

Volume 17, Number 23, November 9, 1998

© Copyright 1998 American Chemical Society

Communications

Valence Delocalization despite Weak Metal–Metal Coupling in a Bis(organoosmium(III,II)) Complex with a **Pyrazine Bridge**

Markus Glöckle[†] and Wolfgang Kaim^{*,†}

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany

Jan Fiedler[‡]

J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Čzech Republic

Received July 10, 1998

Summary: Carbonyl vibrational spectroelectrochemistry of { $(\mu - pz)$ [Os($P^i Pr_3)_2(CO)(H)Cl]_2$ }^{$\hat{0}/+} in dichloromethane</sup></sup>$ reveals valence delocalization of the mixed-valent state despite relatively weak metal-metal coupling, as evident from the comproportionation constant $K_c = 10^{4.3}$ and the intervalence charge-transfer band at 1705 nm ($\epsilon = 1250$ M^{-1} cm⁻¹, $\Delta v_{1/2} = 3700$ cm⁻¹). The rather low charge and nonpolar medium, i.e., the absence of valence trapping by counterions or solvent molecules, favor this particular situation.

Due to its structural simplicity, the pyrazine-bridged Creutz–Taube ion $\{(\mu - pz)[Ru(NH_3)_5]_2\}^{5+}$ has become the epitome of a mixed-valent coordination compound^{1,2} (Chart 1). Such materials are of interest for their role in the study of reaction mechanisms,³ for their unusual spectroscopic features such as very long wavelength intervalence charge-transfer bands,⁴ for their biochemical relevance,⁵ and for their potential in the area of

"molecular electronics".⁶ While the Creutz-Taube ion was discussed controversially for some time with regard to localization (Ru^{II}/Ru^{III}) or delocalization ($2 \times Ru^{2.5}$)

[†] Universität Stuttgart. E-mail address: kaim@iac.uni-stuttgart.de. [‡] Academy of Sciences of the Czech Republic.

Creutz, C. Prog. Inorg. Chem. 1983, 30, 1.
Creutz, C.; Chou, M. H. Inorg. Chem. 1987, 26, 2995.
Taube H. Ann. N.Y. Acad. Sci. 1978, 313, 481.
Blasse, G. Struct. Bonding (Berlin) 1991, 76, 153.

⁽⁵⁾ Kaim, W.; Bruns, W.; Poppe, J.; Kasack, V. J. Mol. Struct. 1993, 292 221

⁽⁶⁾ Ward, M. D. Chem. Soc. Rev. 1995, 34, 121.

of the valence,^{1,7} the corresponding osmium analogue $\{(\mu - pz)[Os(NH_3)_5]_2\}^{5+}$ was clearly identified as a valenceaveraged system with two Os^{2.5} centers.⁸ Among the evidence for this notion was the large comproportionation constant $K_c = 10^{13.0}$ for this intermediate ion in aqueous solution;⁸ the Creutz-Taube ion exhibits $K_c =$ 10^{6.6} in aqueous medium¹ and 10^{7.3} in acetonitrile.²

$$K_{\rm c} = 10^{\Delta E59 \text{ mV}} = [M^{(n+1)}]^2 / [M^n] [M^{(n+2)}] \qquad (1)$$
$$M^n + M^{n+2} \rightleftharpoons 2M^{n+1}$$

Recently we reported the observation that the $\{(\mu$ pz) $[Os(CN)_5]_2$ ⁵⁻ ion exhibits $K_c = 10^{5.8}$ in acetonitrile; however, the appearance of an aromatic ring vibration at 1582 cm⁻¹ exclusively for this mixed-valent intermediate suggested asymmetry and thus valence localization on the time scale of about 10^{-12} s for this experiment.9

We have now studied another pyrazine-bridged diosmium(III,II) species, $\{(\mu - pz)[Os(P^iPr_3)_2(CO)(H)Cl]_2\}^+$, which contains two organometallic complex fragments and a relatively small charge. The [Os(PⁱPr₃)₂(CO)(H)-Cl] fragment is capable of binding H₂, O₂, and several interesting organic functions for possible catalytic conversion.^{10,11} When it is bound to TCNE or TCNQ, this fragment exhibits the ability to donate electrons into the π system of acceptor ligands.¹² Due to the very limited solubility of the mixed-valent material and its diosmium(II,II) precursor we could investigate the dinuclear pyrazine complex only in dichloromethane solution. However, the results obtained shed some light on the variability of mixed-valent systems, on the possibly large role of the medium, and on the correlation between valence delocalization and the extent of metal-metal coupling.

