Tetrasupersilyldialuminum [(*t***-Bu)3Si]2Al**-**Al[Si(***t***-Bu)3]2: The Dialane(4) with the Longest Al**-**Al Bond to Date†,§**

Nils Wiberg,* Kerstin Amelunxen, Thomas Blank, Heinrich Nöth,[‡] and Jörg Knizek \ddagger

Institut fu¨ *r Anorganische Chemie, Universita*¨*t Mu*¨*nchen, Meiserstrasse 1, D-80333 Mu*¨*nchen, Germany*

Received June 8, 1998

*Summary: Reaction of AlX₃ (X = Cl, Br) with R*Na (R**) *supersilyl, Si(t-Bu)3) in heptane at room temperature gave the ruby dialane R*2Al*-*AlR*2 (1). X-ray structure analysis showed it to contain a Si2Al*-*AlSi2 skeleton with D2d symmetry and the longest Al*-*Al bond to date (2.751(2) Å). Water- and air-sensitive 1 reacts with* iodine or hydrogen to form R^*_{2} AlI or R^*_{2} AlH, respec*tively. Thermolysis and photolysis transform 1, via [R*2Al*-*AlR*]*• *, into the tetraalatetrahedrane Al4R*4.*

Introduction

Unlike aluminum triorganyls AlR_3 , which were first synthesized in the middle of the 19th century, 1 aluminum organyls Al_mR_n ($n/m \leq 3$) with aluminum in the oxidation state <III were unknown for a long time because of their high tendency for disproportionation into AlR_3 und Al. As was shown afterward,^{2,3} the tendency for decomposition of Al*m*R*ⁿ* is lowered by bulky substituents R. Thus, in 1988 a dialane(4), $\text{Al}_2[\text{CH} (SiMe₃)₂$]₄,⁴ with aluminum in oxidation state +II, and
in 1991 *tetrahedro*tetraalanes(4) AL(Si(t-Bu)₀1,^{5,6} as in 1991 *tetrahedro*tetraalanes(4), Al4[Si(*t*-Bu)3]4 5,6 as well as $\operatorname{Al}_4(\mathrm{C}_5\mathrm{Me}_5)_4$,⁷ with aluminum in oxidation state +I were synthesized for the first time. In continuation of that we discuss here the preparation, structure, and reactions of the dialane Al2R*4 (**1**) with bulky tri-*tert*butylsilyl groups ("*supersilyl*" groups), $R^* = Si(t-Bu)_{3}$. Its properties differ markedly from those of other hitherto structurally characterized dialanes Al_2R_4 (R = $CH(SiMe₃)₂ = "DisyI^{n₂,4}$ and 2,4,6-(*i*-Pr)₃C₆H₂ = "*Tip*"⁸).

[‡] X-ray structure analysis.

§ Silicon Compounds, 120; Supersilyl Compounds of Boron and Homologues, 6. Part 119 and 5: ref 6. Part 118: Wiberg, N.; Wörner,
A.; Lerner, H.-W.; Karaghiosoff, K.; Fenske, D.; Baum, G.; Dransfeld,

A.; Schleyer, P. v. R. *Eur. J. Inorg. Chem.* **1998**, *1*, 833. Part 4: ref 9. (1) Holleman-Wiberg, *Lehrbuch der Anorganischen Chemie*, 101. Aufl., deGruyter, Berlin, 1995, S. 1087.

(2) Uhl, W. *Angew. Chem.* **1993**, *105*, 1449; *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 1386, and references cited therein. Dohmeier, C.; Loos, D.; Schnöckel, H. Angew. Chem. 1996, 108, 141; Angew. Chem., Int.

Ed. Engl. **1996**, *35*, 129.
(3) Wiberg, N.; Amelunxen, K.; Nöth, H.; Schmidt, M.; Schwenk,
H. *Angew. Chem.* **1996**, *108, 110; Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 65.

(4) Uhl, W. *Z. Naturforsch.* **1988**, *43b*, 1113.

(5) Wiberg, N. In *Frontiers of Organosilicon Chemistry*; Bassindale, A. R., Gaspar, P. P., Eds.; The Royal Society of Chemistry: Cambridge,

1991; pp 263–270.
(6) Purath, A.; Dohmeier, C.; Ecker, A.; Schnöckel, H.; Amelunxen,
K.; Passler, T.; Wiberg, N. *Organometallics* **1998**, *17*, 1894.
(7) Dohmeier, C.; Robl, C.; Tacke, M.; Schnöckel, H. *Angew. Chem.*

1991, *103*, 594; *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 564.

