Comparative Solid-State NMR Study of the Molecular Dynamics of Si(SiMe₃)₄ and C(SiMe₃)₄

Xavier Helluy,[†] Jörg Kümmerlen,[‡] and Angelika Sebald^{*,‡}

Rhône-Poulenc Rorer, Department of Pharmaceutical Sciences, Preformulation/Physical Analysis, Research Center of Vitry-Alfortville, 13 quai Jules Guesde, B.P. 14, 94403 Vitry sur Seine Cedex, France, and Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

Received January 22, 1998

Variable-temperature ¹³C and ²⁹Si one- and two-dimensional MAS NMR experiments are reported for the low-temperature phases of $Si(SiMe_3)_4$ (1) and $C(SiMe_3)_4$ (2). Quantitative determination of exchange rate constants from ¹³C and ²⁹Si NMR spectra of 1 and 2 proves considerable dissimilarities of the molecular solid-state dynamic properties of 1 and 2, despite the chemically and structurally homologous nature of these two compounds. In the lowtemperature phase of 1, internal SiMe₃ and whole-molecule reorientation occurs, while for the low-temperature phase of 2 no internal SiMe₃ reorientation but only whole-molecule reorientation is observed.

Introduction

Compounds $E(SiMe_3)_4$ (with E = Si, C; Me = methyl), which may be viewed as higher homologues of methane, CH₄, belong to a class of solids with nearly spherically shaped and nonpolar molecular units. Such molecular solids are known to undergo structural solid-state phase transitions, often including a plastically crystalline state ("rotator phase") at elevated temperatures. These structural phase transitions are closely related to thermally activated solid-state molecular dynamics such as internal modes of reorientation or whole-molecule reorientational modes.¹

Solid Si(SiMe₃)₄, 1, and C(SiMe₃)₄, 2, exist as strongly orientationally disordered phases at ambient temperatures and undergo structural phase transitions upon cooling. The low-temperature phase of 1 exists at temperatures T < 238-241 K;² for **2** the low-temperature phase is stable up to T = 213 K.³ Neither for **1** nor for 2 have single-crystal X-ray diffraction investigations been reported; the gas-phase structures of 1 and 2 have been examined by electron diffraction.^{4,5} Empirical force field calculations^{6,7} have indicated that 1 and **2** exhibit molecular *T* symmetry in the gas phase. On the basis of previous variable-temperature ¹³C and ²⁹Si CP/MAS NMR results, molecular point group symmetry C_3 has been proposed for the low-temperature phases of 1 and 2; similar dynamic solid-state properties of 1 and 2, that is, the occurrence of both internal SiMe₃ reorientation and reorientation of the entire molecule around preferred axes, have been inferred from these NMR results.8,9

Here we will focus on the quantitative analysis of variable-temperature one- and two-dimensional ¹³C and ²⁹Si MAS NMR experiments on the low-temperature phases of **1** and **2**. It will be shown that quantitative determination of exchange rate constants as a function of temperature from ¹³C and ²⁹Si MAS NMR experiments on 1 and 2 is necessary for unambiguous identification of different reorientational modes. Quantification of exchange rate constants in addition reveals distinct differences in the thermally activated molecular solid-state dynamics of the low-temperature phases of 1 and 2.

Results and Discussion

In the following we will concentrate on the molecular dynamic properties of the low-temperature phases of compounds Si(SiMe₃)₄, **1**, and C(SiMe₃)₄, **2**, as viewed by solid-state ¹³C and ²⁹Si NMR. The low-temperature phases of 1 and 2 have recently been shown, by means of synchrotron powder diffraction techniques, to crystallize in space group $P2_13$,¹⁰ confirming molecular C_3 point group symmetry. The possible modes of reorientation of a molecule $E(SiMe_3)_4$ with molecular C_3 symmetry (apart from internal reorientation of the methyl groups themselves) are illustrated schematically in Chart 1. Two different reorientational modes have to be taken into account: internal reorientation of the SiMe₃ groups around the respective E-Si bond (E = Si, C) directions, and reorientational jumps of the entire molecule around

10.1021/om980041s CCC: \$15.00 © 1998 American Chemical Society Publication on Web 10/16/1998

[†] Rhône-Poulenc Rorer.

