Notes

Structural Transformations of a Series of Tellurium-Iron Carbonylates and the Isolation of the Cubic Cluster [Te₄Fe₄(CO)₁₀(dppm)]

Kuo-Chih Huang,[†] Mei-Huey Shieh,[†] Ren-Jay Jang,[†] Shie-Ming Peng,[‡] Gene-Hsiang Lee,§ and Minghuey Shieh*,†

Department of Chemistry, National Taiwan Normal University, Taipei 11718, Taiwan, Republic of China, and Department of Chemistry and Instrumentation Center, National Taiwan University, Taipei 10764, Taiwan, Republic of China

Received June 22, 1998

Summary: The cluster growth from the small anionic cluster [TeFe₃(CO)₉]²⁻ to the double-cubic cluster [Te₁₀Fe₈- $(CO)_{20}$ ²⁻ was systematically established. Further treatment of $[Te_{10}Fe_8(CO)_{20}]^{2-}$ with $[Cu_2(dppm)_2(MeCN)_4]$ - $[BF_4]_2$ led to the formation of the new dppm-bridged cubic cluster [$Te_4Fe_4(CO)_{10}(dppm)$].

Introduction

Tellurium-rich metal compounds have attracted extensive attention, since tellurides exhibit unusual structural and reactivity patterns and are potentially precursors for new solid-state materials.^{1,2} Recently, a series of novel tellurium-iron carbonylates have been synthesized and structurally characterized by several different methodologies. These interesting anionic clusters include [TeFe₃(CO)₁₂]^{2-,3a} [TeFe₃(CO)₉]^{2-,3,4} [Te₄Fe₅(CO)₁₄]^{2-,5,6} [Te₆Fe₈(CO)₂₄]^{2-,5} and [Te₁₀Fe₈(CO)₂₀]^{2-,6} Nevertheless, their structural relationships and transformations have never been systematically studied. The reaction sequences in which the small molecules transform to larger clusters are of great importance to the extended inorganic solids. As a consequence, develop-

* To whom correspondence should be addressed.

ing and understanding the conversion of small clusters to larger ones is of great interest. In this paper, we demonstrate a facile stepwise cluster growth from $[TeFe_3(CO)_9]^{2-}$ to $[Te_{10}Fe_8(CO)_{20}]^{2-}$. The reactions of [Te₁₀Fe₈(CO)₂₀]²⁻ with electrophiles are described as well, from which the cubic cluster $[Te_4Fe_4(CO)_{10}(dppm)]$ is obtained and compared with the double-cubic cluster $[Te_{10}Fe_8(CO)_{20}]^{2-}$.

Experimental Section

All reactions were performed under an atmosphere of pure nitrogen by using standard Schlenk line techniques.⁸ Solvents were purified, dried, and distilled under nitrogen prior to use. K₂TeO₃·H₂O (Alfa), TeO₂ (Strem), Fe(CO)₅ (Aldrich), and bis-(diphenylphosphino)methane (dppm; Acros) were used as received. Infrared spectra were recorded on a Jasco 700 IR or a Perkin-Elmer Paragon 500 spectrometer using CaF₂ liquid cells. Mass spectra were obtained on a Finnigan TSQ700 mass spectrometer. Elemental analyses were performed on a Perkin-Elmer 2400 analyzer at the NSC Regional Instrumental Center at National Taiwan University. ¹H NMR spectra were taken on a Varian 200 (200 MHz) instrument. [TeFe₃(CO)₉]^{2-,3,4} $Te_2Fe_3(CO)_{9}$, and $[Cu_2(dppm)_2(MeCN)_4][BF_4]_2^{10}$ were prepared by the published methods.

Formation of $[Et_4N]_2[Te_4Fe_5(CO)_{14}]$. To a mixture of $0.239 \text{ g} (0.296 \text{ mmol}) \text{ of } [\text{Et}_4\text{N}]_2 [\text{TeFe}_3(\text{CO})_9] \text{ and } 0.100 \text{ g} (0.148)$ mmol) of Te₂Fe₃(CO)₉ was added 20 mL of THF. After being stirred for 3 days at room temperature, the solution was filtered and solvent was removed under vacuum. The residue was washed with hexanes and ether and then extracted with CH₂Cl₂ to give 0.110 g (0.076 mmol) of [Et₄N]₂[Te₄Fe₅(CO)₁₄] (26% based on $[Et_4N]_2[TeFe_3(CO)_9]$). IR (ν_{CO} , MeCN) for $[Et_4N]_2[Te_4Fe_5(CO)_{14}]$: 2025 w, 2008 s, 1975 vs, 1940 m cm⁻¹.