Scheme 1. Preparation of 1

Results and Discussion

Scheme 1 describes the *preparation* of dialane **1**: The starting materials, $R*₂AIX$, are prepared by reaction of AlX₃ with supersilylsodium R^* Na (molar ratio 1:2) for 2 h $(X = CI)$ or 1 h $(X = Br)$ in pentane at room temperature [cf. Scheme 1, eq 1b]. Subsequent treatment with R*Na provides tetrasupersilyldialane **1** in quantitative yields. The latter reactions probably givebesides NaX-at first disupersilylalanyl radicals R^*_{2} Al• and supersilyl radicals R^{**} , which on sterical grounds could not combine to form AlR*3 but instead dimerized to 1 and to superdisilane $R^* - R^*$, respectively [cf. Scheme 1, eqs 1c and 1d]. **1** may also be prepared directly from AIX_3 and R^* Na (molar ratio 1:3) in alkanes at room temperature [cf. Scheme 1, eq 1a].

The dialane is isolable from a solution in pentane at -23 °C in the form of ruby moisture- and air-sensitive crystals that decompose at 50 °C. Thus, **1** is more thermolabile than the colorless dialane Al_2 Disyl₄ or the yellow-green dialane $Al₂Tip₄$, which are stable to 200 °C and 171 °C, respectively. In alkanes, **1** is stable only when light is excluded; in benzene, on the other hand, **1** decomposes also in the dark.

According to *X-ray structure analysis* (Figure 1), the dialane 1 shows a $Si₂AlAlSi₂$ skeleton with D_{2d} symmetry. The Al atoms are trigonal planar bonded to two Si atoms and one Al atom, whereby the $AlAlSi₂$ planes are orthogonal to each other (dihedral angle SiAlAlSi 90°). Interestingly, in dialanes Al_2R_4 with less bulky substituents the angles between the $AIAIC₂$ planes are significantly smaller $(Al_2Disyl_4 8^\circ; ^4Al_2Tip_4 44.8^\circ 8)$. The space-filling properties of the supersilyl groups lead to an unusually long Al-Al distance of 2.751(2) Å; **¹**

[†] Dedicated to Professor Peter Jutzi on the occasion of his 60th birthday.

 $*$ To whom correspondence should be addressed: Tel $+49/89/5902$ -232; fax $+49/89/5902$ -578.

⁽⁸⁾ Wehmschulte, R. J.; Ruhland-Senge, K.; Olmstead, M. M.; Hope, H.; Sturgeon, B. E.; Power, P. P. *Inorg. Chem.* **1993**, *32*, 2983.

Figure 1. ORTEP drawing of **1**, showing 25% probability ellipsoids (H atoms have been omitted for clarity). Selected bond lengths [Å] and angles [deg]: A11-A11A 2.751(2), A11-Si1/A11-Si1C/A11A-Si1A/A11A-Si1B 2.717(1), Si1- C1 1.971(5), Si1-C5 1.962(4), Si1-C9 1.970(3) [mean value of Si-C-bonds 1.97], C1-C2 1.530(6), C1-C3 1.534(6), C1-C4 1.555(7); Si1-A11-Si1C/Si1A-A11A-Si1B 128.26- (5), Si1-A11-A11A/Si1C-A11-A11A/Si1A-A11A-A11/ Si1B-A11A-A11 115.87(2), A11-Si1-C1 109.3(1), A11- Si1-C5 111.5(1), A11-Si1-C9 108.7(1), C1-Si1-C5 110.0(2), C1-Si1-C9 108.6(2), C5-Si1-C9 108.7(2) [mean value of $C-Si-C$ angles 109.1], $Si-Al-Al-Si$ 90.0.

contains the longest Al-Al bond of a dialane(4) to date $\frac{A}{2}$ Disyl₄ 2.660 Å;⁴ Al₂Tip₄ 2.647 Å⁸). Nevertheless, at room temperature a solution of **1** in alkanes gives no evidence for disupersilylalanyl, R^*_{2} Al[•], by ESR. Thus, the equilibrium 1d in Scheme 1, under normal conditions, strongly favors **1** over the radical. Obviously, the R^*_{2} Al halves in 1 are bonded not only by a chemical Al-Al bond, which in fact is very weak, but by additional van der Waals attractions of the peripheral methyl groups also (cf. the situation with R^* – R^* ^{10,11}).

Another consequence of the steric hindrance of the supersilyl groups to each other is the unusually small SiAlSi angle of 128.3° (cf. $R*₂AlCl$ 148.3°¹²). It may be interpreted as the cone angle of the supersilyl group for a silicon element distance (here Si-Al distance) of 2.72 Å; the latter distance is unusually large (cf. $R*_2$ AlCl 2.53 \rm{A}^{12}). As expected, 1 shows comparatively long Si–C bonds and small C-Si-C angles (mean values 1.97 Å and 109.1°; normal range $1.94-1.95$ Å and $110-112$ °, respectively¹¹).

