄Ru₂·5H₂O: C, 64.24; H, 6.39. Found, C, 64.39; H, 6.27.

{[**Ru**(*t*-**BuNC**)₃(**PPh**₃)₂]₂(μ -**COCH=CHCH=CHCO**)}-(**BPh**₄)₂. (**8B**). To a solution of complex **8A** (0.20 g, 0.10 mmol) in 20 mL of CH₂Cl₂ was added NaBPh₄ (0.40 g, 1.2 mmol). The reaction mixture was stirred at room temperature for 20 min to give an orange solution. The volume of the reaction mixture was reduced to ca. 2 mL under vacuum. Addition of hexane (30 mL) produced an orange solid, which was collected by filtration, washed with methanol (10 mL) and hexane (10 mL), and then dried under vacuum. Yield: 0.25 g, 95%. The NMR data are essentially the same as those of complex **8A**, except the additional ¹H and ¹³C signals of BPh₄⁻. Anal. Calcd for C₁₅₆H₁₅₈B₂O₂N₆P₄Ru₂: C, 75.05; H, 6.38. Found: C, 74.86; H, 6.38.

Crystallographic Analysis for [RuCl(CO)(PEt₃)₃]₂(\mu-CH=CHCH=CH) (7). Suitable crystals for X-ray diffraction study were obtained by slow diffusion of ether to a CH₂Cl₂ solution saturated with complex **7**. A specimen of dimension 0.22 × 0.25 × 0.44 mm³ was mounted on a glass fiber and used for X-ray structure determination. The diffraction data were collected on a Enraf/Nonius CAD4-VAX/2100 X-ray diffractometer at 293 K. The crystal system was monoclinic with space group *P*2₁/*a*. A total of 5189 intensity measurements were made using the $2\theta - \theta$ scan technique in the range 2.7° $\leq 2\theta \leq 50^{\circ}$ (Mo K α radiation). Of these, 4996 were unique (*R*_{int} = 1.7%) and 3529 observed with *F* = 4 σ (*F*), which were

used for structure solution and refinement using the Nonius MolEN program package.⁴⁷ Solution by direct methods yielded the positions of all non-hydrogen atoms. Refinement by full-matrix least-squares resulted in final discrepancy indices R = 5.3%, $R_w = 6.4\%$ with GOF = 1.201. All non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogens were revealed in difference Fourier maps, but then placed geometrically determined positions with $d_{C-H} = 0.96$ Å and refined isotropically with riding constraints and group thermal parameters. The data:parameter ratio was 15.668: 1, and residual electron density/hole +0.573/-0.071 e Å⁻³. Further crystallographic details and selected bond distances and angles are given in Tables 1 and 2, respectively.

Acknowledgment. The authors acknowledge financial support from the Hong Kong Research Grants Council and thank Mr. Jingzhi Wang for his technical support in the crystallographic determination.

Supporting Information Available: Tables of crystallographic details, bond distances and angles, atomic coordinates and equivalent isotropic displace coefficients, anisotropic displacement coefficients, and positional and thermal parameter for hydrogen for [RuCl(CO)(PEt₃)₃]₂(μ -CH=CHCH=CH) (6 pages). Ordering information is given on any current masthead page.

OM9804935

⁽⁴⁶⁾ Ahmad, N.; Levison, J. J.; Robinson, S. D.; Uttley, M. F.;
Wonchoba, E. R.; Parshall, G. W. *Inorg. Synth.* **1974**, *15*, 45.
(47) Fair, C. K. *MolEN An Interactive Interlligent System for Crystal*

Structure Analysis; Enraf-Nonios: Delft, The Netherlands, 1990.