Formation of [Et₄N]₂[Te₆Fe₈(CO)₂₄]. To a mixture of $0.100~g~(0.069~mmol)~of~[Et_4N]_2[Te_4Fe_5(CO)_{14}]~and~0.086~g$ (0.127 mmol) of Te₂Fe₃(CO)₉ was added 40 mL of CH₂Cl₂. The solution turned reddish brown immediately and was filtered, and solvent was removed under vacuum. The residue was washed with hexanes and ether and then extracted with CH₂Cl₂ to give 0.110 g (0.051 mmol) of [Et₄N]₂[Te₆Fe₈(CO)₂₄]

[†] Department of Chemistry, National Taiwan Normal University. ‡ Department of Chemistry, National Taiwan University. § Instrumentation Center, National Taiwan University.

^{(1) (}a) Ansari, M. A.; Ibers, J. A. Coord. Chem. Rev. 1990, 100, 223. (b) Roof, L. C.; Kolis, J. W. Chem. Rev. 1993, 93, 1037. (c) Kanatzidis, M. G.; Huang, S.-P. *Coord. Chem. Rev.* **1994**, *130*, 509. (2) (a) Bogan, L. E., Jr.; Lesch, D. A.; Rauchfuss, T. B. *J. Organomet.*

Chem. 1983, 250, 429. (b) Mathur, P.; Thimmappa, B. H. S.; Rheingold, A. L. *Inorg. Chem.* **1990**, *29*, 4658 and references therein. (c) Mathur, P.; Reddy, V. D.; Das, K.; Sinha, U. C. *J. Organomet. Chem.* **1991**, *409*, 255 and references therein. (d) Roof, L. C.; Pennington, W. T.;

Kolis, J. W. *J. Am. Chem. Soc.* **1990**, *112*, 8172.
(3) (a) Bachman, R. E.; Whitmire, K. H. *Inorg. Chem.* **1994**, *33*, 2527. (b) Roof, L. C.; Smith, D. M.; Drake, G. W.; Pennington, W. T.; Kolis, J. W. *Inorg. Chem.* **1995**, *34*, 337. (4) Shieh, M.; Chen, P.-F.; Tsai, Y.-C.; Shieh, M.-H.; Peng, S.-M.; Lee, G.-H. *Inorg. Chem.* **1995**, *34*, 2251. (5) Shieh, M.; Chen, P.-F.; Peng, S.-M.; Lee, G.-H. *Inorg. Chem.* **1996**, *34*, 2251.

¹⁹⁹³. *32*. 3389.

⁽⁶⁾ Roof, L. C.; Pennington, W. T.; Kolis, J. W. Angew. Chem., Int. Ed. Engl. 1992, 31, 913.

^{(7) (}a) Steigerwald, M. L.; Siegrist, T.; Stuczynski, S. M. *Inorg. Chem.* **1991**, *30*, 4940. (b) Steigerwald, M. L.; Siegrist, T.; Gyorgy, E. M.; Hessen, B.; Kwon, Y.-U.; Tanzler, S. M. *Inorg. Chem.* **1994**, *33*,

⁽⁸⁾ Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air Sensitive Compounds, Wiley: New York, 1986.
(9) Lesch, D. A.; Rauchfuss, T. B. *Inorg. Chem.* **1981**, *20*, 3583.

⁽¹⁰⁾ Díez, J.; Gamasa, P.; Gimeno, J.; Tiripicchio, A.; Camellini, M. T. J. Chem. Soc., Dalton Trans. 1987, 1275.

(74% based on $[Et_4N]_2[Te_4Fe_5(CO)_{14}]$). IR (ν_{CO} , CH_2Cl_2) for $[Et_4N]_2[Te_6Fe_8(CO)_{24}]$: 2026 s, 2004 vs, 1956 m (br) cm⁻¹.