Reaction of 2 equiv of [Os(PiPr₃)₂(CO)(H)Cl] with coordinatively unsaturated osmium(II) (5d⁶ configuration) with pyrazine in degassed toluene produced neutral dinuclear (µ-pz)[Os(PⁱPr₃)₂(CO)(H)Cl]₂, which proved to be poorly soluble in dichloromethane (saturation concentration approximately 1.6 \times 10 $^{-4}$ M) and insoluble in all other common solvents. Nevertheless, characterization by analysis, cyclic voltammetry, ¹H NMR (solution), and IR and UV/vis spectroscopy (solid state and solution) established the identity of this

Figure 1. Cyclic voltammogram of $(\mu$ -pz)[Os(P^{*i*}Pr₃)₂-(CO)(H)Cl]₂ in dichloromethane/0.2 M Bu₄NPF₆ at 0.5, 1.0, 1.5, 2.0, and 2.5 V/s scan rates. Potentials vs $[Fe(C_5H_5)_2]^{+/0}$: +0.20 and +0.45 V.

precursor material for the mixed-valent monocation.¹³ Two one-electron waves are observable on oxidation of $(\mu$ -pz)[Os(PⁱPr₃)₂(CO)(H)Cl]₂ (Figure 1); their separation by 250 mV leads to a K_c value of $10^{4.3}$.

Spectroelectrochemical monitoring of the more reversible (Figure 1) first couple $\{(\mu - pz)[Os(P^iPr_3)_2(CO)-$ (H)Cl]₂]^{0/+} in an optically transparent thin-layer electrolytic (OTTLE) cell¹⁴ exhibits the expected^{8,9,15} decrease of the intense ($\epsilon = 19660 \text{ M}^{-1} \text{ cm}^{-1}$) metal-to-ligand charge-transfer band at 534 nm and the appearance of a broad, symmetrical intervalence charge transfer (IVCT) band at 1705 nm ($\epsilon = 1250 \text{ M}^{-1} \text{ cm}^{-1}$, band half-width $\Delta v_{1/2} = 3700 \text{ cm}^{-1}$). Not unexpectedly, the mixed-valent species remained EPR-silent down to 3.3 K due to very rapid relaxation;¹⁶ however, the carbonyl stretching band in the infrared spectrum of the homovalent Os^{II,II} precursor was observed to simply shift to higher energy on oxidation to the mixed-valent intermediate (Figure 2). The shift of the osmium hydride vibrational band could not be observed due to the low band intensity and the thin-layer situation of the OTTLE experiment; a pyrazine ring vibration in the 1580 cm⁻¹ region was not detected.

Whereas the IR spectroelectrochemical experiment clearly indicates^{17–19} two equivalent organometal frag-

⁽⁷⁾ Best, S. P.; Clark, R. J. H.; McQueen, R. C. S.; Joss, S. J. Am. Chem. Soc. 1989, 111, 548.

⁽⁸⁾ Lay, P. A.; Magnuson, R. H.; Taube, H. Inorg. Chem. 1988, 27, 2364

⁽⁹⁾ Hornung, F.; Baumann, F.; Kaim, W.; Olabe, J. A.; Slep, L. D.; Fiedler, J. *Inorg. Chem.* **1998**, *37*, 311. The designation of species $\mathbf{3}^{5-}$ and $\mathbf{3}^{6-}$ in Tables 2 and 3 has to be interchanged.

⁽¹⁰⁾ Esteruelas, M. A.; Sola, E.; Oro, L. A.; Werner, H.; Meyer, U. Angew. Chem. 1988, 100, 1621; Angew. Chem., Int. Ed. Engl. 1988, 27, 1563.