Scheme 2 shows some *reactions* of the dialane **1**: Mild warming of **1** in alkanes obviously leads, according to eq 1d in Scheme 1, to disupersilylalanyl radicals $R*_2$ Al[•] in low equilibrium concentration. This is supported by reactions of **1** with iodine as well as with hydrogen which give iododisupersilylalane (*t*-Bu₃Si)₂AlI and disupersilylalane (*t*-Bu3Si)2AlH at about 50 °C, according to eqs 2a and 2b in Scheme 2, respectively. Heating of **1**

in alkanes up to 80 °C leads, according to eq 2c in Scheme 2, under elimination of supersilyl radicals to black-green trisupersilyldialanyl radicals **2**; the former dimerize, whereas the latter are stable even at room temperature.13 Stronger heating of **1** in alkanes up to 135 °C leads, according to eq 2d in Scheme 1, to violet tetrasupersilyl*tetrahedro*tetraalane **3**6,13 in low yield and to supersilyl radicals, which under the reaction conditions abstract H atoms from their chemical environment to form R*H. Photolysis transforms **1**, via **2,** into **3**, a process that also occurs thermally. Consequently the tetrahedrane **3** is available, according to eqs 1a in Scheme 1 and 2d in Scheme 2, from $\text{Al}X_3$ and R^* Na in a one-pot process.

Experimental Section

General Considerations. All experiments were carried out under dry argon with strict exclusion of air and moisture The solvents were distilled from sodium/benzophenone immediately before use. The NMR spectra (¹H, ¹³C, ²⁹Si) were recorded on JEOL GXS-270 and EX-400. The 29Si NMR spectra were recorded with the INEPT pulse sequence using empirically optimized parameters for polarization transfer from the *t*-Bu substituents. Chemical shifts are reported in *δ* units (ppm) referenced to internal TMS $(^1H, ^{13}C)$ or external (^{29}Si) .

Synthesis of 1. (a) A solution of 0.084 g (0.18 mmol) of R^* ₂AlCl⁹ and 0.041 g (0.18 mmol) of R^* Na in 15 mL of pentane was stirred for 2 days at 25 °C (donor-free supersilylsodium was used¹⁴). The reaction mixture thus acquires a deep red color. According to ¹H NMR (C_6D_6), **1** and (R^*)₂ were formed in a molar ratio of about 1:1 (quantitative yield of **1**). After removal of insoluble NaCl and condensation of fractions volatile in oil pump vacuum the red residue was dissolved in 10 mL of pentane and cooled to -23 °C to get ruby crystals of **1** (0.025 g, 0.029 mmol, 35%). (b) Alternatively, 0.343 g (0.679 mmol) of R^*_{2} AlBr⁹ and 0.151 g (0.679 mmol) of R^* Na in 40 mL of pentane were stirred for 1 day at 25 °C. According to ¹H NMR (C_6D_6), **1** and (R^*)₂ were formed in a mol ratio of about 1:1. After removal of insoluble NaBr and condensation of fractions volatile in oil pump vacuum, the red residue was dissolved in 6 mL of pentane and cooled to -23 °C to get ruby crystals of **1** (0.18 g, 0.21 mmol, 63%). (c) A solution of 0.440 g (1.65 mmol) of AlBr₃ and 1.47 g (6.60 mmol) of R*Na in 45 mL of heptane was stirred for 1 h at -45 °C, then for 1 day at 25 °C. Filtration of the insoluble residue (NaBr) and concentration of the filtrate to 10 mL gave 0.650 g (0.760 mmol, 92%)

⁽⁹⁾ Wiberg, N.; Amelunxen, K.; Lerner, H.-W.; No¨th, H.; Knizek, J.; Krossing, I. *Z. Naturforsch.* **1998**, *53b*, 333.

⁽¹⁰⁾ Wiberg, N.; Schuster, H.; Simon, A.; Peters A. *Angew. Chem.* **1986**, *98*, 100; *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 79.

⁽¹¹⁾ Wiberg, N. *Coord. Chem. Rev.* **1997**, *163*, 217. (12) Wiberg, N.; Blank, T.; Polborn, K. Unpublished.

⁽¹³⁾ Wiberg, N.; Blank, T.; Nöth, H.; Knizek, J.; Kaim; W., Schwederski, B. Unpublished results.

⁽¹⁴⁾ Wiberg, N.; Amelunxen, K.; Lerner, H.-W.; Schuster, H.; Nöth, H.; Krossing, I.; Schmidt-Amelunxen, M.; Seifert, T. *J. Organomet. Chem.* **1997**, 542, 1.

ruby crystals of **1**. ¹H NMR (C₆D₆): $\delta = 1.36$ (s; 36 Me); (C_6D_{12}) : $\delta = 1.29$ (s; 36 Me). ¹³C{¹H} NMR (C_6D_6): $\delta = 25.64$ / 35.56 (12 *CMe₃*/12 *CMe₃*); (C₆D₁₂): $\delta = 26.08/34.88$ (12 *CMe₃*/ 12 C*Me*₃). ²⁹Si NMR (C₆D₆): $\delta = 44.7$ (12 *t*-Bu); (C₆D₁₂): $\delta =$ 44.9 (12 *t*-Bu).