Formation of [TMBA]₂[Te₁₀Fe₈(CO)₂₀]. To a mixture of 3.20 g (1.46 mmol) of [TMBA]₂[Te₆Fe₈(CO)₂₄] and 0.967 g (7.58 mmol) of Te powder was added 40 mL of THF. After being stirred and heated at 50 °C for 3 days, the solution was filtered and solvent was removed under vacuum. The residue was washed with hexanes and ether and then extracted with CH₂Cl₂ to give 2.24 g (0.867 mmol) of [TMBA]₂[Te₁₀Fe₈(CO)₂₀] $(60\% based on [TMBA]_2[Te_6Fe_8(CO)_{24}])$. IR (ν_{CO} , CH₂Cl₂): 2026 s, 2015 sh, 1979 s, 1924 w cm⁻¹. Anal. Calcd (found) for [TMBA]₂[Te₁₀Fe₈(CO)₂₀]: C, 18.57 (18.59); H, 1.24 (1.44); N, 1.08 (0.95).

Reaction of [TMBA]₂[Te₁₀Fe₈(CO)₂₀] with Na/Naphtha**lene.** To a sample of 0.297 g (0.115 mmol) of $[TMBA]_2[Te_{10}]$ Fe₈(CO)₂₀ in 15 mL of THF was added 1.2 mL of a solution which was prepared from 0.349 g (0.015 mol) of Na and 1.94 g (0.015 mol) of naphthalene in 40 mL of THF. The mixed solution was stirred for 10 h and filtered, and solvent was removed under vacuum. The residue was washed with hexanes and then extracted with CH₂Cl₂ to give 0.11 g (0.050 mmol) of $[TMBA]_2[Te_6Fe_8(CO)_{24}]$ (43% based on $[TMBA]_2[Te_{10} Fe_8(CO)_{20}$]). IR (ν_{CO} , CH_2Cl_2) for $[TMBA]_2[Te_6Fe_8(CO)_{24}]$: 2027 m, 2006 vs, 1959 m, $br\ cm^{-1}$.

Reaction of [TMBA]₂[Te₁₀Fe₈(CO)₂₀] with MeSO₃CF₃. To a sample of 0.203 g (0.079 mmol) of $[TMBA]_2[Te_{10}Fe_8(CO)_{20}]$ in 10 mL of THF was added 0.04 mL (0.35 mmol) of MeSO₃-CF₃. The mixed solution was stirred for 3 h and filtered, and solvent was removed under vacuum. The residue was extracted with hexanes to give the known butterfly complex 0.02 g (0.034 mmol) (Fe₂(CO)₆(μ -TeMe)₂, ¹¹ which was identified by IR and mass spectroscopy.

Formation of [Te₄Fe₄(CO)₁₀(dppm)]. To a mixture of 0.774 g (0.300 mmol) of [TMBA]₂[Te₁₀Fe₈(CO)₂₀] and 0.369 g (0.300 mmol) of [Cu₂(dppm)₂(MeCN)₄][BF₄]₂ was added 30 mL of THF. After being stirred and heated at 50 °C for 40 h, the solution was filtered and solvent was removed under vacuum. The residue was washed with MeOH and ether and then extracted with THF to give 0.25 g (0.169 mmol) of [Te₄- $Fe_4(CO)_{10}(dppm)$] (28%). IR (ν_{CO} , CH_2Cl_2) for $[Te_4Fe_4(CO)_{10}]$ (dppm)]: 2053 s, 2032 vs, 1994 vs, 1940 w cm⁻¹. Anal. Calcd (found) for $[Te_4Fe_4(CO)_{10}(dppm)]$: C, 29.19 (29.10); H, 1.63 (1.81). ¹H NMR (CDCl₃, 298 K): δ 7.55–7.22 (m, 20H), δ 4.04 (t, 2H, $J_{P-H} = 10$ Hz). Mp: 319-320 °C dec. This complex is soluble in ether, CH₂Cl₂, and THF.

X-ray Structural Characterization of [Te₄Fe₄(CO)₁₀-(dppm)]·CH₂Cl₂ (1). A summary of selected crystallographic data for [Te₄Fe₄(CO)₁₀(dppm)]·CH₂Cl₂ (1) is given in Table 1. Data collection was carried out on a Nonius CAD-4 diffractometer using graphite-monochromated Mo Kα radiation at 25 °C employing the $\theta/2\theta$ scan mode. A ψ -scan absorption correction was made.12 The crystal was mounted on glass fibers with epoxy cement. Data reduction and structural refinement were performed using the NRCC-SDP-VAX packages,13 and atomic scattering factors were taken from ref 14.