[‡] Bayerisches Geoinstitut.

 ⁽¹⁾ Parsonage, N. G.; Staveley, L. A. K. *Disorder in Crystals*, Clarendon Press: Oxford, U.K., 1978.
 (2) Murrill, E.; Breed, L. W. *Inorg. Chem.* **1971**, *10*, 641.
 (3) Dereppe, J. M.; Magill, J. H. *J. Phys. Chem.* **1972**, *76*, 4037.
 (4) Bartell, L. S.; Clippard, F. B.; Boates, T. L. *Inorg. Chem.* **1970**,

^{9. 2436.}

⁽⁵⁾ Beagley, B.; Pritchard, R. G.; Titiloye, J. O. J. Mol. Struct. 1988. 176.81

⁽⁶⁾ Beagley, B.; Pritchard, R. G.; Titiloye, J. O. J. Mol. Struct. 1989, 212 323

⁽⁷⁾ Iroff, L. G.; Mislow, K. J. Am. Chem. Soc. 1978, 100, 2121.

⁽⁸⁾ Aliev, A. E.; Harris, K. D. M.; Apperley, D. C. J. Chem. Soc.

⁽⁹⁾ Aliev, A. E.; Harris, K. D. M.; Apperley, D. C.; Harris, R. K. J.

Solid. State Chem. **1994**, *110*, 314. (10) Dinnebier, R. E.; Dollase, W. A.; Helluy, X.; Kümmerlen, J.; Sebald, A.; Schmidt, M. U.; Pagola, S.; Stephens, P. W.; van Smaalen, S. Acta Crystallogr. B, submitted.

Chart 1. Schematic Representation of Molecular Reorientational Modes in the Low-Temperature Phases of E(SiMe₃)₄, E = C, Si, with Molecular C_3

^{*a*} *k* and *k'* denote exchange rate constants for internal SiMe₃ (*k*) and for whole-molecule (*k'*) reorientation. The numbering scheme Me⁽¹⁾ to Me⁽⁴⁾ and Si⁽¹⁾, Si⁽²⁾ denotes symmetry-equivalent/inequivalent sites. See text for detailed description.

preferred molecular axes, also coincident with the $\rm E-Si$ bond directions.

From the schematic representation of a molecule $E(SiMe_3)_4$ with molecular C_3 symmetry in Chart 1, we expect the following ¹³C and ²⁹Si MAS NMR features for the low-temperature phases of 1 and 2. At sufficiently low temperatures, in the so-called slowexchange regime (on the one-dimensional ¹³C and ²⁹Si MAS NMR time scale), we expect two ²⁹Si resonances in a 1:3 relative intensity ratio for the Si⁽¹⁾Me₃ and Si⁽²⁾-Me₃ groups. The 12 methyl groups will give rise to four ¹³C resonances in a relative 1:1:1:1 intensity ratio for the four crystallographically distinct types of methylcarbon sites Me⁽¹⁾ to Me⁽⁴⁾ (see Chart 1). For reasons of symmetry, exchange rate constants $k_1 = k_2 = k_3$ for internal $\tilde{Si}^{(2)}Me_3$ reorientation and $k'_1 = k'_2 = k'_3$ for whole-molecule reorientation, while exchange rate constants k_4 and k'_4 for internal and whole-molecule reorientation around the molecular 3-fold axis of symmetry may differ from k_1 , k_2 , k_3 and k'_1 , k'_2 , k'_3 since the $Si^{(1)}Me^{(4)}_3$ group is crystallographically distinct from the remaining three Si⁽²⁾Me⁽¹⁾Me⁽²⁾Me⁽³⁾ groups. In fact, unequal exchange rate constants for internal reorientation of chemically equivalent but crystallographically inequivalent sites ER3 in solid organosilicon compounds have previously been reported for moieties $ER_3 = {}^{t}Bu^{11}$ and $ER_3 = SiMe_3$.^{12,13} Under conditions of fast magicangle spinning, exchange rate constants k_4 and k'_4 for 1 and 2 cannot be measured: reorientations around the proper 3-fold axis of symmetry lead to mutual exchange of equivalent sites (mutual interchange of Me⁽⁴⁾ sites for k_4 , mutual interchange of Me⁽⁴⁾ sites and of Si⁽²⁾Me⁽¹⁾- $Me^{(2)}Me^{(3)}$ groups for K_4) and hence do not contribute to one- and two-dimensional ¹³C and ²⁹Si NMR spectral line shapes. In principle, it would be possible to also