Reaction of 1 with I_2 **.** A solution of 0.007 g (0.03 mmol) of I_2 in 5 mL of pentane was added dropwise to a solution of 0.026 g (0.030 mmol) of 1 in 10 mL of pentane at -78 °C. The reaction mixture was warmed slowly to 40 °C and then stirred at this temperature for 3 h. In this way, the red reaction solution acquires a yellow color. According to NMR spectra, the reaction to R^*_{2} AlI is quantitative (identification by comparison of the NMR spectra of the product with the spectra of R^*_{2} AlCl and R^*_{2} AlBr⁵). ¹H NMR (C₆D₆): $\delta = 1.34$ (s; 18 Me).
¹³C{¹H} NMR (C₆D₆): $\delta = 25.92/33.23$ (6 *CMe₃/6 C<i>Me*₃).

Reaction of 1 with H₂. An evacuated NMR tube with 1 in 0.6 mL of C_6D_{12} was filled with 700 mbar of oxygen-free hydrogen and then sealed. It was heated for 15 min at 50 °C. Thereby, the solution decolorized. According to NMR spectra, the reaction to R^*_{2} AlH is quantitative (identified by comparison of the NMR spectra of the product with that of a product prepared separately by the reaction of R^*_{2} AlCl with LiAlH₄). ¹H NMR (C₆D₁₂): $\delta = 1.25$ (s; 18 Me). ¹³C{¹H} NMR (C₆D₁₂): δ = 25.31/32.79 (6 *CMe₃*/6 *CMe₃*).

Formation of 2. A sealed NMR tube, containing 0.138 g (0.163 mmol) of **1** in 1.5 mL of C_6D_{12} , was heated at 80 °C for 60 min. Thereby the color changed from red, via violet, to black-green. NMR measurements indicated the disappearance of the signals for **1** and the appearance of those for superdisilane $(R^*)_2$. The formation of **2** was undoubtly confirmed by ESR measurements $[a(A]_1] = 18.9$ and $a(A]_2) = 21.8$ G; in colaboration with W. Kaim and B. Schwederski¹³]. Up to date, no crystals of **2** could be isolated that were suitable for an X-ray structure analysis (for an X-ray structure analysis of $R^*_{3}Ga^*_{2}$ cf. ref 15).

X-ray Structure Determination of 1. Siemens P4- Diffractometer, Mo K α radiation, graphite monochromator, CCD area detector, crystal $0.40 \times 0.40 \times 0.30$ mm mounted with perfluorpolyether-oil, $T = 173(2)$ K, $C_{48}H_{108}Al_2Si_4$, $M_r =$ 851.66, red cubic, tetragonal, $a = b = 15.4599(1)$ Å, $c =$ 13.2038(1) Å, $V = 3155.82(3)$ Å³, $Z = 2$, space group $\overline{I4}$, $\rho_{\text{ber.}} =$ 0.896 Mg m³, $\mu = 1.349$ mm⁻¹, $F(000) = 956$. Data collection: $2\theta = 3.72$ bis 58.14°, $-19 \le h \le 20$, $-20 \le k \le 20$, $-16 \le l \le$ 16, 9338 reflections collected, 3403 were independent ($R_{\text{int}} =$ 0.0197) and 3313 considered observed $(F > 4\sigma(F))$; absorption correction SADABS (min./max. transmission 0.9436 and 0.9573); R1 = 0.0461, wR2 = 0.1519, $GOF(F^2) = 1.304$; largest residual electron density 1.51 e Å⁻³. The weighting factor w^{-1} $= \sigma^2 F_0^2 + (0.1055P)^2$ with $(P = F_0^2 + 2F_c^2)/3$. The structure was solved by direct methods (SHFI X-97, Sheldrick, 1997) was solved by direct methods (SHELX-97, Sheldrick, 1997). The refinement uses a twin matrix $(010 100 00-1)$. All nonhydrogen atoms were refined anisotropically, and H atoms were included in the refinement at calculated positions with a riding model and fixed isotropic *U*i-values. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-101401. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ (Telefax: Int.+1223/336-033. E-mail: deposit@chem.crys.cam.ac.uk).

Acknowledgment. We would like to thank the Deutsche Forschungsgemeinschaft for supporting our research.

OM980469R

⁽¹⁵⁾ Wiberg, N.; Amelunxen, K.; Nöth, H.; Schwenk H.; Kaim, W.; Klein A,; Scheiring, T. *Angew. Chem.* **1997**, *109*, 1258; *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1213.