Reddish black crystals of 1 suitable for X-ray analysis were grown from hexane/CH₂Cl₂ solutions. A total of 7842 unique reflections were collected and corrected for absorption and decay. The structure was solved by the heavy-atom method and refined by least-squares cycles. All non-hydrogen atoms were refined with anisotropic thermal parameters. Fullmatrix least-squares refinement of 1 led to convergence with R = 3.4% and $R_{\rm w} = 3.2\%$ for those reflections with I > 2.0 $\sigma(I)$.

Table 1. Selected Crystallographic Data^a for $[Te_4Fe_4(CO)_{10}(dppm)]\cdot CH_2Cl_2$ (1)

empirical formula	$C_{36}H_{24}Cl_{2}Fe_{4}O_{10}P_{2}Te_{4}$
fw	1483.21
cryst syst	triclinic
space group	$P\overline{1}$
a, Å	11.724(5)
b, Å	13.836(5)
c, Å	15.116(5)
α, deg	84.97(3)
β , deg	86.70(3)
γ, deg	66.24(3)
V, Å ³	2235(2)
D(calcd), Mg m ⁻³	2.204
abs coeff, cm ⁻¹	40.837
T_{\min}/T_{\max}	0.90/1.00
residuals: R ; $R_{\rm w}^b$	0.034; 0.032

^a All data were obtained from a Nonius (CAD-4) diffractometer with Mo K α radiation ($\lambda = 0.7107$ Å) at 25 °C. ^b The functions minimized during least-squares cycles were $R = \sum |F_0 - F_c|/\sum F_0$ and $R_{\rm w} = [\sum w(F_0 - F_{\rm c})^2 / \sum w(F_0)^2]^{1/2}$.

Table 2. Selected Bond Distances (Å) and Bond Angles (deg) for $[Te_4Fe_4(CO)_{10}(dppm)]\cdot CH_2Cl_2$ (1)

(A) Distances				
Te(1)-Fe(1)	2.615(2)	Te(1)-Fe(2)	2.607(2)	
Te(1)-Fe(3)	2.619(2)	Te(2)-Fe(1)	2.620(2)	
Te(2)-Fe(2)	2.623(2)	Te(2)-Fe(4)	2.608(2)	
Te(3)-Fe(1)	2.605(2)	Te(3)-Fe(3)	2.619(2)	
Te(4)-Fe(2)	2.621(2)	Te(4)-Fe(3)	2.621(2)	
Te(4)-Fe(4)	2.613(2)	Te(3)-Fe(4)	2.625(2)	
(B) Bond Angles				
Fe(1)-Te(1)-Fe(2)	92.95(6)	Fe(1)-Te(1)-Fe(3)	97.88(6)	
Fe(2)-Te(1)-Fe(3)	97.40(5)	Fe(1)-Te(2)-Fe(2)	92.47(6)	
Fe(1)-Te(2)-Fe(4)	96.66(5)	Fe(2)-Te(2)-Fe(4)	98.64(6)	
Fe(1)-Te(3)-Fe(3)	98.14(6)	Fe(1)-Te(3)-Fe(4)	96.60(5)	
Fe(3)-Te(3)-Fe(4)	95.51(6)	Fe(2)-Te(4)-Fe(3)	96.99(5)	
Fe(2)-Te(4)-Fe(4)	98.55(6)	Fe(3)-Te(4)-Fe(4)	95.71(6)	
Te(1)-Fe(1)-Te(2)	86.23(5)	Te(1)-Fe(1)-Te(3)	82.04(5)	

Selected bond distances and angles of 1 are listed in Table 2. Additional crystallographic data are available as Supporting Information.

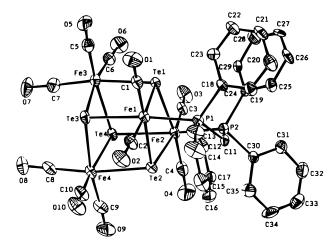
Results and Discussion

The previous study^{3,4} showed that the reaction of K₂TeO₃ with 3 equiv of Fe(CO)₅/KOH in MeOH led to the formation of the open cluster $[TeFe_3(CO)_{12}]^{2-}$, which then decarbonylated to generate the tetrahedral complex [TeFe₃(CO)₉]²⁻. However, when K₂TeO₃ reacted with 1 equiv of Fe(CO)₅/KOH in MeOH, the large cluster anion $[Te_6Fe_8(CO)_{24}]^{2-}$ was formed.⁴ These results indicated that the Te-Fe-CO system is very versatile, and different stoichiometries and subtle changes of the reaction conditions could give rise to different outcomes. These prompted us to explore the cluster transformations and to attempt to elucidate the cluster growth processes in this system.