Figure 1. 2D ²⁹Si EXSY experiments on **1** and **2**: (a) **1**, *T* = 160 K, mixing time $\tau_{mix} = 300$ ms, only the SiMe₃ region is shown; (b) **2**, *T* = 170 K, mixing time $\tau_{mix} = 75$ ms. For long mixing times relative intensities corresponding to complete exchange in a four-site exchange (diagonal 1:9 and off-diagonal 3:3) are observed for **1** and **2**.

determine k_4 and k'_4 from MAS NMR experiments recorded under slow magic-angle spinning conditions. For instance, the ODESSA experiment,¹⁴ or a timereversed version thereof,¹⁵ would be a suitable approach. In practice, however, it turns out impossible to determine k_4 and k'_4 because for **1** and **2** very slow magicangle spinning would be necessary ($\omega_{rot}/2\pi < 200$ Hz), resulting in severe spectral overlap problems.

Under fast magic-angle spinning conditions, for **1** and **2** we can only determine the exchange rate constants $k = k_1$, k_2 , k_3 and $k' = k'_1$, k'_2 , k'_3 (see Chart 1) as these exchange processes lead to mutual exchange of inequivalent sites. We have to be able to distinguish internal SiMe₃ reorientation (k) from whole-molecule reorientation (k'). Under fast-spinning MAS conditions, the two ²⁹Si resonances of the SiMe₃ groups selectively

 ⁽¹¹⁾ Kümmerlen, J.; Sebald, A. Organometallics 1997, 16, 2971.
 (12) Helluy, X.; Kümmerlen, J.; Sebald, A. Organometallics 1997, 16, 5218.

⁽¹³⁾ Helluy, X.; Kümmerlen, J.; Marschner, C.; Sebald A. *Monatsh. Chem.*, in press.

⁽¹⁴⁾ Gérardy-Montouillout, V.; Malveau, C.; Tekely, P.; Oleander,
Z.; Luz, Z. *J. Magn. Reson. A* **1996**, *123*, 7.
(15) Reichert, D.; Zimmermann, H.; Tekely, P.; Poupko, R.; Luz, Z.

⁽¹⁵⁾ Reichert, D.; Zimmermann, H.; Tekely, P.; Poupko, R.; Luz, Z. J. Magn. Reson. 1997, 125, 245.

b.

Figure 2. Variable-temperature ²⁹Si MAS NMR spectra of **1** (a) and **2** (b); only the SiMe₃ region is shown. Temperatures are indicated and * denotes the presence of resonances from the coexisting high-temperature phase. Upper traces represent experimental spectra; lower traces are the corresponding best-fit calculated spectra.

monitor the exchange rate constants k' for wholemolecule reorientation, that is, interchanging Si⁽¹⁾ with Si⁽²⁾. Formally, this exchange process may be described as a four-site exchange with three degenerate sites. ¹³C one- and two-dimensional MAS NMR spectra will be affected by both molecular reorientational modes. Internal $Si^{(2)}Me_3$ reorientation only interchanges the $Me^{(1)}$, $Me^{(2)}$, $Me^{(3)}$ sites with rate constant k, while wholemolecule reorientation with rate constant K leads to mutual interchange of Me⁽¹⁾, Me⁽²⁾, Me⁽³⁾ sites, as well as to interchange of (Me⁽¹⁾, Me⁽²⁾, Me⁽³⁾) sites with the Me⁽⁴⁾ sites. Only reorientation of the entire molecule can lead to exchange between all four ¹³C-methyl resonances. Exchange rate constants k, k' for two simultaneously occurring processes are additive;¹⁶ hence, the simultaneous presence of both reorientational modes would lead to, for example, exchange peaks of unequal integrated intensities in a two-dimensional ¹³C exchange MAS NMR spectrum (2D EXSY). Since the ¹³C resonance of the Me⁽⁴⁾ sites is only affected by wholemolecule reorientation, it would always be possible to determine k' directly from the relative integrated intensities of those exchange peaks involving the ¹³C resonance of the Me⁽⁴⁾ sites. Alternatively, the observation of exchange between all four ¹³C-methyl resonances with all exchange peaks of identical integrated intensities is consistent only with the presence of wholemolecule reorientation in the absence of additional internal Si⁽²⁾Me₃ reorientation.