^{(11) (}a) Werner, H.; Juthani, B. *J. Organomet. Chem.* **1981**, *209*, 211. (b) Macazaga, M. J.; Delgado, M. S.; Masaguer, J. R. *J. Organomet.* Chem. 1986, 299, 377. (c) Macazaga, M. J.; Delgado, M. S.; Masaguer, J. R. J. Organomet. Chem. 1986, 310, 249. (d) Bourgault, M.; Castillo, A.; Esteruelas, M. A.; Oñate, E.; Ruiz, N. Organometallics **1997**, *16*, 636. (e) Bohanna, C.; Callejas, B.; Edwards, A. J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N.; Valero, C. Organometallics 1998, 17, 373.

^{(12) (}a) Baumann, F.; Heilmann, M.; Matheis, W.; Schulz, A.; Kaim, W.; Jordanov, J. *Inorg. Chim. Acta* **1996**, *251*, 239. (b) Baumann, F.; Kaim, W.; Olabe, J. A.; Parisse, A.; Jordanov, J. *J. Chem. Soc., Dalton* Trans. 1997, 4455.

^{(13) (}a) {(µ-pz)[Os(PiPr₃)₂(CO)(H)Cl]₂}: satisfactory C, H, N analysis; electrode, 2 V/s scan rate) $E_{1/2} = +0.20$ and +0.45 V vs [Fe(C_5H_5)₂]^{+/0}, peak potential differences 99 and 108 mV, respectively; no reduction until -1.9 V. (b) { $(\mu$ -pz)[Os(PⁱPr₃)₂(CO)(H)Cl]₂}⁺: no EPR signal down to 3.3 K; IR (CH₂Cl₂) ν_{CO} 1933 cm⁻¹; UV/vis (CH₂Cl₂) λ_{max} 356, 645, 1705 nm

⁽¹⁴⁾ Krejcik, M.; Danek, M.; Hartl., F. J. Electroanal. Chem. Interfacial Electrochem. 1991, 317, 179.

⁽¹⁵⁾ Creutz, C.; Taube, H. J. Am. Chem. Soc. 1973, 95, 1086

 ⁽¹⁶⁾ Kaim, W.; Kasack, V. Inorg. Chem. 1990, 29, 4696.
(17) (a) Atwood, C. G.; Geiger, W. E. J. Am. Chem. Soc. 1993, 115,

^{5310. (}b) Van Order, N., Jr.; Bitterwolf, T. E.; Rheingold, A. L.; Geiger, W. E. J. Am. Chem. Soc. 1987, 109, 5680. (c) Geiger, W. E.; Van Order, N., Jr.; Pierce, D. T.; Bitterwolf, T. E.; Rheingold, A. L.; Chasteen, N. D. Organometallics 1991, 10, 2403. (d) Geiger, W. E.; Atwood, C. G.; Chin, T. T. In *Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds*, Pombeiro, A. J. L., McCleverty, J. A., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1993; p 519. (e) Merkert, J. W.; Geiger, W. E.; Paddon-Row: M. N.; Oliver, A. M.; Rheingold, A. L. Organometallics 1992, 11, 4109. (f) Pierce, D. T.;
Geiger, W. E. Inorg. Chem. 1994, 33, 373.
(18) Chin, T. T.; Lovelace, S. R.; Geiger, W. E.; Davis, C. M.; Grimes,

R. N. J. Am. Chem. Soc. 1994, 116, 9359.

Table 1.	Characteristics of Pyrazine-Bridged Diosmium(III,II) Complexes and Related Compounds
	$\{(\mu - \mathbf{pz})[\mathbf{ML_x}]_2\}^n$