Cluster Growth Processes. The cluster growth processes are summarized in Scheme 1. When the tetrahedral cluster [TeFe3(CO)9]2- was treated with Te2-Fe₃(CO)₉, the mediun-sized cluster [Te₄Fe₅(CO)₁₄]²⁻ was obtained. One can envision $[Te_4Fe_5(CO)_{14}]^{2-}$ to be composed of the anion [Te₂Fe₂(CO)₆]²⁻ and one Te₂Fe₃-(CO)9 with the loss of one CO, which seems to have no direct relevance to [TeFe₃(CO)₉]²⁻ and Te₂Fe₃(CO)₉. Therefore, the formation of $[Te_4Fe_5(CO)_{14}]^{2-}$ can be regarded as resulting from complicated bond breakage and rearrangement processes. It was more interesting

⁽¹¹⁾ Bachman, R. E.; Whitmire, K. H. Organometallics 1993, 12,

⁽¹²⁾ North, A. C. T.; Philips, D. C.; Mathews, F. S. Acta Crystallogr. 1968, A24, 351.


⁽¹³⁾ Gabe, E. J.; Le Page, Y.; Charland, J. P.; Lee, F. L.; White, P. S. J. Appl. Crystallogr. 1989, 22, 384. (14) International Tables for X-ray Crystallography, Kynoch Press:

Birmingham, England, 1974; Vol. IV.

to note that when $[Te_4Fe_5(CO)_{14}]^{2-}$ further reacted with $Te_2Fe_3(CO)_9$, the large cluster $[Te_6Fe_8(CO)_{24}]^{2-}$ was cleanly yielded. This cluster growth process is quite reasonable, because $[Te_6Fe_8(CO)_{24}]^{2-}$ can be approximately viewed as one $[Te_4Fe_5(CO)_{14}]^{2-}$ anion and one $Te_2Fe_3(CO)_9$.

Utilizing this methodology, we wondered whether the larger cluster can be obtained when $[Te_6Fe_8(CO)_{24}]^{2-}$ was treated with $Te_2Fe_3(CO)_9$ or Te or other Fe sources. This is indeed the case. When $[Te_6Fe_8(CO)_{24}]^{2-}$ was treated with 4 equiv of Te, the double-cubic cluster $[Te_{10}Fe_8(CO)_{20}]^{2-}$ was obtained in good yield. The double-cubic cluster was previously reported to be generated from the reaction of $Fe(CO)_5$ with "Zintl" ion Te_4^{2-} and excess Te. The route we describe here from $[Te_6Fe_8(CO)_{24}]^{2-}$ to $[Te_{10}Fe_8(CO)_{20}]^{2-}$ is convenient and high yielding. From a structural viewpoint, there is no obvious relationship between these two clusters; however, the structural transformation is possible by adjustment of the appropriate stoichiometry.

In this study, the facile processes of the cluster growth from the small $[TeFe_3(CO)_9]^{2-}$ to the large $[Te_{10}Fe_8-(CO)_{20}]^{2-}$ are established. Other types of cluster expansion processes have been seen in our previous studies of Se–Fe and E–Mn (E = S, Se) systems. ^{15,16} In this case, larger cluster skeletons are observed probably due to the greater size of the Te atom. The results all

Figure 1. ORTEP diagram showing the structure and atom labeling for **1**.

indicate that the cluster formation is gradual and may be predictable and also provide some useful information on further cluster expansion reactions.