We may now inspect more closely the various one- and two-dimensional, variable-temperature $^{13}\mathrm{C}$ and $^{29}\mathrm{Si}$ NMR results on the low-temperature phases of 1 and

2. In accord with the predictions for molecular C_3 symmetry from the above discussion of Chart 1, ²⁹Si MAS NMR spectra of 1 and 2 at low temperatures display two²⁹Si resonances in a relative intensity ratio of 1:3 for the Si⁽¹⁾Me₃ and Si⁽²⁾Me₃ groups. This slowexchange limit on the one-dimensional ²⁹Si NMR time scale is reached at temperatures $T \leq 190$ K for **1** and at $T \leq 170$ K for **2**. ²⁹Si 2D EXSY experiments on **1** and 2 in the respective ²⁹Si slow-exchange limit provide proof that for both compounds, even at low temperatures, whole-molecule reorientation does take place: in both cases off-diagonal exchange peaks connecting the two ²⁹Si resonances are observed (see Figure 1). Exchange rate constants k' for whole-molecule reorientation as a function of temperature in this slow-exchange regime for 1 and 2 are obtained from a series of ²⁹Si 2D EXSY experiments, recorded at different temperatures and with different mixing times. At temperatures $T \ge$ 190 K (for 1) or $T \ge 170$ K (for 2) the line shapes of one-dimensional ²⁹Si MAS NMR spectra become affected by whole-molecule reorientation, as can be seen in Figure 2. Spectral line shape simulations of the exchange-broadened ²⁹Si resonances yield exchange rate constants k' for whole-molecule reorientation of **1** and 2 up to the temperature ranges where the onset of the phase transition to the high(er)-temperature phase starts to interfer by the coexistence of high- and lowtemperature phase. For 1, the one-dimensional ²⁹Si spectral line shapes can be exploited to determine exchange rate constants in the temperature range $T \approx$ 190-215 K; for 2, the corresponding informative temperature range is $T \approx 170-195$ K (see Figure 2).

In contrast to the one- and two-dimensional variabletemperature ²⁹Si MAS NMR experiments, selectively monitoring exchange rate constants *k* of whole-molecule

⁽¹⁶⁾ Ernst, R. R.; Bodenhausen, G.; Wokaun, A. *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*; Oxford University Press: Oxford, 1987.

Figure 3. 2D ¹³C EXSY experiments on **1** and **2**; only the methyl region is shown: (a) **1**, T = 154 K, mixing time $\tau_{mix} = 500$ ms; (b) **2**, T = 164 K, mixing time $\tau_{mix} = 250$ ms; (c) **1**, T = 190 K, mixing time $\tau_{mix} = 1$ s.