ML _x	n	Kc	$\lambda_{\rm IVCT}$ (nm)	ϵ (M ⁻¹ cm ⁻¹)	$\Delta v_{1/2}$ (cm ⁻¹)	solvent	ref
Os(NH ₃) ₅	5+	1013.0	3330 ^a	4000	n.r. ^b	H ₂ O/HCl	8
			2940 ^a	3000	n.r.		
			890 ^a	2700			
Os(CN) ₅	5 -	10 ^{5.8}	5071 ^a	7000	220	CH ₃ CN	9
			4032 ^a	8100	960		
			1395 ^a	6600	1450		
Os(P ⁱ Pr ₃) ₂ (CO)(H)Cl	1+	10 ^{4.3}	1705	1250	3700	CH_2Cl_2	this work
$W(P^{i}Pr_{3})_{2}(CO)_{3}$	1+	10^{11}	2004	4600	730	CH_2Cl_2	22
$Ru(NH_3)_5$	5+	107.3	1600	n.r.	n.r.	CH ₃ CN	2

^a Main bands in the near-infrared region (including singlet-triplet transitions). ^b n.r. = not reported.

Figure 2. IR spectroelectrochemistry of $\{(\mu-pz)[Os(P'Pr_3)_2-(CO)(H)Cl]_2\}^{0/+}$ in the carbonyl vibration region $(CH_2Cl_2/0.2 \text{ M Bu}_4\text{NPF}_6)$, band shift from 1878 to 1933 cm⁻¹ on oxidation).

ments and thus the symmetrical, delocalized situation $\{(\mu-pz)[Os^{2.5}(P^iPr_3)_2(CO)(H)Cl]_2\}^+$, the value of $10^{4.3}$ for K_c signifies relatively weak metal—metal coupling across the pyrazine bridge (Table 1).

Similarly, the reproducibility of the IVCT band energy by eq 2 supports the description of this ion as a weakly coupled system.²⁰

$$\Delta v_{1/2} = [2310v_{\rm IVCT}]^{1/2} \tag{2}$$

$$\Delta v_{1/2}$$
(calc) = $[2310 \times 5860]^{1/2} = 3679 \text{ cm}^{-1}$

$$\Delta v_{1/2}$$
(exptl) = 3700 cm⁻¹

We attribute this infrequently described situation of a valence-delocalized yet only weakly coupled mixedvalent dimer to the low overall charge and largely nonpolar environment (CH₂Cl₂ solution)-a familiar situation for organometallic compounds. The absence of charge and valence trapping as a consequence of rather weak solute-solvent interactions²¹ has been similarly invoked for the 5d5/5d6 mixed-valent organometallic compound $\{(\mu - pz)[W^{0.5}(P^iPr_3)_2(CO)_3]_2\}^+$, which, however, displays higher K_c values > 10⁸ despite smaller oxidation numbers (Table 1).22 Within the series of diosmium(III,II) species (Table 1), the $\{(\mu-pz)|Os (CN)_{5}_{2}^{5-}$ ion appears to be localized despite the higher $K_{\rm c}$ value of 10^{5.8}, probably due to charge trapping.⁹ In contrast, the metal-metal interaction in the $\{(\mu - pz)|Os (NH_3)_5)_2$ ⁵⁺ ion is apparently large enough ($K_c = 10^{13.0}$) to compensate charge trapping even in aqueous medium.⁸ Unfortunately, the poor solubility precludes an extensive investigation of solvent dependence in the present, weaker coupled but not charge-trapped case; better soluble analogues of organometallic mixed-valent systems will have to be developed for further such studies.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Volkswagen Foundation for financial support and Degussa AG for a loan of OsCl₃.

Supporting Information Available: Text giving a summary of experimental procedures and figures giving IR and UV/vis/near-IR spectra (4 pages). Ordering information is given on any current masthead page.

OM980586M

⁽¹⁹⁾ Kaim, W.; Bruns, W.; Kohlmann, S.; Krejcik, M. Inorg. Chim. Acta 1995, 229, 143.

⁽²⁰⁾ Hush, N. S. Coord. Chem. Rev. 1985, 64, 135.

^{(21) (}a) Naklicki, M. L.; Crutchley, R. J. *Inorg. Chim. Acta* **1994**, *225*, 123. (b) Ketterle, M. Kaim, W.; Olabe, J. A.; Parise, A. R.; Fiedler, J. *Inorg. Chim. Acta*, submitted for publication.

⁽²²⁾ Bruns, W.; Kaim, W.; Waldhör, E.; Krejcik, M. Inorg. Chem. 1995, 34, 663.