Reactivity of [Te₁₀Fe₈(CO)₂₀]²⁻. Since the double-cubic cluster $[Te_{10}Fe_8(CO)_{20}]^{2-}$ is structurally interesting and can be obtained easily from $[Te_6Fe_8(CO)_{24}]^{2-}$, further reactivity studies of $[Te_{10}Fe_8(CO)_{20}]^{2-}$ were therefore carried out. It was found that $[Te_{10}Fe_8(CO)_{20}]^{2-}$ can be reconverted to $[Te_6Fe_8(CO)_{24}]^{2-}$ upon reduction with Na/naphthalene (eq 1). To test the basic sites of

$$[Te_6Fe_8(CO)_{24}]^{2-} \xrightarrow[Na/naphthalene]{4Te} [Te_{10}Fe_8(CO)_{20}]^{2-} \quad (1)$$

[Te₆Fe₈(CO)₂₄]²⁻, we treated [Te₁₀Fe₈(CO)₂₀]²⁻ with the methylation agent MeSO₃CF₃. However, the reaction proceeded with severe bond breakage and formation to give the known butterfly complex¹¹ Fe₂(CO)₆(μ -TeMe)₂. When [Te₁₀Fe₈(CO)₂₀]²⁻ was treated with [Cu₂(dppm)₂-(MeCN)₄][BF₄]₂, the dppm-bridged cubic cluster [Te₄Fe₄(CO)₁₀(dppm)] (1) was obtained (eq 2). Cluster 1

$$[Te_{10}Fe_8(CO)_{20}]^{2-} + [Cu_2(dppm)_2(MeCN)_4][BF_4]_2 \rightarrow [Te_4Fe_4(CO)_{10}(dppm)]$$
 (2)

can be considered to result from the oxidative fragmentation of $[Te_{10}Fe_8(CO)_{20}]^{2-}$ by the Cu(I) complex followed by the chelation of the dppm ligand. Direct reaction of $[Te_{10}Fe_8(CO)_{20}]^{2-}$ with dppm failed to produce cluster 1.

The reactivity investigation showed that the double-cubic cluster tended to undergo fragmentation to give the cubic or even smaller fragments depending upon the incoming reagents. However, the potential of $[Te_{10}Fe_{8}-(CO)_{20}]^{2-}$ to serve as a cubic precursor is promising, and further study of its cluster expansion is now in progress.

Structure of [Te₄Fe₄(CO)₁₀(dppm)]·CH₂Cl₂ (1). [Te₄Fe₄(CO)₁₀(dppm)] was structurally characterized by single-crystal X-ray diffraction. As shown in Figure 1,

⁽¹⁵⁾ Shieh, M.; Shieh, M.-H.; Tsai, Y.-C.; Ueng, C.-H. *Inorg. Chem.* **1995**, *34*, 5088.

⁽¹⁶⁾ Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. *Inorg. Chem.* **1997**, *36*, 4421.

the Te₄Fe₄ core exhibits a cubic geometry with the dppm ligand bridging across two Fe atoms. Each iron atom in **1** is octahedrally coordinated and obeys the 18-electron count. The Te–Fe distance averages 2.616 Å and is close to those of the structurally related double-cubic cluster $[Te_{10}Fe_8(CO)_{20}]^{2-}$ (2.62 Å) and the cubic clusters $[Te_4Fe_4(SPh)_4]^{3-}$ (2.63 Å),¹⁷ $[Te_4Fe_4(TePh)_4]^{3-}$ (2.622 Å),¹⁸ and $[Te_4Fe_4(S'Pr)_4]^{3-}$ (2.627 Å).¹⁹ In **1**, the internal angles in the Te_4Fe_4 cube are between 82.04 and 98.64°, close to 90°, indicative of a slight distortion

from the ideal cube. This is different from the previously characterized cubes $[Te_4Fe_4(EPh)_4]^{3-}$ (E = S, Te), 17,18 which contain angles deviating greatly from 90°, probably due to the bridging effect of the dppm ligand on the cubic structure.

Acknowledgment. We thank the National Science Council of the Republic of China for financial support (Grant No. NSC-87-2113-M-003-001).

Supporting Information Available: Complete listings of crystallographic data, atomic positional parameters, bond distances and angles, and anisotropic thermal parameters of cluster 1 (7 pages). Ordering information is given on any current masthead page.

OM980516F

⁽¹⁷⁾ Barbaro, P.; Bencini, A.; Bertini, I.; Briganti, F.; Midollini, S. J. Am. Chem. Soc. **1990**, *112*, 7238.

⁽¹⁸⁾ Simon, W.; Wilk, A.; Krebs, B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 1009.

⁽¹⁹⁾ Stephan, H.-O.; Chen, C.; Henkel, G.; Griesar, K.; Haase, W. J. Chem. Soc., Chem. Commun. 1993, 886.