reorientation in the low-temperature phase of 1 and 2, ¹³C MAS NMR experiments can report on the kinetics of internal Si⁽²⁾Me₃ reorientation as well as on wholemolecule reorientation. In agreement with the requirements of molecular C_3 symmetry for the low-temperature phases of 1 and 2, four ¹³C-methyl resonances of relative intensities 1:1:1:1 are observed for both compounds in ¹³C CP/MAS NMR spectra, recorded in the slow-exchange temperature regimes on the one-dimensional ¹³C NMR time scale. This temperature regime is reached at $T \le 150$ K for **1** and at $T \le 170$ K for **2**. 2D ¹³C EXSY experiments on **1** and **2** at low temperatures reveal major differences in the molecular dynamics of **1** and **2**. As illustrated in Figure 3, for **1** only exchange between three methyl sites, Me⁽¹⁾, Me⁽²⁾, Me⁽³⁾, is observed at low temperatures, while exchange between all methyl sites $Me^{(1)}$ to $Me^{(4)}$ occurs for 2. Obviously, for **1** at low temperatures only internal Si⁽²⁾-Me₃ reorientation takes place with nonnegligible exchange rate constants k; at higher temperatures additional whole-molecule reorientation occurs (see Figure 3c). In solid 2 the only low-temperature dynamic process occurring with substantial exchange rate constants K is whole-molecule reorientation. The integrated intensities of all 12 exchange peaks in the 2D ¹³C EXSY spectra of **2** are equal within experimental error and thus exclude the simultaneous presence of additional internal Si⁽²⁾Me₃ reorientation. The dissimilarities in the solid-state molecular dynamics of 1 and **2** are also evident in the temperature range where one-dimensional ¹³C MAS NMR spectra display temperature-dependent exchange broadening. Variabletemperature ¹³C MAS NMR spectra of 1 and 2 in this temperature range are shown in Figure 4. For 1 there are two different coalescence regimes: one occurs in the T = 160 - 180 K temperature range and affects only the three ¹³C-methyl resonances for sites Me⁽¹⁾, Me⁽²⁾, Me⁽³⁾ (internal Si⁽²⁾Me₃ reorientation); a second coalescence regime is reached in the temperature range T = 180– 210 K, brought about by the additional onset of wholemolecule reorientation (see Figure 4a). For 2 the evolution of the one-dimensional ¹³C MAS NMR spectral line shape as a function of temperature is quite different (see Figure 4b). Over the temperature range T = 160– 190 K all four ¹³C-methyl resonances are part of the emerging coalescence pattern. From qualitative inspection of this coalescence pattern we cannot safely exclude that at somewhat elevated temperatures also for 2 additional internal Si⁽²⁾Me₃ reorientation may take place as well.

However, if we take into consideration *all* exchange rate constants k, k' determined from 2D ¹³C and ²⁹Si

b.

Figure 4. Variable-temperature ¹³C MAS NMR spectra of **1** (a) and **2** (b); in b only the methyl region is shown. Temperatures are indicated, and * denotes the presence of resonances from the coexisting high-temperature phase. Upper traces represent experimental spectra; lower traces are the corresponding best-fit calculated spectra.

Figure 5. Semilogarithmic plots of exchange rate constants k, k' for **1** (a) and **2** (b) versus 1/T. The symbols refer to exchange rate constants determined from ²⁹Si MAS (*), ²⁹Si 2D EXSY (×), ¹³C MAS (\diamond), and ¹³C 2D EXSY (\triangle) NMR experiments, respectively.

EXSY experiments and from iterative fitting of the spectral line shapes of variable-temperature onedimensional ¹³C and ²⁹Si MAS NMR spectra, the following picture is obtained for the low-temperature phases of **1** and **2**. Figure 5 displays semilogarithmic plots of all exchange rate constants k, k' versus 1/T for the low-temperature phases of **1** and **2**. The Arrhenius plot for **1** (Figure 5a) clearly shows the two exchange rate constants k for internal Si⁽²⁾Me₃ reorientation and k' for whole-molecule reorientation to differ considerably. Note that the exchange rate constant k for internal Si⁽²⁾Me₃ reorientation in the low-temperature phase of **1** is always higher than k' and that k exhibits a significant deviation from Arrhenius behavior at elevated temperatures. From the data displayed in Figure 5a, the activation barrier for internal Si⁽²⁾Me₃ reorientation in **1** at temperatures up to $T \approx 185$ K is determined as $E_a = 53.3 \pm 6.0$ kJ mol⁻¹. The exchange rate constants K accessible for whole-molecule reorientation of **1** permit determination of the activation barrier for this process as $E_a = 49.3 \pm 3.0$ kJ mol⁻¹. A different situation is found in the Arrhenius plot for **2** (see Figure 5b). Over the entire accessible temperature range, the exchange rate constants at a given temperature, as obtained from ¹³C and ²⁹Si NMR data, are identical within experimental error, leading to the conclusion that the only dynamic process occurring in the low-temperature phase of **2** is whole-molecule reorientation with an activation barrier $E_a = 44.7 \pm 3.0$ kJ mol⁻¹.

We need to answer the question why there should be such differences in the intramolecular (internal Si⁽²⁾Me₃ reorientation) solid-state dynamics of 1 and 2. Obviously, the difference in intramolecular steric crowding in $E(SiMe_3)_4$ on going from E = Si (1) to E = C (2), caused by different bond lengths E-Si (236 pm (1) and 192 pm $(2)^{10}$), has a significant impact on the molecular dynamic properties of the two compounds. It renders internal Si⁽²⁾Me₃ reorientation in C(SiMe₃)₄, 2, a highly unfavorable process, while "conventional" solid-state dynamic properties (where internal Si⁽²⁾Me₃ reorientation is thermally activated at lower temperatures, followed by the onset of global reorientation at more elevated temperatures) are found for the low-temperature phase of $Si(SiMe_3)_4$, **1**. It appears reasonable to consider intramolecular steric strain as the dominating cause of hindrance to internal Si⁽²⁾Me₃ reorientation in solid 1 and 2, although crystal-packing effects should not be completely ignored. With the crystal structure of the low-temperature phases of 1 and 2 determined,¹⁰ it becomes feasible to compare ab initio and force-field calculations based on the gas-phase and crystal structures in order to understand better the molecular dynamic properties of 1 and 2, as well as the relationship between solid-state molecular dynamics and structural phase transitions. This work is in progress and will be reported elsewhere.¹⁰

Experimental Section

Compound **1**, Si(SiMe₃)₄, is commercially available (ABCR Chemikalien, Karlsruhe) and has been used without further purification. Compound **2**, C(SiMe₃)₄, was kindly donated by G. Fritz, Karlsruhe.

All ¹³C and ²⁹Si NMR experiments were carried out on a Bruker MSL 300 NMR spectrometer, corresponding to Larmor frequencies of 75.5 (¹³C) and 59.6 (²⁹Si) MHz, respectively. Standard 4 and 7 mm ZrO₂ rotors and double-bearing probes were used. For variable-temperature MAS NMR experiments, purified N₂ gas served as the drive and bearing gas. MAS frequencies were in the range 2–3 kHz, ¹H $\pi/2$ pulse durations were 3–5 μ s, recycle delays had to be 3–5 s, and the contact times for Hartmann–Hahn cross-polarization (¹³C and ²⁹Si) were 5 ms. 2D exchange spectroscopy (EXSY)^{16–19} employed phase cycling according to the TPPI method.²⁰ Spectral line shape simulations of the exchange-broadened ¹³C and ²⁹Si MAS NMR spectra of **1** and **2** were carried out as described elsewhere;^{11,21} iterative fitting employed the MATLAB²² simplex routine for nonlinear least-squares minimization.

Isotropic chemical shifts δ (¹³C) and δ (²⁹Si) are quoted with respect to external SiMe₄. Selected data are as follows. **1**: ¹³C, 3.5 ppm (T = 297 K), and 4.6, 3.0, 2.4, 1.5 ppm (T = 154 K); ²⁹Si, -9.9 (SiMe₃), -135.6 ppm (T = 297 K), and -9.3, -10.0 (SiMe₃), -140.9 ppm (T = 168 K). **2**: ¹³C, 6.4 (Me), -1.2 ppm (T = 297 K), and 7.1, 5.9, 5.0, 4.5 (Me), -2.6 ppm (T = 164 K); ²⁹Si, -1.5 ppm (T = 297 K), and -0.9, -1.9 ppm (T = 163 K).

Acknowledgment. Support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank G. Fritz, Karlsruhe, for the donation of compound **2**, and W. A. Dollase, Los Angeles, as well as R. Dinnebier and S. van Smaalen, Bayreuth, for scientific discussions.

OM980041S

- (17) Schmidt-Rohr, K.; Spiess, H. W. *Multidimensional Solid-State NMR and Polymers*, Academic Press: London, 1994.
- (18) Spiess, H. W. Chem. Rev. 1991, 91, 1321.
- (19) Hagemeyer, A.; Schmidt-Rohr, K.; Spiess, H. W. Adv. Magn. Reson. **1989**, 13, 85.
- (20) Marion, D.; Wüthrich, K. Biochem. Biophys. Res. Commun. 1983, 113, 467.
- (21) Mehring, M. Principles of High-Resolution NMR in Solids;
 Springer: Berlin, 1983.
 (22) MATLAB, Version 5.0; The Math Works Inc.: Natick, MA, 1992.